Development of Multichannel Artificial Lipid-Polymer Membrane Sensor for Phytomedicine Application
Abstract
:1. Introduction
2. Experimental
2.1. Plant materials
2.2. Artificial lipid-polymer membrane preparation
2.3. Multichannel sensor electrode fabrication
2.4. Electrical potentiometric measurement
2.5. Chemometric data analysis
3. Results and discussion
3.1. Evaluation of the sensor array performance
3.2. Characterization of E. longifolia by fingerprinting profiling analysis
3.2.1. Potentiometric fingerprint profiling of E. longifolia from different parts of plant
3.2.2. Potentiometric fingerprint profiling of E. longifolia harvested during different stage of maturity
3.2.3. Potentiometric fingerprint profiling of E. longifolia extracted with different mode of extraction
3.3. Classification of E. longifolia using chemometric analysis
3.3.1. Hierarchical Cluster Analysis (HCA)
3.3.2. Principal Component Analysis (PCA)
4. Conclusion
Acknowledgments
References
- Phillipson, J.D. 50 Years of Medicinal Plant Research – Every Progress in Methodology is a Progress in Science. Planta Medica 2003, 69, 491–495. [Google Scholar]
- Oon-Sim, C.; Ahmad, M.N.; Ezrinda, M. Z.; Ismail, Z.; Nor Amin, M. N.; Othman, A.R. Chemometric Classification of Herb - Orthosiphon stamineus According to its Geographical Origin Using Virtual Chemical Sensor Based Upon Fast GC. Sensors 2003, 3, 458–471. [Google Scholar]
- Oon-Sim, C.; Ahmad, M.N.; Ismail, Z.; Othman, A.R. Virtual Chemical Sensor for Classification of Herb – Orthosiphon stamineus According to its Geographical Origin. Proceedings of Institute of Electrica & Electronic Engineers (IEEE), AsiaSENSE 2003, Sensors 2003, 3, 173–178. [Google Scholar]
- Giese, J. Food Biosensors. Food Technology 2002, 56(7), 72–75. [Google Scholar]
- Shafiqul Islam, A.K.M.; Ismail, Z.; Ahmad, M.N.; Othman, A.R.; Dharmaraj, S.; Mohd Shakaff, A.Y. Taste Profiling of Centella asiatica by a Taste Sensor. Sensors and Materials 2003, 15(4), 209–218. [Google Scholar]
- Ismail, Z.; Ahamd, M.N.; Oon-Sim, C.; Md. Shakaff, A.Y.; Zamri, I.; Adenan, M.I. Development of multi-use disposable screen-printed biostrip with a virtual sensing system for phytochemical applications. The Eighth World Congress on Biosensors, Granada Conference and Exhibition Centre, Granada, Spain, 24-26 May 2004.
- Abdul Rahman, A.S.; Sim Yap, M.M.; Md. Shakaff, A.Y.; Ahmad, M.N.; Dahari, Z.; Ismail, Z.; Hitam, M.S. A microcontroller-based taste sensing system for the verification of Eurycoma longifolia. Sensors and Actuators B 2004, 101, 191–198. [Google Scholar]
- Ismail, Z.; Ahmad, M.N.; Oon-Sim, C.; Shafiqual Islam, A.K.M. Potentiometric fingerprint profiling of Eurycoma longifolia extracts (Tongkat Ali) using multichannel artificial lipid-polymer membrane sensor. Sensors & Transducers 2005, 52(2), 300–309. [Google Scholar]
- Lazarowych, N.J.; Pekos, P. Use of Fingerprinting and Marker Compounds for Identification and Standardization of Botanical Drugs: Strategies for Applying Pharmaceutical HPLC Analysis to Herbal Products. Drug Information Journal 1998, 32, 497–512. [Google Scholar]
- Cai, Z.W.; Lee, F.S.C.; Wang, X.R.; Yu, W.J. A Capsule Review of Recent Studies on the Application of Mass Spectrometry in the Analysis of Chinese Medicinal Herbs. Journal of Mass Spectrometry 2002, 37, 1013–1024. [Google Scholar]
- Teng, S.C.; Tsai, H.J.; Lee, W.M.; Chen, I.C.; Lin, C.C. Using Both Chemical and Biological Fingerprints for the Quality Study of Esctrogenic Licorice (Glycyrrhiza uralensis). Journal of Food Science 2003, 68(7), 2372–2377. [Google Scholar]
