Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade
Abstract
:1. Introduction
2. Conducting Polymer Based Sensors
2.1. Solid-contact ion selective electrode (SCISE)
2.2. Single-piece ISE (SPISE)
2.3. Conducting polymer-based ISE(CPISE)
3. Non-conducting Polymer PVC-Based ISEs
3.1. ISE membrane components
- The polymeric matrix
- The ionophore (membrane–active recognition)
- The membrane solvent (plasticizer)
- Ionic additives
3.1.1. The polymeric matrix
3.1.2. The ionophore (membrane–active recognition)
- Cs+ > Ag+ > K+ > NH4+ > Na+ > Li+ > Ca2+ > Pb2+ > Cu2+
- ClO4- > SCN− > I− > salicylate > NO3- > Br− > NO2- > Cl− > HSO3- > acetate > SO42− > HPO42−
3.1.3. The membrane solvent (Plasticizer)
3.1.4. Plasticizer-Free Polymer Membrane ISEs
3.1.5. Ionic additives
3.2. Non-conducting Polymer Membrane Sensors for the Hydrogen Ion and the First Main Group Cations
3.3. Non-conducting Molymer Membrane Sensors for the Second Main Group Cations
3.4. Non-Conducting Polymer Membrane Sensors for the Third Main Group Cations
3.5. Non-conducting Polymer Membrane Sensors for the Fourth Main Group Cations
3.6. Non-conducting Polymer Membrane Sensors for the Transition Metal Cations
3.7. Non-conducting Polymer Membrane Sensors for the Rare Earth Cations
3.8. Non-conducting Polymer Membrane Sensors for Inorganic Anions
4. Conclusions
References and Notes
- Bakker, E.; Buhlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar]
- Bakker, E.; Pretsch, E. Potentiometric sensors for trace-level analysis. Trends Anal. Chem. 2005, 24, 199–207. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Rezapour, M.; Faridbod, F.; Pourjavid, M. R. Supramolecular Based Membrane Sensors. Sensors 2006, 6, 1018–1086. [Google Scholar]
- Ganjali, M.R.; Norouzi, P.; Faridbod, F.; Rezapour, M.; Pourjavid, M.R. One Decade of Research on Ion-Selective Electrodes in Iran (1996-2006). J. Iran. Chem. Soc. 2007, 4, 1–29. [Google Scholar]
- Ganjali, M. R.; Dinarvand, R.; Norouzi, P.; Faridbod, F. Ion Recognition: Application of Symmetric and Asymmetric Schiff Bases and Their Complexes for the Fabrication of Cationic and Anionic Membrane Sensors to Determine Ions in Real Samples. Comb. Chem.High Throughput Screen. 2007, 10, 527–546. [Google Scholar]
- Faridbod, F.; Ganjali, M. R.; Dinarvand, R.; Norouzi, P. The fabrication of potentiometric membrane sensors and their applications. Afr. J. Biotechnol. 2007, 6, 2960–2987. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Rezapour, M. Encyclopedia of Sensors, Potentiometric Ion Sensors; American Scientific Publisher (ASP): Stevenson Ranch, CA, USA, 2006; Volume 8, pp. 197–288. [Google Scholar]
- Sokalski, T.; Ceresa, A.; Zwickl, T.; Pretsch, E. J. Large improvement of the lower detection limit of ion-selective polymer membrane electrodes. J. Amer. Chem. Soc. 1997, 119, 11347–11348. [Google Scholar]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors Based on Conducting Polymers. Electroanalysis 2003, 15, 366–374. [Google Scholar]
- Bobacka, J.; Lindfors, T.; Lewenstam, A.; Ivaska, A. All-solid-state ion sensors, usiong conducting polymers as ion-to-electron transducers. Am. Lab. 2004, 36, 12–20. [Google Scholar]
- Bobacka, J. Conducting Polymer-Based Solid-State Ion-Selective Electrodes. Electroanalysis 2006, 18, 7–18. [Google Scholar]
- Vigassy, T.; Huber, C. G.; Wintringer, R.; Pretsch, E. Monolithic capillary-based ion-selective electrodes. Anal. Chem. 2005, 77, 3966–3970. [Google Scholar]
- Nikolskii, B. P.; Materova, E. A. Ion-Sel. Electrode Rev.; 1985; Volume 7, p. 3. [Google Scholar]
- Cattrall, R. W.; Freiser, H. Anal. Chem.; 1971; Volume 43, p. 1905. [Google Scholar]
- Lindner, E.; Cosofret, V. V.; Ufer, S.; Johnson, T. A.; Ash, R. B.; Nagle, H. T.; Neuman, M. R.; Buck, R. P. In-Vivo and In-Vitro testing of microelectronically fabricated planar sensors designed for application in cadiology. Fresen. J. Anal. Chem. 1993, 346, 584–588. [Google Scholar]
- Fibbioli, M.; Bandyopadhyay, K.; Liu, S-G.; Echegoyen, L.; Enger, O.; Diederich, F.; Bühlmann, P.; Pretsch, E. Redox-active self-assembled monolayers as novel solid contacts for ion-selective electrodes. Chem. Commu. 2000, 339. [Google Scholar]
- Bobacka, J. Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar]
- Rahman, A.; Kumar, P.; Park, D. S.; Shim, Y. B. Electrochemical Sensors Based on Organic Conjugated Polymers. Sensors 2008, 8, 118–141. [Google Scholar]
- Rahman, A.; Lee, K. S.; Park, D. S.; Won, M. S.; Shim, Y. B. An amperometric bilirubin biosensor based on a conductive poly-terthiophene-Mn(II) complex. Biosens. Bioelectron. 2008, 23, 857–864. [Google Scholar]
- Kum, M. C.; Joshi, K. A.; Chen, W. Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application. Talanta 2007, 74, 370–375. [Google Scholar]
- Ramanavicius, A.; Ramanaviciene, A.; Malinauskas, A. Electrochemical sensors based on conducting polymer- polypyrrole. Electrochim. Acta 2006, 51, 6025–6037. [Google Scholar]
- Rahman, M. A.; Park, D. S.; Chang, S. C.; McNeil, C. J.; Shim, Y. B. The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations. Biosens. Bioelectron. 2006, 21, 1116–1124. [Google Scholar]
- Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24. [Google Scholar]
- Bobacka, J. Encyclopedia of Sensors; Grimes, C. A., Dickey, E., Pishko, M. V., Eds.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2006. [Google Scholar]
- Ramanaviciene, A.; Ramanavicius, A. Application of polypyrrole for the creation of immunosensors Crit. Revi. Anal. Chem. 2002, 32, 245–252. [Google Scholar]
- Gyurcscnyi, R. E.; Nybck, A-S.; Tth, K.; Nagy, G.; Ivaska, A. (Eds.) Novel, polypyrrole based all-solid-state potassium-selective microelectrodes. Analyst 1998, 123, 1339–44.
- Bobacka, J.; Lindfors, T.; McCarrick, M.; Ivaska, A.; Lewenstam, A. Single-piece all-solid-state ion-selective electrode. Anal. Chem. 1995, 67, 3819–3823. [Google Scholar]
- Migdalski, J.; Blaz, T.; Lewenstam, A. Conducting polymer-based ion-selective electrodes. Anal. Chim. Acta 1996, 322, 141–149. [Google Scholar]
- Migdalski, J; Blaz, T.; Kowalski, Z.; Lewenstam, A. (Eds.) Nonclassical potentiometric indicator electrodes with dual sensitivity. Electroanalysis 1999, 11, 735–743.
- Blaz, T.; Migdalski, J.; Lewenstam, A. Polypyrrole-calcion film as a membrane and solid-contact in an indicator electrode for potentio-metric titrations. Talanta 2000, 52, 319–328. [Google Scholar]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Plasticizer-free all-solid-state potassium-selective electrode based on poly (3-octylthiophene) and valinomycin. Anal. Chim. Acta 1999, 385, 195–202. [Google Scholar]
- Sjberg, P.; Bobacka, J.; Lewenstam, A.; Ivaska, A. All-solid-state chlo-ride-selective electrode based on poly (3-octylthiophene) and tridode-cylmethylammonium chloride. Electroanalysis 1999, 11, 821–824. [Google Scholar]
- Lindfors, T.; Ivaska, A. All-solid-state calcium-selective electrode prepared of soluble electrically conducting polyaniline and di(2-ethylhexyl)phosphate with ETH1001 as neutral carrier. Anal. Chim. Acta 2000, 404, 101–110. [Google Scholar]
- Lindfors, T.; Ivaska, A. All-solid-state calcium-selective electrode prepared of soluble electrically conducting polyaniline and di(2-ethylhexyl)phosphate with tetraoctylammonium chloride as cationic additive. Anal. Chim. Acta 2000, 404, 111–119. [Google Scholar]
- Lindfors, T.; Ivaska, A. Calcium-selective electrode based on polyani-line functionalized with bis[4(1,1,3,3-tetramethylbutyl)phenyl]-phosphate. Anal. Chim. Acta 2001, 437, 171–182. [Google Scholar]
- Lindino, C. A.; Bulhoes, L. O. S. The potentiometric response of chemically modified electrodes. Anal. Chim. Acta 1996, 334, 317–322. [Google Scholar]
- Faria, R. C.; Bulhoes, L. O. S. Hydrogen ion selective electrode based on poly(1-aminoanthracene) film. Anal. Chim. Acta 1998, 377, 21–27. [Google Scholar]
- Masalles, C.; Borros, S.; Vinas, C.; Teixidor, F. Simple PVC-PPy electrode for pH measurement and titrations. Anal. Bioanal. Chem. 2002, 372, 513–518. [Google Scholar]
- Lindfors, T.; Ivaska, A. pH sensitivity of polyaniline and its substituted derivatives. J. Electroanal. Chem. 2002, 531, 43–52. [Google Scholar]
- Lindfors, T.; Ervela, S.; Ivaska, A. Polyaniline as pH-sensitive component in plasticized PVC membranes. J. Electroanal. Chem. 2003, 560, 69–78. [Google Scholar]
- Zine, N.; Bausells, J.; Ivorra, A.; Aguilo, J.; Zabala, M.; Teixidor, F.; Masalles, C.; Vinas, C.; Errachid, A. Hydrogen-selective microelectrodes based on silicon needles. Sens. Actuators B 2003, 91, 76–82. [Google Scholar]
- Michalska, A.; Maksymiuk, K. Counter-ion influence on polypyrrole potentiometric pH sensitivity. Microchim. Acta 2003, 143, 163–175. [Google Scholar]
- Kaden, H.; Jahn, H.; Berthold, M. Study of the glass/polypyrrole interface in an all-solid-state pH sensor. Solid State Ionics 2004, 169, 129–133. [Google Scholar]
- Ge, C. H.; Armstrong, N. R.; Saavedra, S. S. PH-sensing properties of poly(aniline) ultrathin films self-assembled on indium-tin oxide. Anal. Chem. 2007, 79, 1401–1410. [Google Scholar]
- Cadogan, A.; Gao, Z. Q.; Lewenstam, A.; Ivaska, A.; Diamond, D. All-Solid-State Sodium-Selective Electrode Based on a Calixarene Ionophore in a Poly(Vinyl Chloride) Membrane with a Polypyrrole Solid Contact. Anal. Chem. 1992, 64, 2496–2501. [Google Scholar]
- Pawlowski, P.; Michalska, A.; Maksymiuk, K. Galvanostatic polarization of all-solid-state K+-selective electrodes with polypyrrole ion-to-electron transducer. Electroanalysis 2006, 18, 1339–1346. [Google Scholar]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Plasticizer-free all-solid-state potassium-selective electrode based on poly(3-octylthiophene) and valinomycin. Anal. Chim. Acta 1999, 385, 195–202. [Google Scholar]
- Gyurcsanyi, R. E.; Nyback, A. S.; Toth, K.; Nagy, G.; Ivaska, A. Novel polypyrrole based all-solid-state potassium-selective microelectrodes. Analyst 1998, 123, 1339–1344. [Google Scholar]
- Lindfors, T.; Ivaska, A. Stability of the inner polyaniline solid contact layer in all-solid-state K+-selective electrodes based on plasticized poly(vinyl chloride). Anal. Chem. 2004, 76, 4387–4394. [Google Scholar]
- Vazquez, M.; Danielsson, P.; Bobacka, J.; Lewenstam, A.; Ivaska, A. Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes. Sens. Actuators B 2004, 97, 182–189. [Google Scholar]
- Vazquez, M.; Bobacka, J.; Ivaska, A.; Lewenstam, A. Small-volume radial flow cell for all-solid-state ion-selective electrodes. Talanta 2004, 62, 57–63. [Google Scholar]
- Gyurcsanyi, R. E.; Rangisetty, N.; Clifton, S.; Pendley, B. D.; Lindner, E. Microfabricated ISEs: critical comparison of inherently conducting polymer and hydrogel based inner contacts. Talanta 2004, 63, 89–99. [Google Scholar]
- Toczylowska, R.; Pokrop, R.; Dybko, A.; Wroblewski, W. Planar potentiometric sensors based on Au and Ag microelectrodes and conducting polymers for flow-cell analysis. Anal. Chim. Acta 2005, 540, 167–172. [Google Scholar]
- Pandey, P. C.; Prakash, R.; Singh, G.; Tiwari, I.; Tripathi, V. S. Studies on polycarbazole-modified electrode and its applications in the development of solid-state potassium and copper(II) ion sensors. J. Appl. Polym. Sci. 2000, 75, 1749–1759. [Google Scholar]
- Paczosa-Bator, B.; Peltonen, J.; Bobacka, J.; Lewenstam, A. Influence of morphology and topography on potentiometric response of magnesium and calcium sensitive PEDOT films doped with adenosine triphosphate (ATP). Anal. Chim. Acta 2006, 555, 118–127. [Google Scholar]
- Lindfors, T.; Ivaska, A. Calcium-selective electrode based on polyaniline functionalized with bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate. Anal. Chim. Acta 2001, 437, 171–182. [Google Scholar]
- Lindfors, T.; Ivaska, A. All-solid-state calcium-selective electrode prepared of soluble electrically conducting polyaniline and di(2-ethylhexyl)phosphate with tetraoctylammonium chloride as cationic additive. Anal. Chim. Acta 2000, 404, 111–119. [Google Scholar]
- Michalska, A. Improvement of analytical characteristic of calcium selective electrode with conducting polymer contact. The role of conducting polymer spontaneous charge transfer processes and their galvanostatic compensation. Electroanalysis 2005, 17, 400–407. [Google Scholar]
- Lindfors, T.; Ivaska, A. All-solid-state calcium-selective electrode prepared of soluble electrically conducting polyaniline and di(2-ethylhexyl)phosphate with ETH1001 as neutral carrier. Anal. Chim. Acta 2000, 404, 101–110. [Google Scholar]
- Bobacka, J.; McCarrick, M.; Lewenstam, A.; Ivaska, A. All-Solid-State Poly(Vinyl Chloride) Membrane Ion-Selective Electrodes with Poly(3-Octylthiophene) Solid Internal Contact. Analyst 1994, 119, 1985–1991. [Google Scholar]
- Michalska, A.; Maksymiuk, K. All-plastic, disposable, low detection limit ion-selective electrodes. Anal. Chim. Acta 2004, 523, 97–105. [Google Scholar]
- Ragini, P. V.; Rizvi, G. H.; Contractor, A. Q.; Manchanda, V. K. Conducting polymer based electrochemical sensor for strontium in nitric acid medium. J. Indian Chem. Soc. 2002, 79, 949–952. [Google Scholar]
- Kisiel, A.; Michalska, A.; Maksymiuk, K. Plastic reference electrodes and plastic potentiometric cells with dispersion cast poly(3,4-ethylenedioxythiophene) and poly(vinyl chloride) based membranes. Bioelectrochemistry 2007, 71, 75–80. [Google Scholar]
- Sutter, J.; Lindner, E.; Gyurcsanyi, R. E.; Pretsch, E. A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit. Anal. Bioanal. Chem. 2004, 380, 7–14. [Google Scholar]
- Ocypa, M.; Michalska, A.; Maksymiuk, K. Accumulation of Cu(II) cations in poly(3,4-ethylenedioxythiophene) films doped by hexacyanoferrate anions and its application in Cu2+-selective electrodes with PVC based membranes. Electrochim. Acta 2006, 51, 2298–2305. [Google Scholar]
- Migdalski, J.; Blaz, T.; Zralka, B.; Lewenstam, A. Galvanic cell without liquid junction for potentiometric determination of copper. Anal. Chim. Acta 2007, 594, 204–210. [Google Scholar]
- Bobacka, J.; Lahtinen, T.; Koskinen, H.; Rissanen, K.; Lewenstam, A.; Ivaska, A. Silver ion-selective electrodes based on pi-coordinating ionophores without heteroatoms. Electroanalysis 2002, 14, 1353–1357. [Google Scholar]
- Vazquez, M.; Bobacka, J.; Ivaska, A. Potentiometric sensors for Ag+ based on poly(3-octylthiophene) (POT). J. Solid State ElectroChem. 2005, 9, 865–873. [Google Scholar]
- Vazquez, M.; Bobacka, J.; Luostarinen, M.; Rissanen, K.; Lewenstam, A.; Ivaska, A. Potentiometric sensors based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated calix[4]arene and calix[4]resorcarenes. J. Solid State ElectroChem. 2005, 9, 312–319. [Google Scholar]
- Mousavi, Z.; Bobacka, J.; Lewenstam, A.; Ivaska, A. Response mechanism of potentiometric Ag+ sensor based on poly(3,4-ethylenedioxythiophene) doped with silver hexabromocarborane. J. Electroanal. Chem. 2006, 593, 219–226. [Google Scholar]
- Mousavi, Z.; Bobacka, J.; Ivaska, A. Potentiometric Ag+ sensors based on conducting polymers: A comparison between poly(3,4-ethylenedioxythiophene) and polypyrrole doped with sulfonated calixarenes. Electroanalysis 2005, 17, 1609–1615. [Google Scholar]
- Pandey, P. C.; Singh, G.; Srivastava, P. K. Electrochemical synthesis of tetraphenylborate doped polypyrrole and its applications in designing a novel zinc and potassium ion sensor. Electroanalysis 2002, 14, 427–432. [Google Scholar]
- Khan, A. A.; Alam, M. M. New and novel organic-inorganic type crystalline ‘polypyrrolel/polyantimonic acid’ composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg(II) ion-selective membrane electrode. Anal. Chim. Acta 2004, 504, 253–264. [Google Scholar]
- Song, F. Y.; Ha, J. H.; Park, B.; Kwak, T. H.; Kim, I. T.; Nam, H.; Cha, G. S. All-solid-state carbonate-selective electrode based on a molecular tweezer-type neutral carrier with solvent-soluble conducting polymer solid contact. Talanta 2002, 57, 263–270. [Google Scholar]
- Hutchins, R. S.; Bachas, L. G. Nitrate-Selective Electrode Developed by Electrochemically Mediated Imprinting Doping of Polypyrrole. Anal. Chem. 1995, 67, 1654–1660. [Google Scholar]
- Atta, N. F.; Galal, A.; Mark, H. B.; Yu, T.; Bishop, P. L. Conducting polymer ion sensor electrodes III. Potentiometric sulfide ion selective electrode. Talanta 1998, 47, 987–999. [Google Scholar]
- Shishkanova, T. V.; Sapurina, I.; Stejskal, J.; Kral, V.; Volf, R. Ion-selective electrodes: Polyaniline modification and anion recognition. Anal. Chim. Acta 2005, 553, 160–168. [Google Scholar]
- Sjoberg, P.; Bobacka, J.; Lewenstam, A.; Ivaska, A. All-solid-state chloride-selective electrode based on poly(3-octylthiophene) and tridodecylmethylammonium chloride. Electroanalysis 1999, 11, 821–824. [Google Scholar]
- Sjoberg-Eerola, P.; Bobacka, J.; Sokalski, T.; Mieczkowski, J.; Ivaska, A.; Lewenstam, A. All-solid-state chloride sensors with poly(3-octylthiopene) matrix and trihexadecylmethylammonium chlorides as an ion exchanger salt. Electroanalysis 2004, 16, 379–385. [Google Scholar]
- Michalska, A.; Walkiewicz, S.; Maksymiuk, K.; Hall, E. A. H. Potentiometric responses of poly(pyrrole) films surface modified by Nafion. Electroanalysis 2002, 14, 1236–1244. [Google Scholar]
- Michalska, A.; Dumanska, J.; Maksymiuk, K. Lowering the detection limit of ion-selective plastic membrane electrodes with conducting polymer solid contact and conducting polymer potentiometric sensors. Anal. Chem. 2003, 75, 4964–4974. [Google Scholar]
- Dominguez-Ballart, M.; Bachas, L. G.; Salvado, V. Potentiometric chloride-selective electrodes based on polypyrrole: preparation and membrane characterization by SEM and EDX. Quim. Anal. (Barcelona) 2000, 19, 49–56. [Google Scholar]
- Michalska, A.; Galuszkiewicz, A.; Ogonowska, M.; Ocypa, M.; Maksymiuk, K. PEDOT films: multifunctional membranes for electrochemical ion sensing. J. Solid State ElectroChem. 2004, 8, 381–389. [Google Scholar]
- Wang, Z.; Zhang, H. S.; Mark, H. B.; Rubinson, J. F. Fabrication of a poly(methylthiophene-methylpyrrole) copolymer Br- sensor and its application in direct potentiometry and potentiometric titration. Anal. Lett. 1997, 30, 1–10. [Google Scholar]
- Galal, A.; Wang, Z.; Karagozler, A. E.; Zimmer, H.; Mark, H. B.; Bishop, P. L. A Potentiometric Iodide (and Other) Ion Sensor-Based on a Conducting Polymer Film Electrode .2. Effect of Electrode Conditioning and Regeneration Techniques. Anal. Chim. Acta 1994, 299, 145–163. [Google Scholar]
- Alizadeh, N.; Mahmodian, M. A new dodecylsulfate ion-selective sensor based on electrochemically prepared polypyrrole and PVC. Electroanalysis 2000, 12, 509–512. [Google Scholar]
- Hofmeister, F. On the understanding of the effects of salts, second report. On irregularities in the precipitating effect of salts and their relationship to their physical behavior. Arch. Exp. Pathol. Pharmacol. 1888, 24, 247–260. [Google Scholar]
- Ganjali, M. R.; Moghaddamb, M. R.; Norouzi, P.; Shirvani-Arani, S.; Daneshgar, P.; Adib, M.; Sobhi, H. R. Highly selective and sensitive triiodide PVC-based membrane electrode based on a new charge transfer complex of 2-(((2-(((E)-1-(2-hydroxyphenyl) methylidine) amino) phenyl) imino) methyl) phenol for nano-level monitoring of triiodide. Anal. Lett. 2006, 39, 683–695. [Google Scholar]
- Xu, D. F.; Katsu, T. O,O,O-trialkyl phosphorothioates as simple and effective ionophores for silver ion-selective membrane electrodes. Anal. Chim. Acta. 2001, 443, 235–240. [Google Scholar]
- Saad, B.; Zin, Z. M.; Jab, M. S.; Rahman, I. A.; Saleh, M. I.; Mahsufi, S. Flow-through chloroquine sensor and its applications in pharmaceutical analysis. Anal. Sci. 2005, 21, 521–524. [Google Scholar]
- Ganjali, M. R.; Kiani-Anbouhi, R.; Shamsipur, M.; Poursaberi, T.; Salavati-Niasari, M.; Talebpour, Z.; Emami, M. Novel potentiometric PVC-membrane and coated graphite sensors for lanthanum(III). Electroanalysis 2004, 16, 1002–1008. [Google Scholar]
- Segui, M. J.; Lizondo-Sabater, J.; Benito, A.; Martinez-Manez, R.; Pardo, T.; Sancenon, F.; Soto, J. A new ion-selective electrode for anionic surfactants. Talanta 2007, 71, 333–338. [Google Scholar]
- Segui, M. J.; Lizondo-Sabater, J.; Martinez-Manez, R.; Sancenon, F.; Soto, J.; Garcia-Breijo, E.; Gil, L. An ion-selective electrode for anion perchlorate in thick-film technology. Sensors 2006, 6, 480–491. [Google Scholar]
- Siswata, D.; Hisamoto, H.; Tohma, H.; Yamamoto, N.; Suzuki, K. Novel ammonium ionophores based on glycol dibenzy ethers for an Ion-Selective Eelectrode. Chem. Lett. 1994, 5, 945–948. [Google Scholar]
- Shamsipur, M.; Hosseini, M.; Alizadeh, K.; Talebpour, Z.; Mousavi, M.F.; Ganjali, M.R.; Arca, M.; Lippolis, V. PVC membrane and coated graphite potentiometric sensors based on Et(4)todit for selective determination of samarium(III). Anal. Chem. 2003, 75, 5680–5986. [Google Scholar]
- Akl, M. A.; Ghoneim, A. K.; Abd El-Aziz, M. H. Novel plastic chromium (III)-ion selective electrodes based on different ionophoric species and plasticizing solvent mediators. Electroanalysis 2006, 18, 299–306. [Google Scholar]
- Peper, S.; Gonczy, C.; Runde, W. Cs+-selective membrane electrodes based on ethylene glycol-functionalized polymeric microspheres. Talanta 2005, 67, 713–717. [Google Scholar]
- Zamani, H. A.; Abedini-Torghabeh, J.; Ganjali, M. R. A highly selective and sensitive calcium(II)-selective PVC membrane based on dimethyl 1-(4-nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate as a novel ionophore. Bull. Korean Chem. Soc. 2006, 27, 835–840. [Google Scholar]
- Ganjali, M.R.; Emami, M.; Salavati-Niasari, M.; Yousefi, M. Determination of trace amounts of Cr(III) in presence of Cr(VI) by a novel potentiometric membrane sensor based on a new tridentate S,N,O Schiff's base. Anal. Lett. 2003, 36, 2735–2747. [Google Scholar]
- Gupta, V. K.; Jain, A. K.; Ishtaiwi, Z.; Lang, H.; Maheshwari, G. Ni2+ selective sensors based on meso-tetrakis-{4-[tris-(4-allyl dimethylsilyl-phenyl)-silyl]-phenyl}porphyrin and (sal)(2)trien in poly(vinyl chloride) matrix. Talanta 2007, 73, 803–811. [Google Scholar]
- Ganjali, M. R.; Akbar, V.; Norouzi, P.; Moghimi, A; Sepehrifard, A. Be(II) graphite coated membrane sensor based on a recently synthesized benzo-9-crown-3 derivative. Electroanalysis 2005, 17, 895–900. [Google Scholar]
- Faridbod, F.; Ganjalli, M. R.; Larijani, B.; Norouzi, P.; Riahi, S.; Mirnaghi, F. S. Lanthanide Recognition: an Asymetric Erbium Microsensor Based on a Hydrazone Derivative. Sensors 2007, 7, 3119–3135. [Google Scholar]
- Katsu, T.; Ido, K.; Kataoka, K. Poly(vinyl chloride) membrane electrode for a stimulant, phentermine, using tris(2-ethylhexyl) phosphate as a solvent mediator. Sens. Actuators B 2002, 81, 267–272. [Google Scholar]
- Ganjali, M. R.; Emami, M.; Rezapour, M.; Shamsipur, M.; Maddah, B.; Salavati-Niasari, M.; Hosseini, M.; Talebpour, Z. Novel gadolinium poly(vinyl chloride) membrane sensor based on a new S-N Schiff's base. Anal. Chim. Acta 2003, 495, 51–59. [Google Scholar]
- Masadome, T.; Asano, Y. Determination of sulfate ion by potentiometric back-titration using sodium tetrakis (4-fluorophenyl) borate as a titrant and a titrant-sensitive electrode. Talanta 1999, 48, 669–673. [Google Scholar]
- Ganjali, M. R.; Mizani, F.; Salavati-Niasari, M. Novel monohydrogenphosphate sensor based on vanadyl salophen. Anal. Chim. Acta 2003, 481, 85–90. [Google Scholar]
- Cabrera, Walton J.; Maldonado, Eduardo S.; Ríosy, Hernán E. Effect of Dodecyl Alcohol on the Potentiometric Response of an Isopropyl Xanthate Ion-Selective Electrode. J. Colloid Interface Sci. 2001, 237, 76–79. [Google Scholar]
- Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. Thermodynamic and kinetic data for macrocycle interaction with cations and anions. Chem. Rev. 1991, 91, 1721. [Google Scholar]
- Yoshio, M.; Noguchi, H. Crown ethers for chemical analysis a review. Anal. Lett. 1982, 15, 1197–1276. [Google Scholar]
- Takagi, M.; Nakamura, H. Analytical application of functionalized crown-ether metal-complexes. J. Coord.Chem. 1986, 15, 53–82. [Google Scholar]
- Izatt, R. M.; Clark, G. A.; Bradshaw, J. S.; Lamb, J. D.; Christensen, J. J. Sep. Purif. Methods; 1986; Volume 15, p. 21. [Google Scholar]
- Mi, Y. M.; Bakker, F. Lipophilic ionic sites for solvent polymeric membrane pH electrodes based on 4′,5′-dibromofluorescein octadecylester as electrically charged carrier. Electrochem. Soc. 1997, 27, 144. [Google Scholar]
- Han, W. S.; Park, M. Y.; Chung, K. C.; Cho, D. H.; Hong, T. K. Enhanced electrochemical performance of poly(aniline) solid-contact pH electrodes based on alkyldibenzylamine. Anal. Sci. 2000, 16, 1145. [Google Scholar]
- Abakumova, R. A.; Valiotti, A. B.; Vasil'eva, O. E.; Kopylova, E. A.; Shumilova, G. I.; Mikhel'son, K. N. pH sensitivity of a porphyrin film electrode. Russ. J. Gen. Chem. 2003, 73, 300. [Google Scholar]
- Issa, T. B.; Singh, P.; Baker, M.; Verma, B. S. 1,1′-Bis(11-mercaptoundecyl)ferrocene for potentiometric sensing of H+ ion in sulfuric acid media simulating lead acid battery electrolyte. J. Appl. ElectroChem. 2001, 31, 921. [Google Scholar]
- Han, W. S.; Yoo, S. J.; Kim, S. H.; Hong, T. K.; Chung, K. C. Behavior of a polypyrrole solid contact pH-selective electrode based on tertiary amine ionophores containing different alkyl chain lengths between nitrogen and a phenyl group. Anal. Sci. 2003, 19, 357. [Google Scholar]
- Han, W. S.; Park, M. Y.; Cho, D. H.; Hong, T. K.; Lee, D. H.; Park, J. M.; Chung, K. C. The behavior of a poly(aniline) solid contact pH selective electrode based on N,N,N′,N′ -tetrabenzylethanediamine ionophore. Anal. Sci. 2001, 17, 727. [Google Scholar]
- Demirel, A.; Dogan, A.; Canel, E.; Memon, S.; Yilmaz, M.; Kilic, E. Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a p-tert-butylcalix[4]arene-oxacrown-4. Talanta 2004, 62, 123. [Google Scholar]
- Han, W. S.; Park, M. Y.; Chung, K.; Cho, D. H.; Hong, T. K. Potentiometric sensor for hydrogen ion based on N,N′-dialkylbenzylethylenediamine neutral carrier in a poly(vinyl chloride) membrane with polyaniline solid contact. Talanta 2001, 54, 153. [Google Scholar]
- Martelli, P. B.; Reis, B. F.; Zagatto, E. A.G.; Lima, J. L. F. C.; Lapa, R. A. Construction and evaluation of a tubular ion-selective electrode for hydrogen ion as a detector in flow analysis. Quimica 1998, 21, 133. [Google Scholar]
- Heng, L. Y.; Chern, L. H.; Ahmad, M. A hydrogen ion-selective sensor based on non-plasticised methacrylic-acrylic membranes. Sensors 2002, 2, 339. [Google Scholar]
- Cho, D. H.; Chung, K. C.; Park, M. Y. Hydrogen ion-selective membrane electrodes based on alkyldibenzylamines as neutral carriers. Talanta 1998, 47, 815. [Google Scholar]
- Han, W. S.; Park, M. Y.; Chung, K. C.; Cho, D. H.; Hong, T. K. All solid state hydrogen ion selective electrode based on a tribenzylamine neutral carrier in a poly(vinyl chloride) membrane with a poly(aniline) solid contact. Electroanalysis 2001, 13, 955. [Google Scholar]
- Cretin, M.; Fabry, P. Detection and selectivity properties of Li+-ion-selective electrodes based on NASICON-type ceramics. Anal. Chim. Acta 1997, 354, 291. [Google Scholar]
- Cretin, M.; Alerm, L.; Bartroli, J.; Fabry, P. Lithium determination in artificial serum using flow injection systems with a selective solid-state tubular electrode based on NASICON membranes. Anal. Chim. Acta 1997, 350, 7. [Google Scholar]
- Kang, Y. R.; Lee, K. M.; Nam, H.; Cha, G. S.; Jung, S. O.; Kim, J. S. Lithium ion-selective electrodes employing tetrahydrofuran-based 16-crown-4 derivatives as neutral carriers. Analyst 1997, 122, 1445. [Google Scholar]
- Sim, J. H.; Lee, K. M.; Lee, J. S.; Cho, D. H.; Nam, H.; Cha, G. S. Lithium ion-selective electrode with improved lifetime. Bull. Korean Chem. Soc. 2001, 22, 765. [Google Scholar]
- Kim, Y. D.; Jeong, H.; Kang, S. O.; Nam, K. C.; Jeon, S. Polymeric membrane sodium ion-selective electrodes based on calix[4]arene triesters. Bull. Korean Chem. Soc. 2001, 22, 405–408. [Google Scholar]
- Abbas, M. N. A novel PVC membrane selective electrode for the determination of sodium nitroprusside in pharmaceutical preparations. Anal. Lett. 2002, 35, 813. [Google Scholar]
- Tavakkoli, N. Sodium ion-selective membrane electrode based on dibenzopyridino-18-crown-6. Bull. Korean Chem. Soc. 2004, 25, 1474. [Google Scholar]
- Chandra, S.; Lang, H. A new sodium ion selective electrode based on a novel silacrown ether. Sens. Actuators B 2006, 114, 849. [Google Scholar]
- Hassan, S. S. M.; Mahmoud, W. H.; Othman, A. H. M. A novel potassium ion membrane sensor based on rifamycin neutral ionophore. Talanta 1997, 44, 1087–1094. [Google Scholar]
- Yamauchi, A.; Hayashita, T.; Nishizawa, S.; Watanabe, M.; Teramae, N. Benzo-15-crown-5 fluoroionophore/gamma-cyclodextrin complex with remarkably high potassium ion sensitivity and selectivity in water. J. Am. Chem. Soc. 1999, 121, 2319–2320. [Google Scholar]
- Quagraine, E. K.; Gadzekpo, V. P. Y. Studies of potassium ion-selective electrodes based on salicylaldoxime. Discovery Innovation 1998, 10, 41–45. [Google Scholar]
- Yamauchi, A.; Hayashita, T.; Kato, A.; Nishizawa, S.; Watanabe, M.; Teramae, N. Selective potassium ion recognition by benzo-15-crown-5 fluoroionophore/y-cyclodextrin complex sensors in water. Anal. Chem. 2000, 72, 5841–5846. [Google Scholar]
- Pandey, P. C.; Prakash, R. Polyindole modified potassium ion sensor using dibenzo-18-crown-6 mediated PVC matrix membrane. Sens. Actuators B 1998, 46, 61–65. [Google Scholar]
- Hopartean, E.; Pica, E. M.; Ana, C.; Cosma, V.; Hopartean, I. Membrane based on decyl-18-crown-6 for a potassium selective sensor. Chem. Anal. (Warsaw) 2001, 46, 41–49. [Google Scholar]
- Heng, L. Y.; Hall, E. A. H. One-step synthesis of K+-selective methacrylic-acrylic copolymers containing grafted ionophore and requiring no plasticizer. Electroanalysis 2000, 12, 178–186. [Google Scholar]
- Ganjali, M. R.; Moghimi, A.; Buchanan, G. W.; Shamsipur, M. The synthesis of styrene/4′-vinyl-benzo-24-crown-8 copolymer and its use in potassium-ion selective electrodes. J. Inclus. Phenom. Mol. Rec. Chem. 1998, 30, 29–43. [Google Scholar]
- Cha, T. D.; Chung, S. K.; Park, J.; Kim, H. Anal. Sci.; 1997; Volume 13, p. 325. [Google Scholar]
- Alexander, P. W.; Dimitrakopoulos, T.; Hibbert, D. B. A photo-cured coated wire potassium ion-selective electrode for use in flow injection potentiometry. Electroanalysis 1997, 9, 813–817. [Google Scholar]
- Oh, K. C.; Kang, E. C.; Cho, Y. L.; Jeong, K. S.; Yoo, E. A.; Peang, K. J. Potassium-selective PVC membrane electrodes based on newly synthesized cis- and trans-bis(crown ether)s. Anal. Sci. 1998, 14, 1009–1012. [Google Scholar]
- Michalska, A. J.; Appaih-Kusi, C.; Heng, L. Y.; Walkiewicz, S.; Hall, E. A. H. An experimental study of membrane materials and inner contacting layers for ion-selective K+ electrodes with a stable response and good dynamic range. Anal. Chem. 2004, 76, 2031. [Google Scholar]
- Xia, Z. R.; Badr, I. H. A.; Plummer, S. L.; Cullen, L.; Bachas, L. G. Synthesis and evaluation of a bis(crown ether) ionophore with a conformationally constrained bridge in ion-selective electrodes. Anal. Sci. 1998, 14, 169. [Google Scholar]
- Hyun, M. H.; Piao, M. H.; Cho, Y. J.; Shim, Y. B. Ionophores in rubidium ion-selective membrane electrodes. Electroanalysis 2004, 16, 1785. [Google Scholar]
- Kang, Y. R.; Oh, H. J.; Lee, K. M.; Cha, G. S.; Nam, H.; Paek, K.; Ihm, H. Potentiometric characteristics of ion-selective electrodes based on upper-rim calix[4]crown neutral carrier. Bull. Korean Chem. Soc. 1998, 19, 207–211. [Google Scholar]
- Kim, J. S.; Ohki, A.; Ueki, R.; Ishizuka, T.; Shimotashiro, T.; Maeda, S. Cesium-ion selective electrodes based on calix[4]arene dibenzocrown ethers. Talanta 1999, 48, 705. [Google Scholar]
- Oh, H.; Choi, E.M.; Jeong, H.; Nam, K.C.; Jeon, S. Poly(vinyl chloride) membrane cesium ion-selective electrodes based on lipophilic calix[6]arene tetraester derivatives. Talanta 2000, 53, 535–542. [Google Scholar]
- Ashassi-Sorkhabi, H.; Rostamikia, T.; Shahrisa, A.; Banaei, A. Cesium-ion selective electrode based on pyrone compound. Bull. ElectroChem. 2001, 17, 545–548. [Google Scholar]
- Choi, E. M.; Oh, H.; Ko, S. W.; Choi, Y. K.; Nam, K. C.; Jeon, S. Polymeric membrane cesium-selective electrodes based on quadruply-bridged calix[6]arenas. Bull. Korean Chem. Soc. 2001, 22, 1345–1349. [Google Scholar]
- Chen, L. X.; Ju, H. F.; Zeng, X. S.; He, X. W.; Zhang, Z. Z. Cesium selective electrodes based on novel double flexible spacers bridged biscalix[4]arenas. Anal. Chim. Acta 2001, 447, 41–46. [Google Scholar]
- Arvand-Barmchi, M.; Mousavi, M. F.; Zanjanchi, M. A.; Taghvaei, S. Cesium-selective poly(vinylchloride) membrane electrode based on a new calix[4]arene derivative in the 1,3-alternate conformation. Anal. Lett. 2002, 35, 767–783. [Google Scholar]
- Arvand-Barmchi, M.; Mousavi, M. F.; Zanjanchi, M. A.; Shamsipur, M. A PTEV-based zeolite membrane potentiometric sensor for cesium ion. Sens. Actuators B 2003, 96, 560–564. [Google Scholar]
- Ganjali, M. R.; Nourouzi, P.; Emami, M.; Golmohammadi, M.; Moradzadegun, A. Novel Cesium membrane sensor based on a cavitand. J. Chin. Chem. Soc. 2006, 53, 1209–1214. [Google Scholar]
- Arida, H. A. M.; Aglan, R. F.; El-Reefy, S.A. A new cesium ion selective graphite rod electrode based on Cs-molybdophosphate. Anal. Lett. 2004, 37, 21–33. [Google Scholar]
- Peper, S.; Gonczy, C.; Runde, W. Cs+-selective membrane electrodes based on ethylene glycol- functionalized polymeric microspheres. Talanta 2005, 67, 713–717. [Google Scholar]
- Ganjali, M. R.; Moghimi, A.; Shamsipur, M. Beryllium-selective membrane electrode based on benzo-9-crown-3. Anal. Chem. 1998, 70, 5259–5263. [Google Scholar]
- Ganjali, M. R.; Daftari, A.; Rastegar, M.F.; Moghimi, A. Novel beryllium membrane sensor based on 2,4-dinitrophenylhydrazinebenzo-9-crown-3 coated graphite. Anal. Lett. 2003, 36, 317–328. [Google Scholar]
- Ganjali, M. R.; Daftari, A.; Faal-Rastegar, M.; Moghimi, A. Novel potentiometric sensor for monitoring beryllium based on naphto-9-crown-3. Anal. Sci. 2003, 19, 353–356. [Google Scholar]
- Ganjali, M. R.; Ghorbani, M.; Norouzi, P.; Daftari, A.; Faal-Rastegar, M.; Moghimi, A. Nano levels detection of beryllium by a novel beryllium PVC-based membrane sensor based on 2,3,5,6,8,9-hexahydro-1,4,7,10-benzotetraoxacyclododecine-12-carbaldehyde-12-(2,4-dinitro-phenyl) hy. Sens. Actuators B 2004, 100, 315–319. [Google Scholar]
- Ganjali, M. R.; Rahimi-Nasrabadi, M.; Maddah, B.; Moghimi, A.; Faal-Rastegar, M.; Borhany, S.; Namazian, M. Sub-micro level monitoring of Beryllium ions with a novel beryllium sensor based on 2,6-diphenyl-4-benzo-9-crown-3- pyridine. Talanta 2004, 63, 899–906. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Faridbod, F.; Sepehrifard, A.; Ghandi, M.; Moghimi, A. Monitoring of beryllium(II) ions by use of a novel beryllium(II) membrane sensor, based on 2, 3, 5, 6, 8, 9-hexahydronaphto [2,3-b][1, 4, 7, 10] tetraoxacyclo dodecine. Can. J. Anal. Sci. Spect. 2007, 52, 46–56. [Google Scholar]
- Ganjali, M. R.; Daftari, A.; Pourjavid, M. R.; Rastegar, M. F.; Moghimi, A. Novel Be(II)membrane electrode-based on a derivative of benzo-9-crown-3. Main group Met. Chem. 2002, 25, 669–676. [Google Scholar]
- Shamsipur, M.; Ganjali, M. R.; Rouhollahi, A.; Moghimi, A. Beryllium-selective membrane sensor based on 3,4-di[2-(2-tetrahydro-2H-pyranoxy)]ethoxy styrene-styrene copolymer. Anal. Chim. Acta 2001, 434, 23–27. [Google Scholar]