- Schaneberg, B.T.; Crockett, S.; Bedir, E.; Khan, I.A. The Role of Chemical Fingerprinting: Application to Ephedra. Phytochemistry 2003, 62, 911–918. [Google Scholar]
- Hiyashi, K.; Yamanaka, M.; Toko, K.; Yamafuji, K. Multichannel Taste Sensor Using Lipid Membranes. Sensor and Actuators B 1990, 2, 205–213. [Google Scholar]
- Toko, K.; Matsuno, T.; Yamafuji, K. Multichannel Taste Sensor Using Electrical Potential Changes in Lipid Membranes. Biosensor & Bioelectronics 1994, 9, 359–364. [Google Scholar]
- Takagi, S.; Toko, K.; Wada, K.; Yamada, H.; Toyoshima, K. Detection of suppression of bitterness by sweet substance using a Multichannel Taste Sensor. Journal of Pharmaceutical Sciences 1998, 87(5), 552–555. [Google Scholar]
- Eisenman, G. Glass Electrodes for Hydrogen and Other Cations: Principle and Practice; Marcel Dekker, Inc: New York, 1966. [Google Scholar]
- Eggins, B.R. Chemical Sensor and Biosensors; John Wiley & Sons, Ltd: England, 2002; pp. 107–124. [Google Scholar]
- Arnason, J.T.; Binns, S.E.; Baum, A.R. Phytochemicals in Nutrition and Health; D.Meskin, M.S., Bidlack, W.R., Davies, A.J., Omaye, S.T., Eds.; CRC Press LLC: Florida, 2002; Chapter 2; pp. p 9–17. [Google Scholar]
- McChesney, J.D. Biologically Active Natural Products: Pharmaceuticals; Culter, S.J., Cutler, H.G., Eds.; CRC Press LLC: Florida, 2000; Chapter 18; pp. p 253–264. [Google Scholar]
- Chan, K.L.; Choo, C.Y.; Morita, H.; Itokawa, Hideji. High performance liquid chromatography in phytochemical analysis of Eurycoma longifolia. Planta Medica 1998, 64, 741–745. [Google Scholar]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 4th ed; Pearson Education Ltd: England, 2000; pp. 214–237. [Google Scholar]
- Ang, H.H.; Sim, M.K. Eurycoma longifolia Jack and Orientation Activities in Sexually Experienced Male Rat. Biological and Pharmaceutical Bulletin 1998, 21(2), 153–155. [Google Scholar]
- Tran, Q.L.; Tezuka, Y.; Ueda, J.Y.; Nguyen, N.T.; Maruyama, Y.; Begum, K.; Kim, H.S.; Wataya, Y.; Tran, Q.K.; Kodata, S. Vitro Antiplasmodial Activity of Antimalarial Medicinal Plants Used in Vietnamese Traditional Medicine. Journal of Ethnopharmacology 2003, 86, 249–252. [Google Scholar]
Channel No. | Electrode Charge | Lipid Material |
---|---|---|
1 | negative | Decyl alcohol (DA) |
2 | negative | Oleic acid (OA) |
3 | negative | Dioctyl phosphate (DOP) |
4 | neutral | DOP:TOMA=5:5 (D:T=5:5) |
5 | positive | DOP:TOMA=3:7 (D:T=3:7) |
6 | positive | Trioctyl methyl ammonium chloride (TOMA) |
7 | positive | Oleyl amine (OAm) (Decyl alcohol + Oleyl amine) |
8 | negative | DOP:TOMA=9:1 (D:T=9:1) |
© 2006 MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Ahmad, M.N.; Ismail, Z.; Chew, O.; Islam, A.S.; Md Shakaff, A.Y. Development of Multichannel Artificial Lipid-Polymer Membrane Sensor for Phytomedicine Application. Sensors 2006, 6, 1333-1344. https://doi.org/10.3390/s6101333
Ahmad MN, Ismail Z, Chew O, Islam AS, Md Shakaff AY. Development of Multichannel Artificial Lipid-Polymer Membrane Sensor for Phytomedicine Application. Sensors. 2006; 6(10):1333-1344. https://doi.org/10.3390/s6101333
Chicago/Turabian StyleAhmad, Mohd Noor, Zhari Ismail, Oon–Sim Chew, AKM Shafiqul Islam, and Ali Yeon Md Shakaff. 2006. "Development of Multichannel Artificial Lipid-Polymer Membrane Sensor for Phytomedicine Application" Sensors 6, no. 10: 1333-1344. https://doi.org/10.3390/s6101333
APA StyleAhmad, M. N., Ismail, Z., Chew, O., Islam, A. S., & Md Shakaff, A. Y. (2006). Development of Multichannel Artificial Lipid-Polymer Membrane Sensor for Phytomedicine Application. Sensors, 6(10), 1333-1344. https://doi.org/10.3390/s6101333