- Zhang, X. J.; Fakler, A.; Spichiger, U. E. Development of magnesium-ion-selective microelectrodes based on a new neutral carrier ETHT 5504. Electroanalysis 1998, 10, 1174–1181. [Google Scholar]
- Gupta, A. P.; Ikram, S.; Agarwal, H. Studies on zirconium(IV) selenomolybdate gel based Mg(II) ion selective heterogeneous membrane sensor - Determination of water hardness. J. Sci. Ind. Res. 2002, 61, 61–66. [Google Scholar]
- Gupta, V. K.; Chandra, S.; Mangla, R. Magnesium-selective electrodes. Sens. Actuatorsors B 2002, 86, 235–241. [Google Scholar]
- van Staden, J. F.; Stefan, R.I. Simultaneous flow injection determination of calcium and fluoride in natural and borehole water with conventional ion-selective electrodes in series. Talanta 1999, 49, 1017–1022. [Google Scholar]
- Lindfors, T.; Ivaska, A. Calcium-selective electrode based on polyaniline functionalized with bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate. Anal. Chim. Acta 2001, 437, 171–182. [Google Scholar]
- Mahmoud, W. H. Novel bilirubin-based PVC calcium sensors. Anal. Sci. 2003, 19, 361–365. [Google Scholar]
- Kumar, A.; Mittal, S. K. PVC based dibenzo-18-crown-6 electrode for Ca(II) ions. Sens. Actuators B 2004, 99, 340–343. [Google Scholar]
- Ganjali, M. R.; Zamani, H. A.; Norouzi, P.; Adib, M.; Accedy, M. Novel Calcium sensor based on [2-(2-hydroxyphenyl)imino]-1,2-diphenylethanone. Acta Chim. Slov. 2005, 52, 309–316. [Google Scholar]
- Bedlechowicz-Sliwakowska, I.; Lingenfelter, P.; Sokalski, T.; Lewenstam, A.; Maj-Zurawska, M. Ion-selective electrode for measuring low Ca2+ concentrations in the presence of high K+, Na+ and Mg2+ background. Anal. Bioanal. Chem. 2006, 385, 1477–1482. [Google Scholar]
- Singh, A. K.; Mehtab, S. Calcium(II)-selective potentiometric sensor based on at-furildioxime as neutral carrier. Sens. Actuators B 2007, 123, 429–436. [Google Scholar]
- Qian, G. Y.; Wu, M. B.; Wu, G. L.; Huang, S.; Yan, Y. K.; Tian, B. Z. Strontium ion-selective electrodes based on the diamides with pyridine ring as ionophores. Talanta 1998, 47, 1149–1155. [Google Scholar]
- Gupta, V. K.; Jain, A. K.; Khurana, U.; Singh, L. P. PVC-based neutral carrier and organic exchanger membranes as sensors for the determination of Ba2+ and Sr2+. Sens. Actuators B 1999, 55, 201–211. [Google Scholar]
- Gupta, V. K.; Ludwig, R.; Agarwal, S. Strontium(II) sensor based on a modified calix[6]arene in PVC matrix. Anal. Sci. 2005, 21, 293–296. [Google Scholar]
- Singh, A. K.; Saxena, P.; Mehtab, S.; Gupta, B. Strontium(II)-selective electrode based on a macrocyclic tetraamide. Talanta 2006, 69, 521–526. [Google Scholar]
- Shamsipur, M.; Kazemi, S. Y. Design of a selective and sensitive PVC-membrane potentiometric sensor for strontium ion based on 1,10-diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dione as a neutral ionophore. Sensors 2007, 7, 438–447. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Norouzi, P.; Adib, M. Strontium PVC-Membrane Sensor Based on 2-[(2-mercaptophenylimino) methyl]phenol. Material Sci. Eng. C 2008, 28, 157–163. [Google Scholar]
- Ganjali, M. R.; Kiani, R.; Yousefi, M.; Faal-Rastegar, M. Novel potentiometric strontium membrane sensor based on dibenzo-30-crown-10. Anal. Lett. 2003, 36, 2123–2137. [Google Scholar]
- Shamsipur, M.; Rouhani, S.; Shaghi, H.; Ganjali, M. R.; Eshghi, H. Strontium-selective membrane electrodes based on some recently synthesized benzo-substituted macrocyclic diamides. Anal. Chem. 1999, 71, 4938–4943. [Google Scholar]
- Saleh, M. B. Neutral bidentate organophosphorus compounds as novel ionophores for potentiometric membrane sensors far barium(II). Fresenius J. Anal. Chem. 2000, 367, 530–534. [Google Scholar]
- Hassan, S. S. M.; Saleh, M. B.; Gaber, A. A. A.; Kream, N. A. A. DDB liver drug as a novel ionophore for potentiometric barium(II) membrane sensor. Talanta 2003, 59, 161–166. [Google Scholar]
- Zamani, H. A.; Abedini-Torghabeh, J.; Ganjali, M. R. A highly selective and sensitive barium(II)-selective PVC membrane based on dimethyl 1-acetyl-8-oxo-2,8-dihydro-1hpyra-zolo[5,1-a]isoindole-2,3-dicarboxylate. Electroanalysis 2006, 18, 888–893. [Google Scholar]
- Mousavi, M. F.; Arvand-Barmchi, M.; Zanjanchi, M. A. Al(III)-Selective electrode based on furil as neutral carrier. Electroanalysis 2001, 13, 1125–1128. [Google Scholar]
- Abbaspour, A.; Esmaeilbeig, A. R.; Jarrahpour, A. A.; Khajeh, B.; Kia, R. Aluminium(III)-selective electrode based on a newly synthesized tetradentate Schiff base. Talanta 2002, 58, 397–403. [Google Scholar]
- Shamsipur, M.; Ershad, S.; Yari, A.; Sharghi, H.; Salimi, A. R. Hydroxy-thioxanthones as suitable neutral ionophores for the preparation of PVC-membrane potentiometric sensors for Al(III) ion. Anal. Sci. 2004, 20, 301–306. [Google Scholar]
- Yari, A.; Darvishi, L.; Shamsipur, M. Al (III)-selective electrode based on newly synthesized xanthone derivative as neutral ionophore. Anal. Chim. Acta 2006, 555, 329–335. [Google Scholar]
- Gholivand, M. B.; Ahmadi, F.; Rafiee, E. A novel Al(III)-selective electrochemical sensor based on N,N′ -bis(salicylidene)-1,2-phenylenediamine complexes. Electroanalysis 2006, 18, 1620–1626. [Google Scholar]
- Yoshikuni, N.; Takeno, H.; Oguma, K. Preparation of gallium ion-selective membrane electrode by use of anion-exchange resin and its application to chemical analysis of industrial materials. Bunseki Kagaku 2001, 50, 753–757. [Google Scholar]
- Mohamed, S. K. Ion-selective electrode for gallium determination in nickel alloy, fly-ash and biological samples. Anal. Chim. Acta 2006, 562, 204–209. [Google Scholar]
- Li, C. X.; Hou, J. G. Construction and evaluation of a novel In(III) liquid ion-selective membrane electrode. Talanta 1997, 44, 729–732. [Google Scholar]
- Abdulla, N.I.; Al-Haider, A. M.; Al-Joboury, M. I.; Nassory, N. S. Construction and characterization of indium liquid ion selective electrodes based on crown ethers in a PVC matrix membrane. Turk. J. Chem. 2005, 29, 687–696. [Google Scholar]
- Saleh, M. B. A novel PVC membrane sensor for potentiometric determination of thallium(I). J. Electroanal. Chem. 1998, 448, 33–39. [Google Scholar]
- Katsu, T.; Ido, K.; Takaishi, K.; Yokosu, H. Thallium(I)-selective membrane electrodes based on calix[6]arene or calix[5]arene derivatives. Sens. Actuators B 2002, 87, 331–335. [Google Scholar]
- Ganjali, M. R.; Pourjavid, M. R.; Mouradzadegun, K.; Hosseini, M.; Mizani, F. Novel thallium(I)-selective membrane electrode based on a podal ligand. Bull. Korean Chem. Soc. 2003, 24, 1585–1589. [Google Scholar]
- Gaber, A. A. A. New thallium(I) ion selective electrode based on indeno pyran compound. Sens. Actuators B 2003, 96, 615–620. [Google Scholar]
- Khayatian, G.; Shariati, S.; Salimi, A. Thallium(I)-selective membrane potentiometric sensor based on dibenzyldiaza-18-crown-6. Bull. Korean Chem. Soc. 2003, 24, 421–425. [Google Scholar]
- Hassanien, M. M.; Abou-El-Sherbini, K. S.; Mostafa, G. A. E. A novel tetrachlorothallate (III)-PVC membrane sensor for the potentiometric determination of thallium (III). Talanta 2003, 59, 383–392. [Google Scholar]
- Kharitonov, S. V.; Zarembo, Y. V.; Zarembo, V. I. Novel thallium(III) solid-contact ion-selective electrode with electropolymerized transducer. Electroanalysis 2006, 18, 1354–1362. [Google Scholar]
- Aghaie, H.; Giahi, A.; Monajjemi, M.; Arvand, A.; Nafissi, G. H.; Aghaie, M. Tin(II)-selective membrane potentiometric sensor using a crown ether as neutral carrier. Sens. Actuators B 2005, 107, 756–761. [Google Scholar]
- Arvand, M.; Moghimi, A. M.; Afshari, A.; Mahmoodi, N. Tin(II)-selective membrane potentiometric sensor using a crown ether as neutral carrier. Anal. Chim. Acta 2006, 579, 102–108. [Google Scholar]
- Casado, M.; Daunert, S.; Valiente, M. Lead-selective electrode based on a quinaldic acid derivative. Electroanalysis 2001, 13, 54–60. [Google Scholar]
- Mousavi, M. F.; Barzegar, M. B.; Sahari, S. A PVC-based capric acid membrane potentiometric sensor for lead(II) ions. Sens. Actuators B 2001, 73, 199–204. [Google Scholar]
- Sadeghi, S.; Dashti, G. R.; Shamsipur, M. Lead-selective poly(vinyl cholride) membrane electrode based on piroxicam as a neutral carrier. Sens. Actuators B 2002, 81, 223–228. [Google Scholar]
- Gholivand, M. B.; Mohammadi, A. Lead ion-selective membrane electrode containing 2,2′-dithiodibenzoic acid as ionophore. Chem. Anal. (Warsaw) 2003, 48, 305–312. [Google Scholar]
- Riahi, S.; Mousavi, M. F.; Shamsipur, M.; Sharghi, H. A novel PVC-membrane-coated graphite sensor based on an anthraquinone derivative membrane for the determination of lead. Electroanalysis 2003, 15, 1561–1565. [Google Scholar]
- Bhat, V. S.; Ijeri, V. S.; Srivastava, A. K. Coated wire lead(II) selective potentiometric sensor based on 4-tert-butylcalix[6]arene. Sens. Actuators B 2004, 99, 98–105. [Google Scholar]
- Lee, H. K.; Song, K.; Seo, H. R.; Choi, Y. K.; Jeon, S. Lead(II)-selective electrodes based on tetrakis(2-hydroxy-1-naphthyl)porphyrins: the effect of atropisomers. Sens. Actuators B 2004, 99, 323–329. [Google Scholar]
- Pouretedal, H. R.; Keshavarz, M. H. Lead (H)-selective electrode based on dibenzodiaza-15-crown-4. Asian J. Chem. 2004, 16, 1319–1326. [Google Scholar]
- Yan, Z. N.; Hou, Y. H.; Zhou, Z. X.; Du, C. X.; Wu, Y. J. Lead ion-selective membrane electrode based on a novel fluorene derivative. Anal. Lett. 2004, 37, 3149–3159. [Google Scholar]
- Zare, H. R.; Ardakani, M. M.; Nasirizadeh, N.; Safari, J. Lead-selective poly(vinyl chloride) membrane electrode based on 1-phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone. Bull. Korean Chem. Soc. 2005, 26, 51–56. [Google Scholar]
- Ardakani, M. M.; Zare, H. R.; Nasirizadeh, N.; Safari, J. Highly selective lead (II) membrane electrode based on new oxim phenyl 2-keto methyl quinoline (OPKMQ). Can. J. Anal. Sci. Spect. 2004, 49, 226–233. [Google Scholar]
- Perez-Marin, L.; Macedo-Miranda, G.; Avila-Perez, P.; Otazo-Sanchez, E.; Carrasco-Abrego, H.; Lopez-Valdivia, H.; Alonso-Chamarro, J.; Estevez-Hernandez, O. Study of 1-furoil-3-(2hydroxiethyl)thiourea as ionophore for lead (II) in electrode of liquid membrane of neutral carrier. Afinidad 1999, 56, 295–298. [Google Scholar]
- Xu, D. F.; Katsu, T. Lead-selective membrane electrode based on dibenzyl phosphate. Anal. Chim. Acta 1999, 401, 111–115. [Google Scholar]
- Xu, D. F.; Katsu, T. Tetrabenzyl pyrophosphate as a new class of neutral carrier responsive to lead ion. Talanta 2000, 51, 365–371. [Google Scholar]
- Sadeghi, S.; Shamsipur, M. Lead(II)-selective membrane electrode based on tetraphenylporphyrin. Anal. Lett. 2000, 33, 17–28. [Google Scholar]
- Marin, L. P.; Rubi, Y. M.; de Fuentes, O. A.; Ortiz, O. F.; Sanchez, E. O.; Estevez, O. L.; Fajardo, Y.; Chamorro, J. A.; Casabo, J. Lead ion-selective electrode based on a neutral mobile carrier. Afinidad 1998, 55, 130–132. [Google Scholar]
- Yang, X. H.; Kumar, N.; Hibbert, D. B.; Alexander, P. W. Lead(II)-selective membrane electrodes based on 4,7,13,16-tetrathenoyl-1,10-dioxa-4,7,13,16-tetraazacyclooctadecane. Electroanalysis 1998, 10, 827–831. [Google Scholar]
- Ganjali, M. R.; Roubollahi, A.; Mardan, A. R.; Hamzeloo, M.; Mogimi, A.; Shamsipur, M. Lead ion-selective electrode based on 4′-vinylbenzo-l5-crown-5 homopolymer. Microchem. J. 1998, 60, 122–133. [Google Scholar]
- Ohki, A.; Kim, J. S.; Suzuki, Y.; Hayashita, T.; Maeda, S. Lead-selective poly(vinyl chloride) membrane electrodes based on acyclic dibenzopolyether diamides. Talanta 1997, 44, 1131–1135. [Google Scholar]
- Yang, X. H.; Kumar, N.; Chi, H.; Hibbert, D. B.; Alexander, P. W. Lead-selective membrane electrodes based on dithiophenediazacrown ether derivatives. Electroanalysis 1997, 9, 549–553. [Google Scholar]
- Jeong, T.; Jeong, D. C.; Lee, H. K.; Jeon, S. Lead(II)-selective polymeric electrode using a Schiff base complex of N,N′ -bis-thiophene-2-ylmethylene-ethane-1,2-diamine as an ion carrier. Bull. Korean Chem. Soc. 2005, 26, 1219–1224. [Google Scholar]
- Chen, L. X.; Zhang, J.; Zhao, W.F; He, X. W.; Liu, Y. Double-armed calix[4]arene amide derivatives as ionophores for lead ion-selective electrodes. J. Electroanal. Chem. 2006, 589, 106–111. [Google Scholar]
- Tavakkoli, N.; Khojasteh, Z.; Sharghi, H.; Shamsipur, M. Lead ion-selective membrane electrodes based on some recently synthesized 9,10-anthraquinone derivatives. Anal. Chim. Acta 1998, 360, 203–208. [Google Scholar]
- Rouhollahi, A.; Ganjali, M. R.; Shamsipur, M. Lead ion selective PVC membrane electrode based on 5,5′-dithiobis-(2-nitrobenzoic acid). Talanta 1998, 46, 1341–1346. [Google Scholar]
- Pouretedal, H. R.; Forghaniha, A.; Sharghi, H.; Shamsipur, M. Lead-selective membrane potentiometric sensor based on a recently synthesized bis(anthraquinone) sulfide derivative. Anal. Lett. 1998, 31, 2591–2606. [Google Scholar]
- Lazo, A. R.; Bustamante, M.; Arada, M. A.; Jimenez, J.; Yazdani-Pedram, M. Construction and characterization of a lead(II) ion selective electrode with 1-furoil-3,3-diethylthiourea as neutral carrier. Afinidad 2005, 62, 605–610. [Google Scholar]
- Zhang, W. J.; Li, C. Y.; Zhang, X. B.; Jin, Z. Synthesis of an amide-linked diporphyrin xanthene as a neutral carrier for a lead(II)-sensitive electrode. Anal. Lett. 2007, 40, 1023–1035. [Google Scholar]
- Arida, H. A.; El-Reefy, S. A.; El-Saied, A. M. A new lead(II)-selective PVC-coated graphite rod electrode based on a Schiff base complex. Anal. Sci. 2003, 19, 687–690. [Google Scholar]
- Ardakany, M. M.; Ensafi, A. A.; Naeimi, H.; Dastanpour, A.; Shamlli, A. Highly selective lead(II) coated-wire electrode based on a new Schiff base. Sens. Actuators B 2003, 96, 441–445. [Google Scholar]
- Ardakany, M. M.; Ensafi, A. A.; Naeimi, H.; Dastanpour, A.; Shamlli, A. Coated, wire-based, new Schiff base potentiometric sensor for lead(II) ion. Russ. J. ElectroChem. 2003, 39, 269–273. [Google Scholar]
- Ardakani, M. M.; Kashani, M. K.; Salavati-Niasari, M.; Ensafi, A. A. Lead ion-selective electrode prepared by sol-gel and PVC membrane techniques. Sens. Actuators B 2005, 107, 438–445. [Google Scholar]
- Jeong, T.; Lee, H. K.; Jeong, D. C.; Jeon, S. A lead (II)-selective PVC membrane based on a Schiff base complex of N,N′-bis(salicylidene)-2,6-pyridinediamine. Talanta 2005, 65, 543–548. [Google Scholar]
- Ardakani, M. M.; Pourhakak, P.; Salavati-Niasari, M. Bis(2-hydroxyacetophenone)-ethylenediimine as a neutral carrier in a coated-wire membrane electrode for lead(II). Anal. Sci. 2006, 22, 865–870. [Google Scholar]
- Gupta, V. K.; Jain, A. K.; Kumar, P. PVC-based membranes of N,N′ -dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sens. Actuators B 2006, 120, 259–265. [Google Scholar]
- Fathi, M. R.; Darviche, F.; Ganjali, M. R. Lead-selective membrane potentiometric sensor based on a recently synthesized dimethyl benzo tetrathia fulvalene. Anal. Lett. 2000, 33, 1025–1035. [Google Scholar]
- Shamsipur, M.; Ganjali, M. R.; Rouhollahi, A. Lead-selective membrane potentiometric sensor based on an 18-membered thiacrown derivative. Anal. Sci. 2001, 17, 935–938. [Google Scholar]
- Ganjali, M. R.; Hosseini, M.; Basiripour, F.; Javanbakht, M.; Hashemi, O. R.; Rastegar, M. F.; Shamsipur, M.; Buchanen, G. W. Novel coated-graphite membrane sensor based on N,N′-dimethylcyanodiaza-18-crown-6 for the determination of ultra-trace amounts of lead. Anal. Chim. Acta 2002, 464, 181–186. [Google Scholar]
- Ganjali, M. R.; Daftari, A.; Norouzi, P.; Salavati-Niasari, M. Novel Y(III) PVC-based membrane microelectrode based on a new S-N Schiff's base. Anal. Lett. 2003, 36, 1511–1522. [Google Scholar]
- Gholivand, M. B.; Babakhanian, A.; Joshaghani, A. Zirconium ion selective electrode based on bis(diphenylphosphino) ferrocene incorporated in a poly(vinyl chloride) matrix. Anal. Chim. Acta 2007, 584, 302–307. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Faridbod, F.; Riahi, S.; Ravanshad, J.; Tashkhourian, J.; Salavati-Niasari, M.; Javaheri, M. Determination of Vanadyl Ions by a New PVC Membrane Sensor Based on N, N′-bis-(Salicylidene)-2,2-Dimethylpropane-1,3-Diamine. IEEE Sensors J. 2007, 7, 544–550. [Google Scholar]
- Ganjali, M. R.; Mizani, F.; Salavati-Niasari, M.; Javanbakht, M. Novel potentiometric membrane sensor for the determination of trace amounts of chromium(III) ions. Anal. Sci. 2003, 19, 235–238. [Google Scholar]
- Shamsipur, M.; Soleymanpour, A.; Akhond, M.; Sharghi, H.; Sarvari, M. H. Highly selective chromium(III) PVC-membrane electrodes based on some recently synthesized Schiff's bases. Electroanalysis 2005, 17, 776–772. [Google Scholar]
- Ganjali, M.R.; Norouzi, P.; Faridbod, F.; Ghorbani, M.; Adib, M. Highly selective and sensitive chromium(III) membrane sensors based on a new tridentate Schiff's base. Anal. Chim. Acta 2006, 569, 35–41. [Google Scholar]
- Akl, M. A.; Ghoneim, A. K.; Abd El-Aziz, M. H. Novel plastic chromium (III)-ion selective electrodes based on different ionophoric species and plasticizing solvent mediators. Electroanalysis 2006, 18, 299–306. [Google Scholar]
- Gupta, V. K.; Jain, A. K.; Kumar, P.; Agarwal, S.; Maheshwari, G. Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix. Sens. Actuators B 2006, 113, 182–186. [Google Scholar]
- Gholivand, M. B.; Raheedayat, F. Chromium(III) ion selective electrode based on oxalic acid bis(cyclohexylidene hydrazide). Electroanalysis 2004, 16, 1330–1335. [Google Scholar]
- Khalil, S.; Wassel, A. A.; Belal, F. F. Coated graphite-epoxy ion-selective electrode for the determination of chromium(III) in oxalic medium. Talanta 2004, 63, 303–307. [Google Scholar]
- Sil, A.; Ijeri, V. S.; Srivastava, A. K. Coated wire chromium(III) ion-selective electrode based on azamacrocycles. Anal. Bioanal. Chem. 2004, 378, 1666–1669. [Google Scholar]
- Abbaspour, A.; Izadyar, A. Chromium(III) ion-selective electrode based on 4-dimethylaminoazobenzene. Talanta 2001, 53, 1009–1013. [Google Scholar]
- Zamani, H. A.; Rajabzadeh, G.; Ganjali, M. R. Highly selective and sensitive chromium(III) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore. Sens. Actuators B 2006, 119, 41–46. [Google Scholar]
- Abbaspour, A.; Izadyar, A. Carbon nanotube composite coated platinum electrode for detection of Cr(III) in real samples. Talanta 2007, 71, 887–892. [Google Scholar]
- Zamania, H. A.; Ganjali, M. R.; Abedi, M. R.; Norouzi, P. Cr(III) Ion-Selective Membrane Sensor Based on 1,3-Diamino-2-hydroxypropane-N,N,N′,N′-tetraacetic acid. Sens. Lett. 2007, 5, 516–521. [Google Scholar]
- Gupta, V. K.; Jain, A. K.; Maheshwari, G. Manganese (II) selective PVC based membrane sensor using a Schiff base. Talanta 2007, 72, 49–53. [Google Scholar]
- Singh, A. K.; Saxena, P.; Panwar, A. Manganese(II)-selective PVC membrane electrode based on a pentaazamacrocyclic manganese complex. Sens. Actuators B 2005, 110, 377–381. [Google Scholar]
- Mashhadizadeh, M. H.; Shoaei, I. S.; Monadi, N. A novel ion selective membrane potentiometric sensor for direct determination of Fe(III) in the presence of Fe(II). Talanta 2004, 64, 1048–1052. [Google Scholar]
- Gupta, V. K.; Jain, A. K.; Agarwal, S.; Maheshwari, G. An iron(III) ion-selective sensor based on a mu-bis(tridentate) ligand. Talanta 2007, 71, 1964–1968. [Google Scholar]
- Ekmekci, G.; Uzun, D.; Somer, G.; Kalayci, S. A novel iron(III) selective membrane electrode based on benzo-18-crown-6 crown ether and its applications. J. Membr. Sci. 2007, 288, 36–40. [Google Scholar]
- Teixeira, M. F. D.; Pinto, A. Z.; Fatibello, O. Coated graphite-epoxy ion-selective electrode for the determination of iron(III) in oxalic medium. Anal. Lett. 1997, 30, 417–427. [Google Scholar]
- Teixeira, M. F. D.; Aniceto, C.; Fatibello, O. Ion-selective electrode for the determination of iron(III) in vitamin formulations. JBCS 1998, 9, 506–510. [Google Scholar]
- Saleh, M. B. Iron(III) ionophores based on formylsalicylic acid derivatives as sensors for ion-selective electrodes. Analyst 1999, 125, 179–183. [Google Scholar]
- Teixeira, M. F. D.; Fatibello, O.; Aniceto, C.; Neto, C. O. C. Flow-injection potentiometric determination of iron (III) in vitamin formulations using a tubular ion-selective electrode in oxalic medium. Lab. Rob. Autom 1999, 11, 163–168. [Google Scholar]
- Sil, A.; Ijeri, V. S.; Srivastava, A. K. Coated-wire iron(III) ion-selective electrode based on iron complex of 1,4,8,11-tetraazacyclotetradecane. Sens. Actuators B 2005, 106, 648–653. [Google Scholar]
- Fakhari, A. R.; Alaghemand, M.; Shamsipur, M. Iron(III)-selective membrane potentiometric sensor based on 5,10,15,20-tetrakis(pentafluorophenyl)-21H, 23H-porphyrin. Anal. Lett. 2001, 34, 1097–1106. [Google Scholar]
- Mahmoud, W. H. Iron ion-selective electrodes for direct potentiometry and potentiotitrimetry in pharmaceuticals. Anal. Chim. Acta 2001, 436, 199–206. [Google Scholar]
- Zamania, H. A.; Rajabzadeha, G.; Pooyamanesh, M. J.; Ganjali, M. R.; Norouzi, P. Fe(III) Ion-Selective Membrane Electrode Based on 4-Amino-6-methyl-3-methylmercapto-1,2,4-triazin-5-one. Anal. Lett. 2007, 40, 1596–1609. [Google Scholar]
- Mashhadizadeh, M. H.; Sheikhshoaie, I. Co2+-selective membrane electrode based on the Schiff base NADS. Anal. Bioanal. Chem. 2003, 375, 708–712. [Google Scholar]
- Gupta, V. K.; Singh, A. K.; Mehtab, S.; Gupta, B. A cobalt(II)-selective PVC membrane based on a Schiff base complex of N,N′-bis(salicylidene)-3,4-diaminotoluene. Anal. Chim. Acta 2006, 566, 5–10. [Google Scholar]
- Shamsipur, M.; Poursaberi, T.; Rouhani, S.; Niknam, K.; Sharghi, H.; Ganjali, M. R. Cobalt(II)-selective membrane electrode based on a recently synthesized benzo-substituted macrocyclic diamide. Anal. Sci. 2001, 17, 1049–1054. [Google Scholar]
- Singh, A. K.; Singh, R. P.; Saxena, P. Cobalt(II)-selective electrode based on a newly synthesized macrocyclic compound. Sens. Actuators B 2006, 114, 578–583. [Google Scholar]
- Shamsipur, M.; Rouhani, S.; Poursaberi, T.; Ganjali, M. R.; Sharghi, H.; Niknam, K. Cobalt(II)-selective coated graphite PVC-membrane electrode based on a recently synthesized dibenzopyridino-substituted macrocyclic diamide. Electroanalysis 2002, 14, 729–735. [Google Scholar]
- Ganjali, M. R.; Mizani, F.; Emami, M.; Darjezini, M.; Darvich, M. R.; Yousefi, M. Synthesis of a new oxime and its application to the construction of a highly selective and sensitive Co(II) PVC-based membrane sensor. Anal. Sci. 2004, 20, 531–535. [Google Scholar]
- Mashhadizadeh, M. H.; Momeni, A.; Razavi, R. Cobalt(II)-selective membrane electrode using a recently synthesized mercapto compound. Anal. Chim. Acta 2002, 46, 245–252. [Google Scholar]
- Shamsipur, M.; Rouhani, S.; Poursaberi, T.; Ganjali, M. R.; Sharghi, H.; Niknam, K. Cobalt(II)-selective coated graphite PVC-membrane electrode based on a recently synthesized dibenzopyridino-substituted macrocyclic diamide. Electroanalysis 2002, 14, 729–735. [Google Scholar]
- Ashtamkar, S. M.; Thakkar, N. V. Preparation and study of an epoxy resin based cobalt(II) ion selective electrode using a cobalt(II) complex. J. Indian Chem. Soc. 2002, 79, 90–91. [Google Scholar]
- Shamsipur, M.; Poursaberi, T.; Rouhani, S.; Niknam, K.; Sharghi, H.; Ganjali, M. R. Cobalt(II)-selective membrane electrode based on a recently synthesized benzo-substituted macrocyclic diamide. Anal. Sci. 2001, 17, 1049–1054. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Norouzi, P.; Adib, M. Cobalt(II) Ion Detection in Electroplating Wastewater by a New Cobalt Ion-Selective Electrode Based on N′-[1-(2-thienyl)ethylidene]-2-furohydrazide. J. cheilian Chem. Soc. 2007, 52, 1332–1337. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Norouzi, P.; Adib, M. Cobalt(II) ion detection in electroplating wastewater by a new cobalt ion-selective electrode based on N′-[1-(2-thienyl)ethylidene]-2-furohydrazide. Sens. Lett. 2007, 5, 522–527. [Google Scholar]
- Gupta, V. K.; Jain, A. K.; Singh, L. P.; Khurana, U. Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel(II). Anal. Chim. Acta 1997, 355, 33–41. [Google Scholar]
- Ganjali, M. R. Nickel(II) ion-selective electrode based on 2-methyl-4-(4-methoxy phenyl)-2,6-diphenyl-2H-thiopyran. Electroanalysis 2000, 12, 1138–1142. [Google Scholar]
- Jain, A. K.; Gupta, V. K.; Singh, R. D.; Khurana, U.; Singh, L. P. Nickel(II)-selective sensors based on heterogeneous membranes of macrocyclic compounds. Sens. Actuators B 1997, 40, 15–20. [Google Scholar]
- Ganjali, M. R.; Fathi, M. R.; Rahmani, H.; Pirelahi, H. Nickel(II) ion-selective electrode based on 2,5-thiophenyl bis(5-tert-butyl-1,3-benzoxazole). Anal. Lett. 2000, 33, 3139–3152. [Google Scholar]
- Belhamel, K.; Ludwig, R.; Benamor, M. Nickel ion-selective PVC membrane electrode based on a new t-octyl-calix[6]arene derivative. Microchim. Acta 2005, 149, 145–150. [Google Scholar]
- Mashhadizadeh, M. H.; Sheikhshoaie, I.; Saeid-Nia, S. Nickel(II)-selective membrane potentiometric sensor using a recently synthesized Schiff base as neutral carrier. Sens. Actuators B 2003, 94, 241–246. [Google Scholar]
- Gupta, V. K.; Prasad, R.; Kumar, A. Dibenzocyclamnickel(II) as ionophore in PVC-matrix for Ni2+-selective sensor. Sensors 2002, 2, 384–396. [Google Scholar]
- Ganjali, M. R.; Hosseini, M.; Salavati-Niasari, M.; Poursaberi, T.; Shamsipur, M.; Javanbakht, M.; Hashemi, O. R. Nickel ion-selective coated graphite PVC-membrane electrode based on benzylbis(thiosemicarbazone). Electroanalysis 2002, 14, 526–531. [Google Scholar]
- Mazloum, M.; Salavati-Niasari, M.; Amini, M. K. Nickel ion-selective coated graphite PVC-membrane electrode based on benzylbis(thiosemicarbazone). Sens. Actuators B 2002, 82, 259–264. [Google Scholar]
- Singh, A. K.; Sharma, C. L.; Baniwal, S.; Panwar, A. Nickel(II)-selective membrane electrode based on macrocyclic ligand. Electroanalysis 2001, 13, 1209–1214. [Google Scholar]
- Shamsipur, M.; Kazemi, S. Y. A PVC-based dibenzodiaza-15-crown-4 membrane potentiometric sensor for Ni(II). Electroanalysis 2000, 12, 1472–1475. [Google Scholar]
- Jain, A. K.; Gupta, V. K.; Ganeshpure, P. A.; Raisoni, J. R. New liquid-membrane electrodes used for potential determination of copper and nickel. Anal. Chim. Acta 2005, 553, 177–182. [Google Scholar]
- Kumar, K. G.; Poduval, R.; Augustine, P.; John, S.; Saraswathyamma, B. A PVC plasticized sensor for Ni(II) ion based on a simple ethylenediamine derivative. Anal. Sci. 2006, 22, 1333–1337. [Google Scholar]
- Kumar, K. G.; Poduval, R.; John, S.; Augustine, P. A PVC plasticized membrane sensor for nickel ions. Mikrochim. Acta 2006, 156, 283–287. [Google Scholar]
- Pleniceany, M.; Isvoranu, M.; Spinu, C. Liquid membrane ion-selective electrodes for potentiometric dosage of coper and nickel. J. Serb. Chem. Soc. 2005, 70, 269–276. [Google Scholar]
- Pleniceanu, M.; Isvoranu, M.; Spinu, C. Electroanalytical applications of some mixed complex combinations with Schiff base. Asian J. Chem. 2005, 17, 2129–2136. [Google Scholar]
- Pleniceanu, M.; Isvoranu, M.; Spinu, C. New electrochemical sensors used for potentiometric determination of copper and nickel. J. Indian Chem. Soc. 2002, 79, 884–886. [Google Scholar]
- Alizadeh, N.; Ershad, S.; Naeimi, H.; Sharghi, H.; Shamsipur, M. Copper(II)-selective membrane electrode based on a recently synthesized naphthol-derivative Schiff's base. Fresen. J. Anal. Chem. 1999, 365, 511–515. [Google Scholar]
- Ganjali, M. R.; Poursaberi, T.; Babaei, L. H. A.; Rouhani, S.; Yousefi, M.; Kargar-Razi, M.; Moghimi, A.; Aghabozorg, H.; Shamsipur, M. Highly selective and sensitive copper(II) membrane coated graphite electrode based on a recently synthesized Schiff's base. Anal. Chim. Acta 2001, 440, 81–87. [Google Scholar]
- Poursaberi, T.; Hajiagha-Babaei, L.; Yousefi, M.; Rouhani, S.; Shamsipur, M.; Kargar-Razi, M.; Moghimi, A.; Aghabozorg, H.; Ganjali, M. R. The synthesis of a new thiophene-derivative Schiff's base and its use in preparation of copper-ion selective electrodes. Electroanalysis 2001, 13, 1513–1517. [Google Scholar]
- Ganjali, M. R.; Emami, M.; Salavati-Niasari, M. Novel copper(II)-selective sensor based on a new hexadentates Schiff's base. Bull. Korean Chem. Soc. 2002, 23, 1394–1398. [Google Scholar]
- Sadeghi, S.; Eslahi, M.; Naseri, M. A.; Naeimi, H.; Sharghi, H.; Shameli, A. Copper ion selective membrane electrodes based on some Schiff base derivatives. Electroanalysis 2003, 15, 1327–1333. [Google Scholar]
- Ganjali, M. R.; Golmohammadi, M.; Yousefi, M.; Norouzi, P.; Salavati-Niasari, M.; Javanbakht, M. Novel PVC-based copper(II) membrane sensor based on 2-(1′-(4′-(1′-hydroxy-2″-naphthyl)methyleneamino)butyliminomethyl)-1-naphthol. Anal. Sci. 2003, 19, 223–227. [Google Scholar]
- Singh, L. P.; Bhatnagar, J. M. Copper(II) selective electrochemical sensor based on Schiff Base complexes. Talanta 2004, 64, 313–319. [Google Scholar]
- Fakhari, A. R.; Raji, T. A.; Naeimi, H. Potentiometric determination of copper in copper sulfide ores. Sens. Actuators B 2005, 104, 317–332. [Google Scholar]
- Norouzi, P.; Ganjali, M. R.; Faridbod, F.; Salavati-Niasari, M. Determination of copper in black, red pepper and the waste water samples by a highly selective sensitive Cu(II) microelectrode based on a new hexadentates Schiff's base. Bull. Kor, Chem. Soc. 2006, 27, 1439–1444. [Google Scholar]
- Jeong, D. C.; Lee, H. K.; Jeon, S. Highly copper(II)-selective PVC membrane based on a Schiff base complex of N,N′-bis-pyridin-2-ylmethylene-naphthalene-1,8-diamine as an ionophore. Bull. Korean Chem. Soc. 2006, 27, 1593–1596. [Google Scholar]
- Gholivand, M. B.; Rahimi-Nasrabadi, M.; Ganjali, M. R.; Salavati-Niasari, M. Highly selective and sensitive copper membrane electrode based on a new synthesized Schiff base. Talanta 2007, 73, 553–560. [Google Scholar]
- Chandra, S.; Singh, C. K.; Agarwal, H.; Agarwal, R. K. A copper(II)-selective PVC membrane electrode based on a macrocyclic ligand, 1,2,5,6,8,11-hexaazacyclododeca-7,12-dione-2,4,8,10-tetraene. Anal. Sci. 2007, 23, 683–687. [Google Scholar]
- Chandra, S.; Singh, C. K.; Agarwal, H. Polymeric membrane ion-selective electrode for copper(II) ions based on Cu-II-cyclohexaneone thiosemicarbazone complex. J. Indian Chem. Soc. 2007, 84, 291–292. [Google Scholar]
- Shamsipur, M.; Mizani, F.; Saboury, A. A.; Sharghi, H.; Khalifeh, R. Highly selective and sensitive membrane sensors for copper(II) ion based on a new benzo-substituted macrocyclic diamide 6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopenta-decine-3,11(4H, 12H)-dione. Electroanalysis 2007, 19, 587–586. [Google Scholar]
- de Oliveira, I. A. M.; Pla-Roca, M.; Escriche, L.; Casabo, J.; Zine, N.; Bausells, J.; Teixidor, F.; Crespo, E.; Errachid, A.; Samitier, J. Novel all-solid-state copper(II) microelectrode based on a dithiomacrocycle as a neutral carrier. Electrochim. Acta 2006, 51, 5070–5074. [Google Scholar]
- Ganjali, M. R.; Golmohammadi, M.; Yousefi, M.; Norouzi, P.; Salavati-Niasari, M.; Javanbakht, M. Novel PVC-based copper(II) membrane sensor based on 2-(1′-(4′-(1′-hydroxy-2″-naphthyl)methyleneamino)butyl iminomethyl)-1-naphthol. Anal. Sci. 2003, 19, 223–227. [Google Scholar]
- Shamsipur, M.; Javanbakht, M.; Mousavi, M. F.; Ganjali, M. R.; Lippolis, V.; Garau, A.; Tei, L. Copper(II)-selective membrane electrodes based on some recently synthesized mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit. Talanta 2001, 55, 1047–1054. [Google Scholar]
- Sadeghi, S.; Vardini, M.T.; Naeimi, H. Copper (II) ion selective liquid membrane electrode based on new Schiff base carrier. Anal. Chim. 2006, 96, 65–74. [Google Scholar]
- Zamani, H. A.; Rajabzadeh, G.; Ganjali, M. R.; Khatami, S. M. Highly selective and sensitive copper(II) membrane sensors based on 6-methyl-4-(1-phenylmethylidene) amino-3-thioxo-1,2,4-triazin-5-one as a new neutral ionophore. Electroanalysis 2005, 17, 2260–2265. [Google Scholar]
- Gupta, V. K.; Goyal, R. N.; Bachheti, N.; Singh, L. P.; Agarwal, S. A copper-selective electrode based on bis(acetylacetone)propylenediimine. Talanta 2005, 68, 193–197. [Google Scholar]
- Zamani, H. A.; Rajabzadeh, G.; Firouz, A.; Ariaii-Rad, A. A. Synthesis of 4-amino-6-methyl-1,2,4-triazin-5-one-3-thione and its application in construction of a highly copper(II) ion-selective electrochemical sensor. JBCS 2005, 16, 1061–1067. [Google Scholar]
- Akhond, M.; Ghaedi, M.; Tashkhourian, J. Development of a new copper(II) ion-selective poly(vinyl chloride) membrane electrode based on 2-mercaptobenzoxazole. Bull. Korean Chem. Soc. 2005, 26, 882–886. [Google Scholar]
- Shamsipur, M.; Avanes, A.; Javanbakht, M.; Ganjali, M. R.; Sharghi, H. A 9,10-anthraquinone derivative having two propenyl arms as a neutral ionophore for highly selective and sensitive membrane sensors for copper(II) ion. Anal. Sci. 2002, 18, 875–879. [Google Scholar]
- Shamsipur, M.; Rouhani, S.; Ganjali, M. R.; Eshghi, H.; Sharghi, H. Copper(II)-selective membrane electrode based on a recently synthesized macrocyclic diamide. Microchem. J 1999, 63, 202–210. [Google Scholar]
- Gupta, K. C.; D'Arc, M. J. Performance evaluation of copper ion selective electrode based on cyanocopolymers. Sens. Actuators B 2000, 62, 171–176. [Google Scholar]
- Alizadeh, N.; Ershad, S.; Naeimi, H.; Sharghi, H.; Shamsipur, M. Copper(II)-selective membrane electrode based on a recently synthesized naphthol-derivative Schiff's base. Fresen. J. Anal. Chem. 1999, 365, 511–515. [Google Scholar]
- Shamsipur, M.; Rouhani, S.; Ganjali, M. R.; Eshghi, H.; Sharghi, H. Copper(II)-selective membrane electrode based on a recently synthesized macrocyclic diamide. Microchem. J 1999, 63, 202–210. [Google Scholar]
- Gupta, V. K.; Prasad, R.; Kumar, A. Preparation of ethambutol-copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper. Talanta 2003, 60, 149–160. [Google Scholar]
- Ganjali, M. R.; Emami, M.; Salavati-Niasari, M. Novel copper(II)-selective sensor based on a new hexadentates Schiff's base. Bull. Korean Chem. Soc. 2002, 23, 1394–1398. [Google Scholar]
- Firooz, A. R.; Mazloum, M.; Safari, J.; Amini, M. K. Coated-wire copper(II)-selective electrode based on phenylglyoxal based on phenylglyoxal-alpha-monoxime ionophore. Anal. Bioanal. Chem. 2002, 372, 718–722. [Google Scholar]
- Shamsipur, M.; Javanbakht, M.; Mousavi, M. F.; Ganjali, M. R.; Lippolis, V.; Garau, A.; Tei, L. Copper(II)-selective membrane electrodes based on some recently synthesized mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit. Talanta 2001, 55, 1047–1054. [Google Scholar]
- Ganjali, M. R.; Poursaberi, T.; Babaei, L. H. A.; Rouhani, S.; Yousefi, M.; Kargar-Razi, M.; Moghimi, A.; Aghabozorg, H.; Shamsipur, M. Highly selective and sensitive copper(II) membrane coated graphite electrode based on a recently synthesized Schiff's base. Anal. Chim. Acta 2001, 440, 81–87. [Google Scholar]
- Gholivand, M. B.; Nozari, N. Copper(II)-selective electrode using 2,2′-dithiodianiline as neutral carrier. Talanta 2001, 54, 597–602. [Google Scholar]
- Saleh, M. B. Copper(II) sensor based on a cephaloridine antibiotic PVC matrix. Anal. Lett. 2000, 33, 1501–1512. [Google Scholar]
- Zamani, H. A.; Rajabzadeh, G.; Firouz, A.; Ganjali, M. R. Determination of Copper(II) in Wastewater Electroplating Samples Based on PVC-Membrane Copper(II)-Selective Electrode. J. Anal. Chem. 2007, 62, 1080–1087. [Google Scholar]
- Javanbakht, M.; Badiei, A.; Ganjali, M. R.; Norouzi, P.; Hasheminasab, A.; Abdouss, M. Use of organofunctionalized nanoporous silica gel to improve the lifetime of carbon paste electrode for determination of copper(II) ions. Anal. Chim. Acta 2007, 601, 172–182. [Google Scholar]
- Mahajan, R. K.; Kumar, M.; Sharma, V.; Kaur, I. Silver(I) ion-selective membrane based on Schiff base-p-tert-butylcalix[4]arene. Analyst 2001, 126, 505–507. [Google Scholar]
- Ueda, M.; Sakaki, N.; Moriuchi-Kawakami, T.; Shibutani, Y. Potentiometric performance of a dioxime-type Schiff base as a silver-ion recognizable material. Bunseki Kagaku 2001, 50, 619–625. [Google Scholar]
- Mahajan, R. K.; Kaur, I.; Kumar, M. Silver ion-selective electrodes employing Schiff base p-tert-butyl calix[4]arene derivatives as neutral carriers. Sens. Actuators B 2003, 91, 26–31. [Google Scholar]
- Mahajan, R. K.; Kaur, I.; Sharma, V.; Kumar, M. Sensor for silver(I) ion based on Schiff-base-p-tertbutylcalix[4] arene. Sensors 2002, 2, 417–423. [Google Scholar]
- Mashhadizadeh, M. H.; Mostafavi, A.; Allah-Abadi, H.; Sheikhshoai, I. New Schiff base modified carbon paste and coated wire PVC membrane electrode for silver ion. Sens. Actuators B 2006, 113, 930–936. [Google Scholar]
- Zhang, L. N.; Chai, Y. Q.; Yuan, R.; Li, Y.; Ye, G. R. Study of a new selective silver electrode based on 2,3-butanedione-thiosemicarbazid as a neutral carrier. Acta Chim. Sin. 2007, 65, 537–541. [Google Scholar]
- Yan, Z. N.; Lu, Y. Q.; Li, X. Silver ion-selective electrodes based on bis(dialkyldithiocarbamates) as neutral ionophores. Sens. Actuators B 2007, 122, 174–181. [Google Scholar]
- Mittal, S. K.; Kumar, A. S. K.; Kaur, S.; Kumar, S. Potentiometric performance of 2-aminothiophenol based dipodal ionophore as a silver sensing material. Sens. Actuators B 2007, 121, 386–395. [Google Scholar]
- Demirel, A.; Dogan, A.; Akkus, G.; Yilmaz, M.; Kilic, E. Silver(I)-selective PVC membrane potentiometric sensor based on a recently synthesized calix[4]arene. Electroanalysis 2006, 18, 1019–1027. [Google Scholar]
- Oconnor, K. M.; Henderson, W.; ONeill, E.; Arrigan, D. W. M.; Harris, S. J.; McKervey, M. A.; Svehla, G. Calix[4]arenes in the partial cone conformation as ionophores in silver ion-selective electrodes. Electroanalysis 1997, 9, 311–315. [Google Scholar]
- Singh, A. K.; Saxena, P. Silver(I)-selective electrode based on [Bz(2)Oxo(4)(18)dieneS(4)] tetrathia macrocyclic carrier. Anal. Bioanal. Chem. 2006, 385, 90–95. [Google Scholar]
- Mahajan, R. K.; Kaur, I.; Kaur, R.; Bhalla, V.; Kumar, M. Calix[4]arene derivatives: Efficient ionophores for silver(I) ion sensors. Bull. Chem. Soc. Japan 2005, 78, 1635–1640. [Google Scholar]
- Ibrahim, H. Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I). Anal. Chim. Acta 2005, 545, 158–165. [Google Scholar]
- Goldcamp, M. J.; Ashley, K.; Edison, S. E.; Pretty, J.; Shumaker, J. A bis-oxime derivative of diaza-18-crown-6 as an ionophore for silver ion. Electroanalysis 2005, 17, 1015–1018. [Google Scholar]
- Mashhadizadeh, M. H.; Shamsipur, M. Silver(I)-selective membrane electrode based on hexathia-18-crown-6. Anal. Chim. Acta 1999, 381, 111–116. [Google Scholar]
- Katsu, T.; Xu, D. F. Organoselenide as a novel ionophore for a silver-selective membrane electrode. Anal. Lett. 1998, 31, 1979–1989. [Google Scholar]
- Badr, I. H. A. A new neutral carrier for silver ions based on a bis(thiothiazole) derivative and its evaluation in membrane electrodes. Microchim. Acta 2005, 149, 87–94. [Google Scholar]
- Ardakani, M. M.; Zare, H. R.; Dehghani, H.; Jalayer, M. Silver(I) ion selective membrane electrode based on derivative of porphine. Bull. ElectroChem. 2004, 20, 385–390. [Google Scholar]
- Ueda, M.; Saito, T.; Fujimori, K.; Moriuchi, T.; Shibutani, Y. Potentiometric performance of silver ion-selective electrodes based on tridentate Schiff base derivatives. Anal. Sci. 2004, 20, 1649–1653. [Google Scholar]
- Lu, J. Q.; Pang, D. W.; Zeng, X. S.; He, X. W. A new solid-state silver ion-selective electrode based on a novel tweezer-type calixarene derivative. J. Electroanal. Chem. 2004, 568, 37–43. [Google Scholar]
- Zare, H. R.; Salavati-Niasari, M.; Memarzadeh, F.; Mazloum, M.; Nasirizadeh, N. Coated wire silver-ion selective electrode based on a N,N′-bis(2-thienylmethylene)-1,2-diaminobenzene. Anal. Sci. 2004, 20, 815–819. [Google Scholar]
- Amini, M. K.; Ghaedi, M.; Rafi, A.; Mohamadpoor-Baltork, L.; Niknam, K. Silver selective electrodes based on methyl-2-pyridyl ketone oxime, phenyl-2-pyridyl ketone oxime and bis[2-(o-carboxythiophenoxy)methyl]-4-bromo-1-methoxybenzene carriers. Sens. Actuators B 2003, 96, 669. [Google Scholar]
- Ardakani, M. M.; Ensafi, A. A.; Salavati-Niasari, M.; Mirhoseini, H. Silver(I)-selective coated-wire electrode based on an octahydroxycalix[4]arene derivative. Anal. Sci. 2003, 19, 1187–1190. [Google Scholar]
- Gupta, V. K.; Antonijevic, M. M.; Chandra, S.; Agarwal, S. Polystyrene based silver selective electrodes. Sensors 2002, 2, 233–243. [Google Scholar]
- Shamsipur, M.; Javanbakht, M.; Ganjali, M. R.; Mousavi, M. F.; Lippolis, V.; Garau, A. Mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit as neutral ionophores for silver ion. Electroanalysis 2002, 14, 1691–1698. [Google Scholar]
- Amini, M. K.; Rafi, A.; Mohammadpoor-Baltork, I. Silver-selective membrane electrodes using 2-mercaptobenzimidazole and 2-mercaptobenzothiazole carriers. Anal. Lett. 2002, 35, 1795–1809. [Google Scholar]
- Mazloum, M.; Salavati-Niasari, M.; Chahooki, S. H. M.; Amini, M. K. Silver-selective coated-wire electrode based on resorc[4]arene neutral carrier. Electroanalysis 2002, 14, 376–381. [Google Scholar]
- Lim, S. M.; Chung, H. J.; Paeng, K. J.; Lee, C. H.; Choi, H. N.; Lee, W. Y. Calix[2]furano[2]pyrrole and related compounds as the neutral carrier in silver ion-selective electrode. Anal. Chim. Acta 2002, 453, 81–88. [Google Scholar]
- Chen, L. X.; He, X. W.; Zhang, H. Y.; Liu, Y.; Hu, X. B.; Sheng, Y. Selective electrode for silver based on polymer membranes containing exocyclic chalcogen atoms calix[4]arene and crown ether. Anal. Lett. 2001, 34, 2237–2248. [Google Scholar]
- Xu, D. F.; Katsu, T. O,O,O-trialkyl phosphorothioates as simple and effective ionophores for silver ion-selective membrane electrodes. Anal. Chim. Acta 2001, 443, 235–240. [Google Scholar]
- Sil, A.; Ijeri, V. S.; Srivastava, A. K. Coated-wire silver ion-selective electrode based on silver complex of cyclam. Anal. Sci. 2001, 17, 477–479. [Google Scholar]
- Chen, L. X.; Zeng, X. S.; Ju, H. F.; He, X. W.; Zhang, Z. Z. Calixarene derivatives as the sensory molecules for silver ion-selective electrode. Microchem. J. 2000, 65, 129–135. [Google Scholar]
- Mahajan, R. K.; Parkash, O. Silver(I) ion selective PVC membrane based on bis-pyridine tetramide macrocycle. Talanta 2000, 52, 691–693. [Google Scholar]
- Chen, L. X.; He, X. W.; Zhao, B. T.; Liu, Y. Calixarene derivative as the neutral carrier in silver ion-selective electrode and liquid membrane transport. Anal. Chim. Acta 2000, 417, 51–56. [Google Scholar]
- Liu, D.; Liu, J. H.; Tian, D. Y.; Hong, W. L.; Zhou, X. M.; Yu, J. C. Polymeric membrane silver-ion selective electrodes based on bis(dialkyldithiophosphates). Anal. Chim. Acta 2000, 416, 139–144. [Google Scholar]
- Shamsipur, M.; Javanbakht, M.; Lippolis, V.; Garau, A.; De Filippo, G.; Ganjali, M. R.; Yari, A. Novel Ag+ ion-selective electrodes based on two new mixed azathioether crowns containing a 1, 10-phenanthroline sub-unit. Anal. Chim. Acta 2002, 462, 225–234. [Google Scholar]
- Shamsipur, M.; Rouhani, S.; Mohajeri, A.; Ganjali, M. R.; Poursaberi, T. Silver selective PVC-membrane sensors with and without graphite based on C-methylcalix[4]resorcareneoctamethyl ester. Chem. Analitycz. 2003, 48, 947–958. [Google Scholar]
- Ganjali, M. R.; Babaeil, L. H.; Taghvaei-Ganjali, S.; Modjallal, A.; Shamsipur, M.; Hosseini, M.; Javanbakht, M. A new cone shaped asymmetrically substituted calix[4]arene as an excellent ionophore in construction of Ag(I) ion-selective membrane electrode. Bull. Korean Chem. Soc. 2004, 25, 177–181. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Alizadeh, T.; Adib, M. Ion Recognition: Synthesis of 2-methyl-2,4-di(2-thienyl)-2,3-dihydro-1H-1,5-benzodiazepine and its Application in Construction of a Highly Selective and Sensitive Ag+ Membrane Sensors. J. Braz. Chem. Soc. 2006, 17, 1217. [Google Scholar]
- Javanbakht, M.; Ganjali, M. R.; Norouzi, P.; Hashemi-Nasa, A.; Badei, A. R. Carbon Paste Electrode Modified with Functionalized Nanoporous Silica Gel as a New Sensor for Determination of Silver Ion. Eelectroanalysis 2007, 19, 1307–1314. [Google Scholar]
- Gupta, V. K.; Agarwal, S.; Jakob, A.; Lang, H. A zinc-selective electrode based on N,N′-bis(acetylacetone)ethylenediimine. Sens. Actuators B 2006, 114, 812–818. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Pooyamanesh, M. J. Zinc(II) PVC-based membrane sensor based on 5,6-benzo-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8,8,8]hexacos-5-ene. J. Braz. Chem. Soc. 2006, 17, 149–155. [Google Scholar]
- Pouretedal, H. R.; Shamsipur, M. A PVC-based cryptand C2(B)22 membrane potentiometric sensor for zinc(II). Fresen. J. Anal. Chem. 1998, 362, 415–418. [Google Scholar]
- Shamsipur, M.; Rouhani, S.; Ganjali, M. R.; Sharghi, H.; Eshghi, H. Zinc-selective membrane potentiometric sensor based on a recently synthesized benzo-substituted macrocyclic diamide. Sens. Actuators B 1999, 59, 30–34. [Google Scholar]
- Gupta, V. K.; Al Khayat, M.; Minocha, A.; Kumar, P. Zinc(II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix. Anal. Chim. Acta 2005, 532, 153–158. [Google Scholar]
- Gholivand, M. B.; Mozaffari, Y. PVC-based bis(2-nitrophenyl)disulfide sensor for zinc ions. Talanta 2003, 59, 399–407. [Google Scholar]
- Jain, A. K.; Sondhi, S. M.; Rajvanshi, S. A PVC based hematoporphyrin IX membrane potentiometric sensor for zinc(II). Electroanalysis 2002, 14, 293–296. [Google Scholar]
- Saleh, M. B.; Gaber, A. A. A. Novel zinc ion-selective membrane electrode based on sulipride drug. Electroanalysis 2001, 13, 104–108. [Google Scholar]
- Fakhari, A. R.; Alaghemand, M.; Shamsipur, M. Zinc-selective membrane electrode based on 5,6,14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadecane-5,14-diene. Anal. Lett. 2000, 33, 2169–2181. [Google Scholar]
- Ganjali, M. R.; Zamani, H. A.; Norouzi, P.; Adib, M.; Rezapour, M.; Aceedy, M. Zn2+PVC-based membrane sensor based on 3-[(2-furylmethylene)amino]-2-thioxo-1,3-thiazolidin-4-one. Bull. Korean Chem. Soc. 2005, 26, 579–584. [Google Scholar]
- Singh, A. K.; Mehtab, S.; Singh, U. R.; Aggarwal, V. Comparative studies of tridentate sulfur and nitrogen-containing ligands as Ionophores for construction of cadmium ion-selective membrane sensors. Electroanalysis 2007, 19, 1213–1221. [Google Scholar]
- Gupta, V. K.; Jain, A. K.; Kumar, P. PVC-based membranes of dicyclohexano-24-crown-8 as Cd(II) selective sensor. Electrochim. Acta 2006, 52, 736–741. [Google Scholar]
- Javanbakht, M.; Shabani-Kia, A.; Darvich, M. R.; Ganjali, M. R.; Shamsipur, M. Cadmium(II)-selective membrane electrode based on a synthesized tetrol compound. Anal. Chim. Acta 2000, 408, 75–81. [Google Scholar]
- Perez-Marin, L.; Ortiz-Macedo, G.; Avila-Perez, P.; Otazo-Sanchez, E.; Lopez-Valdivia, H.; Alonso-Chammaro, J.; Estevez-Hernandez, O. Liquid membrane electrode sensitive to cadmium (II) ions, using 1-furoyl-3-bencyl-3-phenylthiourea as ionophore. Afinidad 1999, 56, 397–401. [Google Scholar]
- Gupta, V. K.; Kumar, P. Cadmium(II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix. Anal. Chim. Acta 1999, 389, 205–212. [Google Scholar]
- Mashhadizadeh, M. H.; Sheikhshoaie, I.; Saeid-Nia, S. Asymmetrical Schiff bases as carriers in PVC membrane electrodes for cadmium (II) ions. Electroanalysis 2005, 17, 648–654. [Google Scholar]
- Abbas, M. N.; Zahran, E. Novel solid-state cadmium ion-selective electrodes based on its tetraiodo- and tetrabromo-ion pairs with cetylpyridinium. J. Electroanal. Chem. 2005, 576, 205–213. [Google Scholar]
- Singh, A. K.; Saxena, P.; Singh, R. New cadmium(II)-selective electrode based on a tetraazacyclohexadeca macrocyclic ionophore. Anal. Sci. 2005, 21, 179–181. [Google Scholar]
- Gupta, V. K.; Chandra, S.; Mangla, R. Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim. Acta 2002, 47, 1579–1586. [Google Scholar]
- Shamsipur, M.; Mashhadizadeh, M. H. Cadmium ion-selective electrode based on tetrathia-12-crown-4. Talanta 2001, 53, 1065–1071. [Google Scholar]
- Gupta, K. C.; D'Arc, M. J. Cadmium ion-selective electrode based on cyanocopolymer. Electroanalysis 2000, 12, 1408–1413. [Google Scholar]
- Gupta, K. C.; D'Arc, M. J. Effect of concentration of ion exchanger, plasticizer and molecular weight of cyanocopolymers on selectivity and sensitivity of Cd(II) ion selective electrode. Talanta 2000, 52, 1087–1103. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Adib, M. Cd(II) PVC-Based Membrane Sensor Based on N′-[1-(2-furyl)methylidene]-2-furohydrazide. Sens. Lett. 2006, 4, 345–350. [Google Scholar]
- Gismera, M. J.; Hueso, D.; Procopio, J. R.; Sevilla, A. T. Ion-selective carbon paste electrode based on tetraethyl thiuram disulfide for copper(II) and mercury(II). Anal. Chim. Acta 2004, 524, 347–353. [Google Scholar]
- Mashhadizadeh, M. H.; Sheikhshoaie, I. Mercury(II) ion-selective polymeric membrane sensor based on a recently synthesized Schiff base. Talanta 2003, 60, 73–80. [Google Scholar]
- Mahajan, R. K.; Kaur, R.; Kaur, I.; Sharma, V.; Kumar, M. Mercury(II) ion-selective electrodes based on p-tert-butyl calix[4]crowns with imine units. Anal. Sci. 2004, 20, 811–814. [Google Scholar]
- Xu, L.; Yuan, R.; Chai, Y. Q. Mercury(II) ion potentiometric sensor based on a sulfur Schiff's base 1-(2-hydroxy-1,2-diphenylethylidene)thiosemicarbazide as ionophore. Chem. Lett. 2005, 34, 440–441. [Google Scholar]
- Saleh, M. B.; Soliman, E. M.; Gaber, A. A. A.; Ahmed, S. A. A novel Hg(II) PVC membrane sensor based on simple ionophore ethylenediamine bis-thiophenecarboxaldehyde. Anal. Lett. 2006, 39, 659–673. [Google Scholar]
- Mashhadizadeh, M. H.; Talakesh, M.; Peste, M.; Momeni, A.; Hamidian, H.; Majum, M. A novel modified carbon paste electrode for potentiometric determination of mercury(II) ion. Electroanalysis 2006, 18, 2174–2179. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Alizadeh, T.; Salavati-Niasari, M. Synthesis of a new hexadendates Schiff's base and its application in the fabrication of a highly selective mercury(II) sensor. Bull. Korean Chem. Soc. 2007, 28, 68–72. [Google Scholar]
- Gismera, M. J.; Procopio, J. R.; Sevilla, M. T. Characterization of mercury-Humic acids interaction by potentiometric titration with a modified carbon paste mercury sensor. Electroanalysis 2007, 19, 1055–1061. [Google Scholar]
- Yu, X.; Zhou, Z. D.; Wang, Y.; Liu, Y.; Xie, Q.; Xiao, D. Mercury (II)-selective polymeric membrane electrode based on the 3-[4-(dimethylamino)phenyl]-5-mercapto-1,5-diphenylpentanone. Sens Actuators B 2007, 123, 352–358. [Google Scholar]
- Gupta, V. K.; Singh, A. K.; Al Khayat, A.; Gupta, B. Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Anal. Chim. Acta 2007, 590, 81–90. [Google Scholar]
- Khan, A. A.; Inamuddin. Applications of Hg(II) sensitive polyaniline Sn(IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode. Sens. Actuators B 2006, 120, 10–18. [Google Scholar]
- Hassan, S. S. M.; Mahmoud, W. H.; Mohamed, A. H. K.; Kelany, A. E. Mercury(II) ion-selective polymeric membrane sensors for analysis of mercury in hazardous wastes. Anal. Sci. 2006, 22, 877–881. [Google Scholar]
- Ye, G. R.; Chai, Y. Q.; Yuan, R.; Dai, J. Y. A mercury(II) ion-selective electrode based on N,N-dimethylformamide-salicylacylhydrazone as a neutral carrier. Anal. Sci. 2006, 22, 579–582. [Google Scholar]
- Othman, A. M. Potentiometric determination of mercury(II) using a tribromomercurate-rhodamine BPVC membrane sensor. Int. J. Environ.Anal Chem. 2006, 86, 367–379. [Google Scholar]
- Gupta, V. K.; Chandra, S.; Lang, H. A highly selective mercury electrode based on a diamine donor ligand. Talanta 2005, 66, 575–580. [Google Scholar]
- Gupta, V. K.; Jain, S.; Khurana, U. A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II). Electroanalysis 1997, 9, 478–480. [Google Scholar]
- Jain, A. K.; Sondhi, S. M.; Sharma, V. K. Synthesis, characterization and Hg(II) Ion selectivity of 1-(2-nitro-4-methylphenyl)-6-methyl-6-methoxy-1,4,5,6-tetrahydro-pyrimidine-2-(3H)thione (TPT). Electroanalysis 2000, 12, 301–305. [Google Scholar]
- Javanbakht, M.; Ganjali, M. R.; Eshghi, H.; Sharghi, H.; Shamsipur, M. Mercury(II) ion-selective electrode based on dibenzodiazathia-18-crown-6-dione. Electroanalysis 1999, 11, 81–84. [Google Scholar]
- Lu, J. Q.; Zeng, X. S.; Ai, J.; Pang, D. W. A solid-state ion-selective electrode for mercury with tweezer-type calix[4]arene derivative as the probe on PVC film. Chem. J. Chin Univ-Chin. 2005, 26, 238–240. [Google Scholar]
- Singh, A. K.; Bhattacharjee, G.; Singh, R. Mercury(II)-selective membrane electrode using tetrathia-diazacyclotetradeca-2,9-diene as neutral carrier. Sens. Actuators B 2004, 99, 36–41. [Google Scholar]
- Lu, J. Q.; Tong, X. Q.; He, X. W. A mercury ion-selective electrode based on a calixarene derivative containing the thiazole azo group. J. Electroanal. Chem. 2003, 540, 111–117. [Google Scholar]
- Mahajan, R. K.; Kaur, I.; Lobana, T. S. A mercury(II) ion-selective electrode based on neutral salicylaldehyde thiosemicarbazone. Talanta 2003, 59, 101–105. [Google Scholar]
- Hassan, S. S. M.; Saleh, M. B.; Gaber, A. A. A.; Mehheimer, R. A. H.; Kream, N. A. A. Novel mercury (II) ion-selective polymeric membrane sensor based on ethyl-2-benzoyl-2-phenylcarbamoyl acetate. Talanta 2000, 53, 285–293. [Google Scholar]
- Perez-Marin, L.; Otazo-Sanchez, E.; Macedo-Miranda, G.; Avila-Perez, P.; Chamaro, J. A.; Lopez-Valdivia, H. Mercury(II) ion-selective electrode. Study of 1,3-diphenylthiourea as ionophore. Analyst 2000, 125, 1787–1790. [Google Scholar]
- Fakhari, A. R. PVC-based hexathia-18-crown-6-tetraone sensor for mercury(II) ions. Anal. Chem. 1997, 69, 3693–3696. [Google Scholar]
- Faridbod, F.; Ganjali, M. R.; Norouzi, P. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in Construction of the Potentiometric membrane. Sensors 2008, 8, 1645–1703. [Google Scholar]
- Shamsipur, M.; Yousefi, M.; Hosseini, M.; Ganjali, M. R. Lanthanum(III) PVC membrane electrodes based on 1,3,5-trithiacyclohexane. Anal. Chem. 2002, 74, 5538–5543. [Google Scholar]
- Gupta, V. K.; Jain, S.; Chandra, S. Chemical sensor for lanthanum(III) determination using aza- crown as ionophore in poly(vinyl chloride) matrix. Anal. Chim. Acta 2003, 486, 199–207. [Google Scholar]
- Khalil, S. Ion-selective electrode for lanthanum determination in standard samples. Anal. Lett. 2003, 36, 1335–1349. [Google Scholar]
- Ganjali, M. R.; Daftari, A.; Rezapour, M.; Puorsaberi, T.; Hahgoo, S. Gliclazide as novel carrier in construction of PVC-based La(III)-selective membrane sensor. Talanta 2003, 59, 613–619. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Shamsolahrari, L.; Ahmadi, A. PPb level monitoring of lanthanium by a novel PCV-membrane sensor based on 4-methyl-2-hydrazinobenzothiazole. Sens. Actuators B 2006, 114, 713–719. [Google Scholar]
- Ganjali, M. R.; Qomi, M.; Daftari, A.; Norouzi, P.; Salavati-Niasari, M.; Rabbani, M. Novel lanthanum(III) membrane sensor based on a new N-S Schiff's base. Sens. Actuators B 2004, 98, 92–96. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Alizadeh, T.; Adib, M. Application of 2-{[(8-amino-1-naphtyl) imino] methyl} phenol as a neutral ionophore in the construction of a La(III) ion-selective sensor. Anal. Chim. Acta 2006, 576, 275–282. [Google Scholar]
- Shamsipur, M.; Ershad, S.; Samadi, N.; Esmaeilbeig, A. R.; Kia, R.; Abdolmaleki, A. Polymeric membrane lanthanum(III)-selective electrode based on N,N′-adipylbis(5-plenylazosalicyl-aldehyde hydrazone). Electroanalysis 2005, 17, 1828–1834. [Google Scholar]
- Ganjali, M. R.; Matloobi, P.; Ghorbani, M.; Norouzi, P.; Salavati-Niasari, M. La(III) selective membrane sensor based on a new N-N Schiff's base. Bull. Korean Chem. Soc. 2005, 26, 38–42. [Google Scholar]
- Akhond, M.; Najafi, M.B.; Tashkhourian, J. Lanthanum-selective membrane electrode based on 2,2′-dithiodipyridine. Anal. Chim. Acta 2005, 531, 179–184. [Google Scholar]
- Ganjali, M. R.; Akbar, V.; Ghorbani, M.; Norouzi, P.; Ahmadi, A. Fluoride determination in some mouth wash preparations by a novel La(III) graphite coated membrane sensor based on amitraz. Anal. Chim. Acta 2005, 531, 185–191. [Google Scholar]
- Ganjali, M. R.; Gholivand, M. B.; Rahimi-Nasrabadi, M.; Maddah, B.; Salavati-Niasari, M.; Ahmadi, F. Synthesis of a new octadentates Schiff's base and its application in construction of a highly selective and sensitive La(III) membrane sensor. Sensor Lett. 2006, 4, 356–363. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Yousefian, N.; Faridbod, F.; Adib, M. sub-micro molar monitoring of La3+ by a novel lanthanum PVC-based membrane sensor based on 3-hydroxy-N′-(pyridin-2-ylmethylene)-2-naphthohydrazide. Bull. Korean Chem. Soc. 2006, 27, 1581–1586. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Norouzi, P.; Adib, M.; Aceedy, M. Synthesis of N′-(1-pyridin-2-ylmethylene)-2-furohydrazide and its application in construction of a highly selective PVC-based membrane sensor for La(III) ions. Anal. Sci. 2006, 22, 943–948. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Alizadeh, T.; Tadjarodi, A.; Hanifehpour, Y. Construction of a highly selective and sensitive La(III) sensor based on N-(2-pyridyl)-N′-(4-methoxyphenyl)-thiourea for nano level monitoring of La(III) ions. Electroanalysis 2006, 18, 1091–1096. [Google Scholar]
- Shamsipur, M.; Yousefi, M.; Ganjali, M. R. PVC-based 1;3;5-trithiane sensor for cerium(III) ions. Anal. Chem. 2000, 72, 2391–2394. [Google Scholar]
- Shamsipur, M.; Yousefi, M.; Hosseini, M.; Ganjali, M. R. PVC-based 1;3;5-trithiane coated graphite electrode for determination of cerium(III) ions. Anal. Lett. 2001, 34, 2249–2261. [Google Scholar]
- Gaber, A. A. A. A novel PVC membrane sensor for selective determination of cerium(III) ions. Anal. Lett. 2003, 36, 2585–2596. [Google Scholar]
- Karami, H.; Mousavi, M. F.; Shamsipur, M.; Yavari, I.; Alizadeh, A. A. A new ion-selective electrode for potentiometric determination of Ce(III). Anal. Lett. 2003, 36, 1065–1078. [Google Scholar]
- Akhond, M.; Najafi, M. B.; Tashkhourian, J. A new cerium(III)-selective membrane electrode based on 2-aminobenzothiazole. Sens. Actuators B 2004, 99, 410–414. [Google Scholar]
- Gupta, V. K.; Singh, A. K.; Gupta, B. A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N,N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine. Anal. Chim. Acta 2006, 575, 198–204. [Google Scholar]
- Pouretedal, H. R.; Semnani, A.; Keshavarz, M. H. Cerium(III) ion-selective electrodes based on 1,4,7-trithiacyclononane. Turk. J. Chem. 2006, 30, 711–721. [Google Scholar]
- Saleh, M. B.; Gaber, A. A. A.; Khalaf, M. M. R.; Tawfeek, A. M. A new ion-selective electrode for potentiometric determination of Ce(III) ions. Sens. Actuators B 2006, 119, 275–281. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Adib, M. Construction of a highly selective PVC-based membrane sensor for Ce(III) ions. Sen. Actuators B 2007, 120, 545–550. [Google Scholar]
- Ganjali, M. R.; Mirnaghi, F.; Norouzi, P.; Adib, M. Novel Pr(III)-selective membrane sensor based on a new hydrazide derivative. Sens. Actuators B 2006, 115, 374–378. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Mirnaghi, F. S.; Riahi, S.; Faridbod, F. Lanthanide Recognition: Monitoring of Praseodymium(III) by a Novel Praseodymium(III) Microsensor Based on N-(Pyridin-2-Ylmethylene)Benzohydrazide. IEEE Sens. J 2007, 7, 1138–1144. [Google Scholar]
- Norouzi, P.; Ganjali, M. R.; Ahmadalinezhad, A.; Adib, M. Novel neodymium(III) membrane sensor based on N-(2-furylmethylene) pyridine-2,6-diamine. J. Braz. Chem. Soc. 2006, 17, 1309–1315. [Google Scholar]
- Ganjali, M. R.; Ahmadalinezhad, A.; Norouzi, P.; Adib, M. Nd(III)-PVC membrane sensor based on 2-{[(6- aminopyridin-2-yl)imino] methyl}phenol. J. Appl. ElectroChem. 2006, 36, 931–936. [Google Scholar]
- Shamsipur, M.; Hosseini, M.; Alizadeh, K.; Mousavi, M. F.; Garau, A.; Lippolis, V.; Yari, A. PVC membrane potentiometric sensor based on 5-pyridino-2,8-dithia[9](2,9)-1,10-phenanthroline-phane for selective determination of neodymium(III). Anal Chem. 2005, 77, 276–283. [Google Scholar]
- Behmadi, H.; Zamani, H. A.; Ganjali, M. R.; Norouzi, P. Determination of neodymium(III) ions in soil and sediment samples by a novel neodymium(III) sensor based on benzyl bisthiosemicarbazone. Electrochim. Acta 2007, 53, 1870–1876. [Google Scholar]
- Shamsipur, M.; Hosseini, M.; Alizadeh, K.; Eskandari, M. M.; Sharghi, H.; Mousavi, M. F.; Ganjali, M. R. Polymeric membrane and coated graphite samarium(III)- selective electrodes based on isopropyl 2-[(isopropoxycarbothioyl)disulfanyl]ethanethioate. Anal. Chim. Acta 2003, 486, 93–99. [Google Scholar]
- Ganjali, M. R.; Pourjavid, M. R.; Rezapour, M.; Haghgoo, S. Novel samarium(III) selective membrane sensor based on glipizid. Sens. Actuators B 2003, 89, 21–26. [Google Scholar]
- Ganjali, M. R.; Rezapour, M.; Pourjavid, M. R.; Haghgoo, S. ppt level detection of samarium(III) with a coated graphite sensor based on an antibiotic. Anal. Sci. 2004, 20, 1007–1011. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Adib, M. Fabrication of a new samarium(III) ion-selective electrode based on 3-{[2-oxo-1(2H)-acenaphthylenyliden]amino}-2-thioxo-1,3-thiazolidin-4-one. J. Braz. Chem. Soc. 2007, 18, 215–222. [Google Scholar]
- Saleh, M. B.; Gaber, A. A. A.; Khalaf, M. M. R.; Tawfeek, A. M. Novel Sm(III) ion-selective polymeric membrane sensor based on spiro[oxirane-pyrazolidinedione] derivative ionophore. Anal. Lett. 2006, 39, 17–31. [Google Scholar]
- Ganjali, M. R.; Rahimi, M.; Maddah, B.; Moghimi, A.; Borhany, S. An Eu(III) sensor based on N,N-diethyl-N-(4-hydroxy-6-methylpyridin-2-yl)guanidine. Anal. Sci. 2004, 20, 1427–1431. [Google Scholar]
- Ganjali, M. R.; Daftari, A.; Faridbod, F.; Norouzi, P.; Salavati-Niasari, M. Fabrication of a highly selective Eu(III) membrane sensor based on a new S-N hexadentates Schiff's base. Sens. Actuators B 2007, 120, 673–678. [Google Scholar]
- Zamani, H. A.; Rajabzadeh, G.; Ganjali, M. R. A new europium(III) PVC membrane potentiometric sensor based on 4-(2-hydroxybenzylideneamino)-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one. Bull. Chem. Soc. Japan 2007, 80, 172–177. [Google Scholar]
- Ganjali, M. R.; Daftari, A.; Faridbod, F.; Norouzi, P.; Salavati-Niasari, M. Fabrication of a highly selective Eu(III) membrane sensor based on a new S-N hexadentates Schiff's base. Sens. Actuators B 2007, 120, 673–678. [Google Scholar]
- Ganjali, M. R.; Tahami, M.; Shamsipur, M.; Poursaberi, T.; Haghgoo, S.; Hosseini, M. Novel gadolinium PVC-based membrane sensor based on omeprazole as an antibiotic. Electroanalysis 2003, 15, 1038–1042. [Google Scholar]
- Ganjali, M. R.; Rezapour, M.; Norouzi, P.; Salavati-Niasari, M. A new pentadentate S-N Schiff's base as a novel ionophore in construction of a novel Gd (III) membrane sensor. Electroanalysis 2005, 17, 2032–2036. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Alizadeh, T.; Tajarodi, A.; Hanifehpour, Y. Fabrication of a highly selective and sensitive Gd(III)-PVC membrane sensor based on N-(2-pyridyl)-N′-(4-nitrophenyl)thiourea. Sens. Actuators B 2007, 120, 487–493. [Google Scholar]
- Zamani, H. A.; Rajabzadeh, G.; Ganjali, M. R.; Norouzi, P. Synthesis of 6-Methyl-4-{[1-(2-thienyl)methylidene]amino}3-thioxo-3,4-dihydro-1,2,4-triazin-5-(2H)-one and Its Use in Fabrication of a Potentiometric PVC Membrane Electrode for Selective Determination of Gadolinium(III) ions. Anal. Chim. Acta 2007, 598, 51–57. [Google Scholar]
- Ganjali, M. R.; Ghesmi, A.; Hosseini, M.; Pourjavid, M. R.; Rezapour, M.; Shamsipur, M.; Salavati-Niasari, M. Novel terbium(III) sensor based on a new bis-pyrrolidene Schiff's base. Sens. Actuators B 2005, 105, 334–339. [Google Scholar]
- Zamani, H. A.; Rajabzadeh, G.; Ganjali, M. R. Construction of a novel potentiometric terbium(III) membrane sensor and its alication for the determination of terbium ion in binary mixture and fluoride ion in a mouth wash preparation. J. Braz. Chem. Soc. 2006, 17, 1297–1303. [Google Scholar]
- Ganjali, M. R.; Ravanshad, J.; Hosseini, M.; Salavati-Niasari, M.; Pourjavid, M. R.; Baezzate, M. R. Novel Dy(III) sensor based on a new bis-pyrrolidene Schiff's base. Electroanalysis 2004, 16, 1771–1776. [Google Scholar]
- Ganjali, M. R.; Dodangeh, M.; Ghorbani, H.; Norouzi, P.; Adib, M. ppb level monitoring of Dy(III) ions by a highly sensitive and selective Dy(III) sensor based on a new asymmetrical Schiff's base. Anal. Lett. 2006, 39, 495–506. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Seifi, N. Dysprosium(III) ion-selective electrochemical sensor based on 6-hydrazino-1,5-diphenyl-6,7-dihydropyrazolo-[3,4-d] pyrimidine-4(5H)-imine. Collect. Czech. Chem. Commun. 2007, 72, 1189–1206. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Faridbod, F.; Hajiabdollah, N.; Larijani, B.; Hanifehpour, Y. Procaine as a sensing material for determination of Dysprosium(III) ions in presence of other rare-earth elements in biological and environmental samples. Anal. Lett. 2007, 40, 2544–2561. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Adib, M.; Ahmadalinezhad, A. A novel Holmium(III) membrane sensor based on N-(1-thien-2-ylmethylene)-1,3-benzothiazol-2-amine. Anal. Lett. 2006, 39, 1075–1086. [Google Scholar]
- Ganjali, M. R.; Rasoolipour, S.; Rezapour, M.; Norouzi, P.; Amirnasrb, M.; Meghdadi, S. A Novel Ho(III) Sensor based on N,N′-Bis(2- pyridinecarboxamide)-1,2-benzene as a Neutral Ion Carrier. J. Braz. Chem. Soc. 2006, 17, 1211–1216. [Google Scholar]
- Ganjali, M. R.; Rasoolipour, S.; Rezapour, M.; Norouzi, P.; Amirnasr, M.; Meghdadi, S. Application of N,N′-bis(2-quinolinecarboxamide)-1,2-benzene as an ionophore in the construction of a novel polymeric membrane sensor for the selective monitoring of the holmium(III) concentration. Sens. Actuators B 2006, 119, 89–93. [Google Scholar]
- Zamani, H. A.; Ganjali, M. R.; Meghdadi, S. Fabrication of a Novel Holmium(III) PVC Membrane Sensor Based on 4-Chloro-1,2-bis(2-pyridinecarboxamido)benzene as a Neutral Ionophore. J. Appl. ElectroChem. 2007, 37, 853–859. [Google Scholar]
- Ganjali, M. R.; Faridbod, F.; Norouzi, P.; Adib, M. A novel Er(III) sensor based on a new hydrazone for the monitoring of Er(III) ions. Sens. Actuators B 2006, 120, 119–124. [Google Scholar]
- Ganjali, M. R.; Rezapour, M.; Rasoolipour, S.; Norouzi, P.; Adib, M. Application of Pyridine-2-carbaldehyde-2-(4-methyl-1,3-benzo thiazol-2-yl)hydrazone as a Neutral Ionophore in the Construction of a Novel Er(III) Sensor. J. Braz. Chem. Soc. 2007, 18, 352–358. [Google Scholar]
- Ganjali, M. R.; Rasoolipour, S.; Rezapour, M.; Norouzi, P.; Adib, M. Synthesis of thiophene-2-carbaldehyde-(7-methyl-1,3-benzothiazol-2-yl)hydrazone and its alication as an ionophore in the construction of a novel thulium(III) selective membrane sensor. Electrochem. Commun. 2005, 7, 989–994. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Tamaddon, A.; Husain, S. W. Novel Tm(III) membrane sensor based on 2,2 ′-dianiline disulfide and its application for the fluoride monitoring of mouth wash preparations. Bull. Korean Chem. Soc. 2006, 27, 1418–1422. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Akbari-Adergani, B. Thulium(III) Ions Monitoring by a Novel Thulium(III) Microelectrode Based on a S-N Schiff Base. Electroanalysis 2007, 19, 1145–1151. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Tamaddon, A.; Adib, M. Nano-level monitoring of ytterbium(III) by a novel ytterbium(III) membrane sensor based on 3-hydroxy-N′ -[(2-hydroxyphenyl) methylene]-2-naphthohydrazide. Sens. Actuators B 2006, 114, 855–860. [Google Scholar]
- Zamani, H. A.; Rajabzadeh, G.; Ganjali, M. R. A new ytterbium(III) PVC membrane electrode based on 6-methy-4-{[1-(1H-pyrrol-2-yl)methylidene]amino}-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one. Talanta 2007, 72, 1093–1099. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Ghorbani, H.; Larijani, B.; Tadjarodi, A.; Hanifehpour, Y. Lanthanide recognition: Fabrication of an Ytterbium PVC membrane sensor based on N-(6-picolyl)-N′-(4-metoxyphenyl) thiourea (PMPT). Can. Soc. J. Anal. Sci. Spect. 2006, 51, 279–287. [Google Scholar]
- Ganjali, M. R.; Naji, L.; Poursaberi, T.; Shamsipur, M.; Haghgoo, S. Ytterbium(III)-selective membrane electrode based on cefixime. Anal. Chim. Acta 2003, 475, 59–66. [Google Scholar]
- Ganjali, M. R.; Rasoolipour, S.; Rezapour, M.; Norouzi, P.; Tajarodi, A.; Hanifehpour, Y. Novel ytterbium(III) selective membrane sensor based on N-(2-pyridyl)-N′-(2-methoxyphenyl)-thiourea as an excellent carrier and its alication to determination of fluoride in mouth wash preparation samples. Electroanalysis 2005, 17, 1534–1539. [Google Scholar]
- Ganjali, M. R.; Tamaddon, A.; Norouzi, P.; Adib, M. Novel Lu(III) membrane sensor based on a new asymmetrically S-N Schiff's base. Sens. Actuators B 2006, 120, 194–199. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Akbari-Adergani, B.; Riahi, S.; Larijani, B. An Asymetric Lutetium(III) Microsensor Based on N-(2-Furylmethylene) Pyridine-2,6-Diamine for Determination of Lutetium(III) Ions. Anal. Lett. 2007, 40, 1923–1938. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Faridbod, F.; Riahi, S. Highly Selective and Sensitive Th4+-PVC-Based Membrane Sensor based on 2-(diphenylphosphorothioyl)-N′, N′-diphenylacetamide. J. Appl. ElectroChem. 2007, 37, 827–833. [Google Scholar]
- Chandra, S.; Agarwal, H.; Singh, C. K.; Sindhu, S. K.; Kumar, P. A polymeric membrane ion selective electrode based on organic-inorganic composite ion exchanger for the determination of thorium(IV). Ind. J. Chem. 2005, 44, 2060–2063. [Google Scholar]
- Mittal, S. K.; Singh, P. P. Thorium selective electrode using zirconium phosphoborate as electroactive material. Ind. J. Chem. A 1995, 34, 1009–1011. [Google Scholar]
- Arida, H. A.; Ahmed, M. A.; El-Saied, A. M. A novel coated graphite rod Th(IV) ion selective electrode based on thorium oxinate complex and its application. Sensors 2003, 3, 424–437. [Google Scholar]
- Hassanzadeh, P.; Yaftian, M. R.; Bahari, Z.; Matt, D. A coated graphite thorium-ion selective potentiometric sensor based on a calix[4]arene bearing phosphoryl groups. J. Chin. Chem. Soc. 2006, 53, 1113–1118. [Google Scholar]
- Maj-Zurawska, M.; Ziemianek, D.; Mikolajczuk, A.; Mieczkowski, J.; Lewenstam, A.; Hulanicki, A.; Sokalski, T. Anal. Bioanal. Chem.; 2003; Volume 376, pp. 524–526. [Google Scholar]
- Zeng, Y. L.; Tang, C. R. Hydrogencarbonate anion electrode based on long chain S-akyl diphenylthiocarbazone. Chin. J. Anal. Chem. 2001, 29, 799–801. [Google Scholar]
- Ganjali, M. R.; Rezapour, M.; Pourjavid, M. R.; Salavati-Niasari, M. Highly selective PVC-membrane electrodes based on Co(II)-Salen for determination of nitrite ion. Anal. Sci. 2003, 19, 1127–1131. [Google Scholar]
- Ganjali, M. R.; Shirvani-Arani, S.; Norouzi, P.; Rezapour, M.; Salavati-Niasari, M. Novel nitrite membrane sensor based on cobalt(II) salophen for selective monitoring of nitrite ions in biological samples. Mikrochim. Acta 2004, 146, 35–41. [Google Scholar]
- Shamsipur, M.; Javanbakht, M.; Hassaninejad, A. R.; Sharghi, H.; Ganjali, M. R.; Mousavi, M. F. Highly selective PVC-membrane electrodes based on three derivatives of (Tetraphenylporphyrinato) cobalt(III) acetate for determination of trace amounts of nitrite ion. Electroanalysis 2003, 15, 1251–1259. [Google Scholar]
- Hu, W. P.; Dong, X. Z.; He, Z. J. The determination of nitrite by catalytic kinetic potentiometric method using methyl violet selective electrode. Chin. J. Anal. Chem. 2004, 32, 765–768. [Google Scholar]
- Schazmann, B.; Diamond, D. Improved nitrate sensing using ion selective electrodes based on urea-calixarene ionophores. New J. Chem. 2007, 31, 587–592. [Google Scholar]
- Watts, A. S.; Gavalas, V. G.; Cammers, A.; Andrada, P. S.; Alajarin, M.; Bachas, L. G. Nitrate-selective electrode based on a cyclic bis-thiourea ionophore. Sens. Actuators B 2007, 121, 200–207. [Google Scholar]
- Alvarez-Romero, G. A.; Palomar-Pardave, M. E.; Ramirez-Silva, M. T. Development of a novel nitrate-selective composite sensor based on doped polypyrrole. Anal. Bioanal. Chem. 2007, 387, 1533–1541. [Google Scholar]
- Hassan, S. S. M.; Sayour, H. E. M.; Al-Mehrezi, S. S. A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals. Anal. Chim. Acta 2007, 581, 13–18. [Google Scholar]
- Khripoun, G. A.; Volkova, E. A.; Liseenkov, A. V.; Mikhelson, K. N. Nitrate-selective solid contact electrodes with poly(3-octylthiophene) and poly(aniline) as ion-to-electron transducers buffered with electron-ion-exchanging resin. Electroanalysis 2006, 18, 1322–1328. [Google Scholar]
- Marin, L. P.; Perez, M.; Chamarro, J. A.; Tacoronte, J. E. Construction and evaluation of an ion-selective electrode to nitrate, of liquid membrane, applied on a support of conductive epoxy resin. Afinidad 1998, 55, 179–182. [Google Scholar]
- Ortuno, J. A.; Exposito, R.; Sanchez-Pedreno, C.; Albero, M. I.; Espinosa, A. A nitrate-selective electrode based on a tris(2-aminoethyl)amine triamide derivative receptor. Anal. Chim. Acta 2004, 525, 231–237. [Google Scholar]
- Santos, E.; Montenegro, M.; Couto, C.; Araujo, A. N.; Pimentel, M. F.; da Silva, V. L. Sequential injection analysis of chloride and nitrate in waters with improved accuracy using potentiometric detection. Talanta 2004, 63, 721–727. [Google Scholar]
- Perez, M. D. A.; Nodarse, I. C.; Yazdani-Pedram, M. Construction of a polymeric liquid-membrane ion-selective electrode (ISE) and its application for determination of nitrate in tomatoes. J. Chil. Chem. Soc. 2004, 49, 31–34. [Google Scholar]
- Le Goff, T.; Braven, J.; Ebdon, L.; Scholefield, D. Automatic continuous river monitoring of nitrate using a novel ion-selective electrode. J. Environ. Monit. 2003, 5, 353–358. [Google Scholar]
- Bendikov, T. A.; Kim, J.; Harmon, T. C. Development and environmental application of a nitrate selective microsensor based on doped polypyrrole films. Sens. Actuators B 2005, 106, 512–517. [Google Scholar]
- Perez-Olmos, R.; Rios, A.; Fernandez, J. R.; Lapa, R. A. S.; Lima, J. L. F. C. Construction and evaluation of ion selective electrodes for nitrate with a summing operational amplifier. Application to tobacco analysis. Talanta 2001, 53, 741–748. [Google Scholar]
- Kim, H. J.; Hummel, J. W.; Sudduth, K. A.; Birrell, S. J. Evaluation of phosphate ion-selective membranes and cobalt-based electrodes for soil nutrient sensing. T. Asabe 2007, 50, 415–425. [Google Scholar]
- Wroblewski, W.; Wojciechowski, K.; Dybko, A.; Brzozka, Z.; Egberink, R. J. M.; Snellink-Ruel, B. H. M.; Reinhoudt, D. N. Uranyl salophenes as ionophores for phosphate-selective electrodes. Sens. Actuators B 2000, 68, 313–318. [Google Scholar]
- Kivlehan, F.; Mace, W. J.; Moynihan, H. A.; Arrigan, D. W. M. Potentiometric evaluation of calix[4]arene anion receptors in membrane electrodes: Phosphate detection. Anal. Chim. Acta 2007, 585, 154–160. [Google Scholar]
- Ganjali, M. R.; Mizani, F; Emami, M; Salavati-Niasari, M.; Shamsipur, M.; Yousefi, M; Javanbakht, M. Electroanalysis; 2003; Volume 15, p. 139. [Google Scholar]
- Jain, A. K.; Gupta, V. K.; Raisoni, J. R. A newly synthesized macrocyclic dithioxamide receptor for phosphate sensing. Talanta 2006, 69, 1007–1012. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Ghomi, M.; Salavati-Niasari, M. Highly selective and sensitive monohydrogen phosphate membrane sensor based on molybdenum acetylacetonate. Anal. Chim. Acta 2006, 567, 196–201. [Google Scholar]
- Ganjali, M.R.; Norouzi, P.; Hatambeygi, N.; Salavati-Niasari, M. Anion recognition: Fabrication of a highly selective and sensitive HPO4 2-PVC sensor based on a oxo-molybdenum methyl-salen. J. Brazil. Chem. Soc. 2006, 17, 859–865. [Google Scholar]
- Ganjali, M.R.; Mizani, F.; Emami, M.; Salavati-Niasari, M.; Shamsipur, M.; Yousefi, M.; Javanbakht, M. Novel liquid membrane electrode for selective determination of monohydrogenphosphate. Electroanalysis 2003, 15, 139–144. [Google Scholar]
- Liu, D.; Chen, W. C.; Yang, R. H.; Shen, G. L.; Yu, R. Q. Polymeric membrane phosphate sensitive electrode based on binuclear organotin compound. Anal. Chim. Acta 1997, 338, 209–214. [Google Scholar]
- Fibbioli, M.; Berger, M.; Schmidtchen, F. P.; Pretsch, E. Polymeric membrane electrodes for monohydrogen phosphate and sulfate. Anal. Chem. 2000, 72, 156–160. [Google Scholar]
- Le Goff, T.; Braven, J.; Ebdon, L.; Scholefield, D. Phosphate-selective electrodes containing immobilised ionophores. Anal. Chim. Acta 2004, 510, 175–182. [Google Scholar]
- Ganjali, M. R. Highly selective and sensitive chromium(III) membrane sensors based on a new tridentate Schiff's base. Anal. Chim. Acta 2006, 569, 35–41. [Google Scholar]
- Goto, Y.; Miyazaki, K.; Hattori, H.; Yuchi, A. Phosphate-selective electrode using bis(pentafluorobenzyl) tin(IV) dibromide as carrier. Bunseki Kagaku 2003, 52, 707–711. [Google Scholar]
- De Marco, R.; Phan, C. Determination of phosphate in hydroponic nutrient solutions using flow injection potentiometry and a cobalt-wire phosphate ion-selective electrode. Talanta 2003, 60, 1215–1221. [Google Scholar]
- Sasaki, S.; Ozawa, S.; Citterio, D.; Yamada, K.; Suzuki, K. Organic tin compounds combined with anionic additives - an ionophore system leading to a phosphate ion-selective electrode? Talanta 2004, 63, 131–134. [Google Scholar]
- Hassan, S. S. M.; Hamza, M. S. A.; Kelany, A. E. A novel spectrophotometric method for batch and flow injection determination of cyanide in electroplating wastewater. Talanta 2007, 71, 1088–1095. [Google Scholar]
- Marin, M. A. B.; da Silva, R. C.; Lehmkuhl, A.; da Silva, J. B. B.; Ganzarolli, E. M.; de Queiroz, R. R. U. Automatic system for sequential determination of free and total cyanide using homogeneous membrane tubular ion-selective electrode. Quim. Nova 2000, 23, 23–29. [Google Scholar]
- Ganjali, M. R. Highly selective thiocyanate poly(vinyl chloride) membrane electrode based on a cadmium-Schiff's base complex. Fresen. J. Anal. Chem. 2001, 370, 1091–1095. [Google Scholar]
- Ardakani, M. M.; Salvati-Niassari, M.; Sadeghi, A. Novel selective thiocyanate PVC membrane electrode based on new Schiff base complex of 2.2-[(1,3-dimethyl-1,3-propane-diylidene)dinitrilo]bis-benzenethiolato cadmium(II). New J. Chem. 2004, 28, 595–599. [Google Scholar]
- Ardakani, M.M.; Sadeghi, A.; Salavati-Niasari, M. Highly selective thiocyanate membrane electrode based on butane-2,3-dione bis(salicylhydrazonato)zinc(II) complex. Talanta 2005, 66, 837–843. [Google Scholar]
- Gui, G. F.; Chai, Y. Q.; Yuan, R.; Sun, A. L.; Wang, F. C. Study on new highly selective thiocyanate electrode based on dinuclear copper complex as neutral carriers. Acta Chim. Sin. 2006, 64, 2185–2189. [Google Scholar]
- Ardakani, M. M.; Jamshidpour, M.; Naeimi, H.; Moradi, L. Thiocyanate ion-selective PVC membrane electrode based on N,N′ -ethylene-bis(4-methylsalicylidineiminato)nickel(II). Anal. Sci. 2006, 22, 1221–1226. [Google Scholar]
- Xu, W. J.; Chai, Y. Q.; Yuan, R.; Liu, S. L. A novel thiocyanate-selective electrode based on a zinc-phthalocyanine complex. Anal. Bioanal. Chem. 2006, 385, 926–930. [Google Scholar]
- Shamsipur, M.; Poursaberi, T.; Rezapour, M.; Ganjali, M. R.; Mousavi, M. F.; Lippolis, V.; Montesu, D. R. [Cu(L)] (NO3)(2) (L=4,7-bis(3-aminopropyl)-1-thia-4,7-diazacyclononane) as a suitable ionophore for construction of thiocyanate-selective electrodes and their use in determination of urinary and salivary thiocyanate concentration. Electroanalysis 2004, 16, 1336–1342. [Google Scholar]
- Vlascici, D.; Bizerea, O. S.; Fagadar-Cosma, E. Thiocyanate-selective electrode based on rhodium porphyrin derivates. J. Optoelectron. Adv. M. 2006, 8, 883–887. [Google Scholar]
- Segui, M. J.; Lizondo-Sabarter, J.; Martinez-Manez, R.; Sancenon, F.; Soto, J. Linear polyamines as carriers in thiocyanate-selective membrane electrodes. Talanta 2006, 68, 1182–1189. [Google Scholar]
- Erden, S.; Demirel, A.; Memon, S.; Yilmaz, M.; Canel, E.; Kilic, E. Using of hydrogen ion-selective poly(vinyl chloride) membrane electrode based on calix[4]arene as thiocyanate ion-selective electrode. Sens. Actuators B 2006, 113, 290–296. [Google Scholar]
- Dai, J. Y.; Yuan, R.; Chai, Y. Q.; An, L. X.; Zhong, X.; Liu, Y.; Tang, D. P. Highly thiocyanate-selective PVC membrane electrode based on lipophilic ferrocene derivative. Electroanalysis 2005, 17, 1865–1869. [Google Scholar]
- Chai, Y. Q.; Dai, J. Y.; Yuan, R.; Zhong, X.; Liu, Y.; Tang, D. P. Highly thiocyanate-selective membrane electrodes based on the N,N′ -bis-(benzaldehyde)-glycine copper(II) complex as a neutral carrier. Desalination 2005, 180, 207–215. [Google Scholar]
- Wang, F. C.; Chai, Y. Q.; Yuan, R.; Chen, C. H.; Dai, J. Y.; Xu, L. A selective membrane electrode for thiocyanate ion based on a bis-taurine-salicylic binuclear copper(II) complex as ionophore. Chin. J. Chem. 2005, 23, 865–869. [Google Scholar]
- Xu, L.; Yuan, R.; Chai, Y. Q.; Fu, Y. Z. Novel membrane potentiometric thiocyanate sensor based on tribenzyltin(IV) dithiocarbamate. Electroanalysis 2005, 17, 1003–1007. [Google Scholar]
- Shahrokhian, S.; Jannatrezvani, M. J.; Khajehsharifi, H. Rhodium(II) phthalocyanine as a selective carrier in thiocyanate-selective membrane electrode. Anal. Lett. 2005, 38, 1221–1235. [Google Scholar]
- Poursaberi, T.; Salavati-Niasari, M.; Khodabakhsh, S.; Hajiagha-Babaei, L.; Shamsipur, M.; Yousefi, M.; Rouhani, S.; Ganjali, M. R. A selective membrane electrode for thiocyanate ion based on a copper-1,8-dimethyl-1,3,6,8,10,13-azacyclotetradecane complex as ionophore. Anal. Lett. 2001, 34, 2621–2632. [Google Scholar]
- Shamsipur, M.; Khayatian, G.; Tangestaninejad, S. Thiocyanate-selective membrane electrode based on (octabromotetraphenylporphyrinato)manganese(III) chloride. Electroanalysis 1999, 11, 1340–1344. [Google Scholar]
- Amini, M. K.; Shahrokhian, S.; Tangestaninejad, S. Thiocyanate-selective electrodes based on nickel and iron phthalocyanines. Anal. Chim. Acta 1999, 402, 137–143. [Google Scholar]
- Dai, J. Y.; Chai, Y. Q.; Yuan, R.; An, L. X.; Liu, Y.; Zhong, X.; Tang, D. P. Tricoordinate Schiff base copper(II) complex as neutral carrier for highly selective thiocyanate electrode. Anal. Lett. 2005, 38, 389–400. [Google Scholar]
- Seo, H. R.; Lee, H. K.; Jeon, S. Improved thiocyanate-selective electrode based on tetra(trimethylphenyl)porphyrinato manganese(III) chloride: The electronic and pH effects. Bull. Korean Chem. Soc. 2004, 25, 1484–1488. [Google Scholar]
- Buhlmann, P.; Yahya, L.; Enderes, R. Ion-selective electrodes for thiocyanate based on the dinuclear Zinc(II) complex of a Bis-N,O-bidentate Schiff base. Electroanalysis 2004, 16, 973–978. [Google Scholar]
- Wang, X. L.; Yuan, R.; Xu, L.; Chai, Y. Q.; Sun, Z. Y.; Huang, X. J.; Li, Q. F.; Zhao, Q. Studies on highly selective thiocyanate electrode based on bisbebzoin-semitriethylenetetraamine binuclear cobalt complex as neutral carriers. Chem. J. Chinese U 2004, 25, 633–635. [Google Scholar]
- Sun, Z. Y.; Yuan, R.; Chai, Y. Q.; Xu, L.; Gan, X. X.; Xu, W. J. Study of a bis-furaldehyde Schiff base copper(II) complex as carrier for preparation of highly selective thiocyanate electrodes. Anal. Bioanal. Chem. 2004, 378, 490–494. [Google Scholar]
- Chai, Y. Q.; Sun, Z. Y.; Yuan, R.; Gan, X. X.; Xu, W. J.; Xu, L. Study on highly selective thiocyanate electrode based on benzaldehyde semicarbazone copper(II) complex as neutral carriers. Acta Chim. Sin. 2003, 61, 1511–1515. [Google Scholar]
- Yuan, R.; Wang, X. L.; Xu, L.; Chai, Y. Q.; Sun, Z. Y.; Huang, X. Q.; Li, Q. F.; Zhao, Q.; Zhou, L. Highly selective thiocyanate electrode based on bis-bebzoin-semitriethylenetetraamine binuclear copper(II) complex as neutral carrier. Electrochem. Commun. 2003, 5, 717–721. [Google Scholar]
- Khorasani, J. H.; Amini, M. K.; Motaghi, H.; Tangestaninejad, S.; Moghadam, M. Manganese porphyrin derivatives as ionophores for thiocyanate-selective electrodes: the influence of porphyrin substituents and additives on the response properties. Sens. Actuators, B 2002, 87, 448–456. [Google Scholar]
- Poursaberi, T.; Salavati-Niasari, M.; Khodabakhsh, S.; Hajiagha-Babaei, L.; Shamsipur, M.; Yousefi, M.; Rouhani, S.; Ganjali, M. R. A selective membrane electrode for thiocyanate ion based on a copper-1,8-dimethyl-1,3,6,8,10,13-azacyclotetradecane complex as ionophore. Anal. Lett. 2001, 34, 2621–2632. [Google Scholar]
- Ganjali, M. R. Determination of SCN- in urine and saliva of smokers and non-smokers by SCN--selective polymeric membrane containing a nickel(II)-azamacrocycle complex coated on a graphite electrode. Anal. Sci. 2002, 18, 887–892. [Google Scholar]
- Zamani, H. A. Highly selective and sensitive thiocyanate membrane electrode based on nickel(II)-1,4-,8,11,15,18,22,25-octabutoxyphthalocyanine. Anal. Chim. Acta 2006, 555, 336–340. [Google Scholar]
- Jeon, S. W.; Yeo, H. Y.; Jeong, H. S.; Oh, J. M.; Nam, K. C. Polymeric ISE for hydrogen sulfite based on bis-urea calix[4]diquinones as neutral lipophilic ionophores. Electroanalysis 2003, 15, 872–877. [Google Scholar]
- Shamsipur, M.; Yousefi, M.; Hosseini, M.; Ganjali, M. R.; Sharghi, H.; Naeimi, H. A schiff base complex of Zn(II) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion. Anal. Chem. 2001, 73, 2869–2874. [Google Scholar]
- Ganjali, M. R. Sulfate-selective PVC membrane electrode based on a strontium Schiff's base complex. Ann. Chim (Rome). 2003, 93, 679–690. [Google Scholar]
- Ganjali, M. R. A novel potentiometric membrane sensor for quick determination of trace amount of SO42- based on a zinc-Schiff's base. Anal. Lett. 2003, 36, 881–894. [Google Scholar]
- Soleymanpour, A.; Asl, E. H.; Nasseri, M. A. Chemically modified carbon paste electrode for determination of sulfate ion by potentiometric method. Electroanalysis 2006, 18, 1598–1064. [Google Scholar]
- Ganjali, M. R.; Ghorbani, M.; Daftari, A.; Norouzi, P.; Pirelahi, H.; Dargahani, H. D. Highly selective liquid membrane sensor based on 1,3,5-triphenylpyrylium perchlorate for quick monitoring of sulfate ions. Bull. Korean Chem. Soc. 2004, 25, 172–176. [Google Scholar]
- Nishizawa, S.; Buhlmann, P.; Xiao, K. P.; Umezawa, Y. Application of a bis-thiourea ionophore for an anion selective electrode with a remarkable sulfate selectivity. Anal. Chim. Acta 1998, 358, 35–44. [Google Scholar]
- Shamsipur, M.; Yousefi, M.; Ganjali, M. R.; Poursaberi, T.; Faal-Rastgar, M. Highly selective sulfate PVC-membrane electrode based on 2,5-diphenyl-1,2,4,5-tetraaza-bicyclo[2.2.1]heptane as a neutral carrier. Sens. Actuators, B 2002, 82, 105–110. [Google Scholar]
- Ganjali, M. R.; Naji, L.; Poursaberi, T.; Taghizadeh, M.; Pirelahi, H.; Yousefi, M.; Yeganeh-Faal, A.; Shamsipur, M. Novel sulfate ion-selective polymeric membrane electrode based on a derivative of pyrilium perchlorate. Talanta 2002, 58, 359–366. [Google Scholar]
- Ganjali, M. R.; Poujavid, M. R.; Shamsipur, M.; Poursaeri, T.; Rezapour, M.; Javanbakht, M.; Sharghi, H. Novel membrane potentiometric sulfate ion sensor based on zinc-phthalocyanine for the quick determination of trace amounts of sulfate. Anal. Sci. 2003, 19, 995–999. [Google Scholar]
- Ganjali, M. R.; Shirvani-Arani, S.; Nourozi, P.; Salimzadeh, D.; Faal-Rastegar, M.; Moghimi, A. A novel sulfate polymeric membrane sensor based on a new bis-pyrylium derivative. Eelectroanalysis 2004, 16, 1009–1013. [Google Scholar]
- Ganjali, M. R.; Sepehri, A.; Daftari, A.; Norouzi, P.; Pirelahi, H.; Moradzadegan, A. Determination of salbutamol, amikacin and paromomycin sulfate by a novel sulfate polymeric membrane sensor based on 2,6-diphenyl 4-(4-methoxyphenyl) pyrylium perchlorate. Microchim. Acta 2005, 149, 245–249. [Google Scholar]
- Ganjali, M. R.; Mizani, F.; Pirelahi, H.; Taghizadeh, M.; Amani, J. Highly selective and sensitive sulphate membrane sensor based on 2,6-dianisol-4-phenyl-pyrilium perchlorate. Can. J. Anal. Sci. Spect 2002, 47, 157–163. [Google Scholar]
- Mitchell-Koch, J. T.; Malinowska, E.; Meyerhoff, M. E. Gallium(III)-Schiff base complexes as novel ionophores for fluoride selective polymeric membrane electrodes. Electroanalysis 2005, 17, 1347–1353. [Google Scholar]
- Chandra, S.; Ruzicka, A.; Svec, P.; Lang, H. Organotin compounds: An ionophore system for fluoride ion recognition. Anal. Chim. Acta 2006, 577, 91–97. [Google Scholar]
- Ion, I.; Ion, A. C.; Barbu, L. Potentiometric determination of fluoride in groundwaters. Rev. Roum. Chim. 2005, 50, 407–412. [Google Scholar]
- Malinowska, E.; Gorski, L.; Meyerhoff, M. E. Zirconium(IV)-porphyrins as novel ionophores for fluoride-selective polymeric membrane electrodes. Anal. Chim. Acta 2002, 468, 133–141. [Google Scholar]
- Ganjali, M. R.; Pourjavid, M. R.; Rezapour, M.; Poursaberi, T.; Daftari, A.; Salavati-Niasari, M. Ruthenium(III) Schiff's base complex as novel chloride selective membrane sensor. Electroanalysis 2004, 16, 922–927. [Google Scholar]
- Kumar, K. G.; John, K. S.; Indira, C. J. A chloride ion-selective potentiometric sensor based on a polymeric schiff base complex. Indian J. Chem. Technol. 2006, 13, 13–16. [Google Scholar]
- Brasuel, M. G.; Miller, T. J.; Kopelman, R.; Philbert, M. A. Liquid polymer nano-PEBBLEs for Cl- analysis and biological applications. Analyst 2003, 128, 1262–1267. [Google Scholar]
- Soleymanpour, A.; Asl, E. H.; Nabavizadeh, S. M. Perchlorate selective membrane electrodes based on synthesized platinum(II) complexes for low-level concentration measurements. Sens. Actuators B 2007, 120, 447–454. [Google Scholar]
- Segui, M. J.; Lizondo-Sabater, J.; Martinez-Manez, R.; Sancenon, F.; Soto, J.; Garcia-Breijo, E.; Gil, L. An ion-selective electrode for anion perchlorate in thick-film technology. Sensors 2006, 6, 480–491. [Google Scholar]
- DiBenedetto, L. T.; Dimitrakopoulos, T.; Farrell, J. R.; Iles, P. J. Evaluation of perchlorate tolerant photo-cured calcium selective electrodes for use in flow injection potentiometry. Talanta 1997, 44, 349–356. [Google Scholar]
- Errachid, A.; Perez-Jimenez, C.; Casabo, J.; Escriche, L.; Munoz, J. A.; Bratov, A.; Bausells, J. Perchlorate-selective MEMFETs and ISEs based on a new phosphadithiamacrocycle. Sens. Actuators B 1997, 43, 206–210. [Google Scholar]
- Perez-Olmos, R.; Rios, A.; Martin, M. P.; Lapa, R. A. S.; Lima, J. Construction and evaluation of ion selective electrodes for perchlorate with a summing operational amplifier: application to pyrotechnics mixtures analysis. Analyst 1999, 124, 97–100. [Google Scholar]
- Ardakani, M. M.; Jalayer, M.; Naeimi, H.; Zare, H. R.; Moradi, L. Perchlorate-selective membrane electrode based on a new complex of uranil. Anal. Bioanal. Chem. 2005, 381, 1186–1192. [Google Scholar]
- Shamsipur, M.; Soleymanpour, A.; Akhond, M.; Sharghi, H.; Hasaninejad, A. R. Perchlorate selective membrane electrodes based on a phosphorus(V)-tetraphenylporphyrin complex. Sens. Actuators B 2003, 89, 9–14. [Google Scholar]
- Sanchez-Pedreno, C.; Ortuno, J. A.; Hernandez, J. Perchlorate-selective polymeric membrane electrode based on a gold(I) complex: application to water and urine analysis. Anal. Chim. Acta 2000, 415, 159–164. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Faridbod, F.; Yousefi, M.; Naji, L.; Salavati-Niasari, M. Perchlorate-selective membrane sensors based on two nickel-hexaazamacrocycle complexes. Sens. Actuators B 2007, 120, 494–499. [Google Scholar]
- Ganjali, M. R.; Yousefi, M.; Poursaberi, T.; Naji, L.; Salavati-Niasari, M.; Shamsipur, M. Highly selective and sensitive perchlorate sensors based on some recently synthesized Ni(II)-hexaazacyclotetradecane complexes. Electroanalysis 2003, 15, 1476–1480. [Google Scholar]
- Bendikov, T. A.; Harmon, T. C. Long-lived solid state perchlorate ion selective sensor based on doped poly(3,4-ethylenedioxythiophene) (PEDOT) films. Anal. Chim. Acta 2005, 551, 30–36. [Google Scholar]
- Ganjali, M.R.; Norouzi, P.; Golmohammadi, M.; Rezapour, M.; Salavati-Niasari, M. Novel bromide PVC-based membrane sensor based on iron(III)-salen. Electroanalysis 2004, 16, 910–914. [Google Scholar]
- Singh, A. K.; Mehtab, S.; Saxena, P. A bromide selective polymeric membrane electrode based on Zn(II) macrocyclic complex. Talanta 2006, 69, 1143–1148. [Google Scholar]
- Shamsipur, M.; Ershad, S.; Samadi, N.; Moghimi, A.; Aghabozorg, H. A novel chemically modified carbon paste electrode based on a new mercury(II) complex for selective potentiometric determination of bromide ion. J. Solid State ElectroChem. 2005, 9, 788–793. [Google Scholar]
- Ganjali, M. R.; Tahami, M.; Poursaberi, T.; Pazoukian, A. R.; Javanbakht, M.; Shamsipur, M.; Baezat, M. R. Novel bromide liquid membrane electrode. Anal. Lett. 2003, 36, 347–360. [Google Scholar]
- Shamsipur, M.; Rouhani, S.; Mohajeri, A.; Ganjali, M. R.; Rashidi-Ranjbar, P. A bromide ion-selective polymeric membrane electrode based on a benzo-derivative xanthenium bromide salt. Anal. Chim. Acta 2000, 418, 197–203. [Google Scholar]
- Shamsipur, M.; Sadeghi, S.; Naeimi, H.; Sharghi, H. Iodide ion-selective PVC membrane electrode based on a recently synthesized salen-Mn(II) complex. Pol. J. Chem. 2000, 74, 231–238. [Google Scholar]
- Shamsipur, M.; Soleymanpour, A.; Akhond, M.; Sharghi, H.; Naseri, M. A. Iodide-selective carbon paste electrodes based on recently synthesized Schiff base complexes of Fe(III). Anal. Chim. Acta 2001, 450, 37–44. [Google Scholar]
- Ganjali, M.R.; Poursaberi, T.; Hosseini, M.; Salavati-Niasari, M.; Yousefi, M.; Shamsipur, M. Highly selective iodide membrane electrode based on a cerium salen. Anal. Sci. 2002, 18, 289–292. [Google Scholar]
- Farhadi, K.; Maleki, R.; Yamchi, R.H.; Sharghi, H.; Shamsipur, M. [Tetrakis(4-N,N-dimethylaminobenzene)porphyrinato]-manganese(III) acetate as a novel carrier for a selective iodide PVC membrane electrode. Anal. Sci. 2004, 20, 805–809. [Google Scholar]
- Zare, H. R.; Memarzadeh, F.; Gorji, A.; Ardakani, M. M. Iodide-selective membrane electrode based on salophen complex of cobalt (III). J. Braz. Chem. Soc. 2005, 16, 571–577. [Google Scholar]
- Abdel-Latif, M. S.; Al-Saraj, M. R. A novel potentiometric solid-state iodide sensor. Anal. Lett. 2007, 40, 729–736. [Google Scholar]
- Wygladacz, K.; Bakker, E. Fluorescent microsphere fiber optic microsensor array for direct iodide detection at low picomolar concentrations. Analyst 2007, 132, 268–272. [Google Scholar]
- Jeong, D. C.; Lee, H. K.; Jeon, S. Polymeric iodide-ion selective electrodes based on urea derivative as an ionophore. Bull. Korean Chem. Soc. 2006, 27, 1985–1988. [Google Scholar]
- Sun, C. Q.; Zhao, J. H.; Xu, H. D.; Sun, Y. P.; Zhang, X.; Shen, J. C. Fabrication of a multilayer film electrode containing porphyrin and its application as a potentiometric sensor of iodide ion. Talanta 1998, 46, 15–21. [Google Scholar]
- Ganjali, M.R.; Daftari, A; Mizani, F.; Salavati-Niasari, M. Titanium, acetylacetonate as an excellent ion-carrier in construction of iodide sensor. Bull. Korean Chem. Soc. 2003, 24, 23–26. [Google Scholar]
- Almeida, A. A.; Jun, X.; Lima, J. Ion chromatographic determination of iodide in urine and serum using a tubular ion-selective electrode based on a homogeneous crystalline membrane. Mikrochim. Acta 1997, 127, 55–60. [Google Scholar]
- Poursaberi, T.; Hosseini, M.; Taghizadeh, M.; Pirelahi, H.; Shamsipur, M.; Ganjali, M. R. A selective membrane electrode for iodide ion based on a thiopyrilium ion derivative as a new ionophore. Microchem. J. 2002, 72, 77–83. [Google Scholar]
- Zeng, Y. L.; Tang, C. R.; Sheng, G. L.; Yu, R. Q. Studies on liquid membrane iodide selective electrode with long lifetime and high selectivity. Chem. J. 1999, 20, 603–607. [Google Scholar]
- Katsu, T.; Hashimoto, T. Triphenyllead chloride as a new ionophore for an iodide-selective membrane electrode. Anal. Lett. 1999, 32, 665–675. [Google Scholar]
- Chai, Y. Q.; Yuan, R.; Xu, L.; Xu, W. J.; Dai, J. Y.; Jiang, F. A highly sensitive PVC membrane iodide electrode based on complexes of mercury(II) as neutral carrier. Anal. Bioanal. Chem. 2004, 380, 333–338. [Google Scholar]
- Shahrokhian, S.; Taghani, A.; Moattar, F. Iodide-selective electrode based on copper phthalocyanine. Electroanalysis 2002, 14, 1621–1628. [Google Scholar]
- Lizondo-Sabater, J.; Martinez-Manez, R.; Sancenon, F.; Segui, M. J.; Soto, J. Cobalt(II) and nickel(II) complexes of a cyclam derivative as carriers in iodide-selective electrodes. Anal. Chim. Acta 2002, 459, 229–234. [Google Scholar]
- Dobcnik, D.; Kolar, M.; Komljenovic, J.; Radic, N. Preparation of an ion-selective electrode by chemical treatment of copper wire for the measurement of copper(II) and iodide by batch and flow-injection potentiometry. Fresen. J. Anal. Chem. 1999, 365, 314–319. [Google Scholar]
- Sadeghi, S.; Gafarzadeh, A.; Naseri, M. A.; Sharghi, H. Triiodide-selective polymeric membrane electrodes based on Schiff base complexes of Cu(II) and Fe(III). Sens. Actuators B 2004, 98, 174–179. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Shirvani-Arani, S.; Salavati-Niasari, M. Novel triiodide PVC-based membrane sensor based on a charge transfer complex of iodine and bis(2-hydroxyacetophenone)butane-2,3-dihydrazone. Bull. Korean Chem. Soc. 2005, 26, 1738–1742. [Google Scholar]
- Ganjali, M. R.; Emami, M.; Javanbakht, M.; Salavati-Niasari, M.; Shamsipur, M.; Yousefi, M. Novel triiodide ion-selective polymeric membrane sensor based on mercury-salen. Sens. Actuators B 2005, 105, 127–131. [Google Scholar]
- Sadeghi, S.; Fathi, F.; Ali Esmaeili, A.; Naeimi, H. Novel triiodide ion-selective polymeric membrane electrodes based on some transition metal-Schiff base complexes. Sens. Actuators B 2006, 114, 928–935. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Qomi, M.; Salavati-Niasari, M. Charge-transfer complex between iodine and a new Schiff's base as anion-carrier in construction of a highly selective triiodide PVC-based membrane electrode. Can. J. Anal. Sci. Spect. 2006, 51, 108–116. [Google Scholar]
- Ganjali, M. R.; Shirvani-Arani, S.; Bidhendi, G. N.; Norouzi, P.; Salavati-Niasari, M. Highly selective and sensitive triiodide PVC-membrane electrode based on a new charge-transfer complex of bis(2,4-dimethoxybenzaidehyde)butane-2,3-dihydrazone with iodine. J. Chin. Chem. Soc. 2006, 53, 275–281. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Shirvani-Arani, S.; Kakanezhadifard, A. Synthesis of a charge-transfer complex of (1,3-diphenyldihydro-1H-imidazole)-4,5-dione dioxide with iodide and its application to the development of a highly selective and sensitive triiodide PVC-membrane electrode. J, Anal. Chem. 2007, 62, 279–284. [Google Scholar]
- Sadeghi, S.; Fathi, F.; Ali Esmaeili, A.; Naeimi, H. Novel triiodide ion-selective polymeric membrane electrodes based on some transition metal-Schiff base complexes. Sens. Actuators B 2006, 114, 928–935. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Shirvani-Arani, S.; Salavati-Niasari, M. Novel triiodide PVC-based membrane sensor based on a charge transfer complex of iodine and bis(2-hydroxyacetophenone)butane-2,3-dihydrazone. Bull. Korean Chem. Soc. 2005, 26, 1738–1742. [Google Scholar]
- Khayatian, G.; Rezatabar, H.; Salimi, A. Charge-transfer triiodide ion-selective electrode based on 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane. Anal. Sci. 2005, 21, 297–302. [Google Scholar]
- Rouhollahi, A.; Shamsipur, M. Triiodide PVC membrane electrode based on a charge-transfer complex of iodine with 2,4,6,8-tetraphenyl-2,4,6,8-tetraazabicyclo[3.3.0]octane. Anal. Chem. 1999, 71, 1350–1353. [Google Scholar]
- Ortuno, J. A.; Sanchez-Pedreno, C.; Hernandez, J.; Oliva, D. J. Flow-injection potentiometric determination of triiodide by plasticized poly(vinyl chloride) membrane electrodes and its application to the determination of chlorine-containing disinfectants. Talanta 2005, 65, 1190–1195. [Google Scholar]
- Ganjali, M. R.; Emami, M.; Javanbakht, M.; Salavati-Niasari, M.; Shamsipur, M.; Yousefi, M. Novel triiodide ion-selective polymeric membrane sensor based on mercury-salen. Sens. Actuators B 2005, 105, 127–131. [Google Scholar]
- Farhadi, K.; Maleki, R. Construction of triiodide ion selective electrodes based on phenothiazine derivatives. Anal. Lett. 2004, 37, 1063–1078. [Google Scholar]
- Farhadi, K.; Shaikhlouei, H.; Maleki, R.; Sharghi, H.; Shamsipur, M. Highly selective triiodide polymeric membrane electrode based on tetra(p-chlorophenyl)porphyrinato manganese (III) acetate. Bull. Korean Chem. Soc. 2002, 23, 1635–1639. [Google Scholar]
- Farhadi, K.; Bonab, H. S.; Maleki, R.; Shamsipur, M.; Shargi, H. Tetrachlorophenylporphyrinato manganese(III) acetate as a new ionophore for a coated triiodide ion-selective electrode. J. Chin. Chem. Soc. 2002, 49, 861–866. [Google Scholar]
- Farhadi, K.; Maleki, R.; Shamsipur, M. Triiodide ion-selective polymeric membrane electrode based on a ketoconazole-triiodide ion pair. Electroanalysis 2002, 14, 760–766. [Google Scholar]
- Sadeghi, S.; Dashti, G. R. Triiodide PVC membrane electrodes based on charge-transfer complexes. Anal. Chem. 2002, 74, 2591–2595. [Google Scholar]
- Farhadi, K.; Maleki, R. Clotrimazole-triiodide ion association as an ion exchanger for a triiodide ion-selective electrode. Anal. Sci. 2002, 18, 133–136. [Google Scholar]
- Ganjali, M. R.; Norouzi, P.; Shirvani-Arani, S.; Salavati-Niasari, M. Novel triiodide PVC-based membrane sensor based on a charge transfer complex of iodine and bis(2-hydroxyacetophenone)butane-2,3-dihydrazone. Bull. Korean Chem. Soc. 2005, 26, 1738–1742. [Google Scholar]
- Montenegro, M.; Sales, M. G. F. Flow-injection analysis of dopamine in injections with a periodate-selective electrode. J. Pharm. Sci. 2000, 89, 876–884. [Google Scholar]
- Metelka, R.; Slavikova, S.; Vytras, K. Determination of arsenate and organic arsenic via potentiometric titration of its heteropoly anions. Talanta 2002, 58, 147–151. [Google Scholar]
Ions | Conducting Polymer | Dynamic Linear Range (M) | Detection Limit (M) | Slope (mV decade-1) | Ref |
---|---|---|---|---|---|
H+-1 | electrochemical polymerization of ortho-methoxyaniline and ortho-methylaniline | pH 2-11 | N.M | 63.8 | 36 |
H+-2 | poly(1-aminoanthracene) film | pH 1-12 | 1.0×10-12 | 52.5 | 37 |
H+-3 | cobaltabis(dicarbollide) [3,3′-Co(1,2-C2B9H11)] (-)-doped polypyrrole (PPy) | pH 3-12 | 1.0×10-12 | 50 | 38 |
H+-4 | polyaniline and its substituted derivatives | pH 2-9 | 1×10-9 | 62.4 ±0.9 | 39 |
H+-5 | polyaniline (PANI) | pH 2-9 | 1×10-9 | 52.7 | 40 |
H+-6 | polypyrrole with the dopant anion cobalt bis(dicarbollide) [3,3′-Co(1,2-C2B9H11)2] (-) | pH 2-9 | 1×10-9 | 59.8 | 41 |
H+-7 | polypyrrole (P-Py) | 10-6-3 | N.M | 45.5 | 42 |
H+-8 | polypyrrole | N.M | N.M | 58 | 43 |
H+-9 | poly(aniline) ultrathin films | pH 3-9 | 1.0×10-9 | 55-59 | 44 |
Na+ | polypyrrole (PPy), doped with NaBF4 | 10-5-10-1 | 3.0×10-5 | 59.2 | 45 |
K+-1 | polypyrrole | 10-7-10-1 | 10-7.4 | 65.9 | 46 |
K+-2 | poly(3-octylthiophene) and valinomycin | 10-5-10-1 | 5×10-5 | 49 | 47 |
K+-3 | polypyrrole | 10-5 - 10-1 | 1.0×10-5 | 53.5 | 48 |
K+-4 | polyaniline (PANI) | 10-6-10-1 | N.M | 58.2 | 49 |
K+-5 | poly(3,4-ethylenedioxythiophene) | 10-6-10-1 | N.M | - | 50 |
K+-6 | poly(3,4-ethylenedioxythiophene) | 10-5-10-1 | 10-5 | 56.4 | 51 |
K+-7 | hexacyanoferrate(II)/(II) doped polypyrrole | 10-5-10-1 | 10-5 | 24.3 | 52 |
K+-8 | polypyrrole doped with di(2-ethylhexyl) sulfosuccinate | 10-6 -10-1.5 | 1.0×10-6 | - | 53 |
K+ and Cu | poly(3-octylthiophene) | 10-6-10-1 and 10-7-10-1 | 5.8×10-5and 6.8× 10-5 | 58 and 54 | 54 |
Mg2+ and Ca2+ | poly(3,4-ethylenedioxythiophene) | 10-5-10-1 | 1.0×10-5 | 29.1 and 28.6 | 55 |
Ca2+-1 | polyaniline functionalized with bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-phosphate | 10-1 to 10-4 | 8×10-7 | 27.8 ± 0.2 | 56 |
Ca2+-2 | polyaniline and di(2-ethylhexyl)phosphate | 10-1-10-3 | 10-4 | 27.0 ± 0.4 | 57 |
Ca2+-3 | polypyrrole based | 0.1-10-10 | 10-5 | 27.3 | 58 |
Ca2+-4 | polyaniline and di(2-ethylhexyl)phosphate | 10-3-10-1 | 5×10-3 | 28.6 ± 1.1 | 59 |
Li+, Ca2+ and Cl- | poly(3-octylthiophene) | 10-4-10-1, 10-7-10-1 and 10-6-10-1 | 3×10-4 6×10-7 and 9×10-6 | 56.5, 30 and 62.6 | 60 |
Ca2+ and K+ | poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) | 10-9-10-1 and 10-6-10-1 | 5×10-9and 4.4× 10-7 | 48.8 | 61 |
Sr2+ | polyaniline/polycarbonate | 1 × 10-10 to 1×10-9 | N.M | - | 62 |
Pb2+ or Ca2+ | poly(3,4-ethylenedioxythiophene) | 10-5-10-2and 10-4-10-1 | 5.0×10-5 and 5.0×10-4 | 29.9 and 27.3 | 63 |
Pb2+-1 | polypyrrole | 10-8.5-10-5 | 10-9 | 58.2 | 64 |
Cu2+-1 | poly(3,4-ethylenedioxythiophene) films doped by hexacyanoferrate anions | 10-6-10-2 | 10-6 | 30 | 65 |
Cu2+-2 | poly(3,4-ethylenedioxythiophene) (PEDOT) doped with 2-(o-arseno-phenylazo)-1,8-dihydroxynaphthalene-3,6-disulphonic sodium salt (Arsenazo-1) | N.M | N.M | 59 | 66 |
Ag+-1 | poly(3,4-ethylenedioxythiophene) (PEDOT) | 10-5-10-1 | 5×10-5 | 56 | 67 |
Ag+-2 | poly(3-octylthiophene) (POT) | 10-4-10-1 | 10-5.5 | 49 | 68 |
Ag+-3 | poly(3,4-ethylenedioxythiophene) | 10-4-10-1 | 10-5.3 | 60.7 | 69 |
Ag+-4 | poly(3,4-ethylenedioxythiophene) doped with silver hexabromocarborane | 10-5-10-1 | 1.0×10-5 | 40.5±1.6 | 70 |
Ag+-5 | poly(3,4-ethylenedioxythiophene) and polypyrrole doped with sulfonated calixarenes | 10-5-10-1 | 10-5.1 | 55.7 | 71 |
Zn2+ and K+ | tetraphenylborate (TPB) ion doped polypyrrole | 10-5.6-10-1 | 10-6 | 58 | 72 |
Hg2+ | polypyrrolel/polyantimonic acid | 10-5-10-1 | 5.0×10-5 | 29.6 | 73 |
CO32- | [poly(1-hexyl-3,4-dimethyl-2,5-pyrrolylene) | 1×10-4 to 1×10-1 | 2.6×10-4 | -29.5 | 74 |
NO3--1 | doping of polypyrrole | 5.0×10-5 -0.50 | 2×10-5 | -56 ±1 | 75 |
S2- | poly(3-methylthiophene) and poly-(dibenzo-18-crown-6) | 5.0×10-8-1.0×10-3 | 2.0×10-9 | -35.7 | 76 |
F-, H2PO4- | polyaniline modification | 10-3-10-1 | N.M | -45 and -39 | 77 |
Cl--1 | poly(3-octylthiophene) and tridodecylmethylammonium chloride | 10-4-10-1 | 5.0 × 10-5 | -58 | 78 |
Cl--2 | poly(3-octylthiophene) (POT) | 10-4-10-1 | 5.0×10-4 | -55.1 | 79 |
Cl--3 | poly(pyrrole) layers doped with chloride (PPyCl) | 2×10-5 -2×10-3 and 10-5- 2×10-3 | N.M | -58.1 and -33.1 | 80 |
Cl--4 | polypyrrole | 10-7-1 | 4×10-7 | -55.9 | 81 |
Cl--5 | polypyrrole | 10-4-1 | 1.4×10-4 | -49.8 | 82 |
Cl--6 | poly(3,4-ethylenedioxythiophene) (PEDOT) | 10-4-1 | 7×10-5 | -44.4 | 83 |
Br- | poly(methylthiophene-methylpyrrole) copolymer | 10-4-10-1 | 6×10-5 | -50 | 84 |
I-- 1 | poly(3-methylthiophene) conducting polymer | 1×10-7 -5× 10-1 | 1×10-8 | - | 85 |
dodecyl sulfate | dodecylsulfate-doped polypyrrole | 10-5 -7×10-3 | 5×10-6 | -57.5 | 86 |
Cation | Ionophore | Slope (mV decade-1) | Linear Range (M) | Most Important Interfering ions (log Ksel> -2) | Ref. |
---|---|---|---|---|---|
Li+-1 | lipophilic crown-4 derivatives | 58 | 10-4-10-1 | Na+, K+,NH4+ | 125 |
Li+-2 | 1,10-Phenanthroline Derivatives | 58.7 | 10-4-10-1 | Na+, K+ | 128 |
Na+ | 1-methyl-1-vinyl-14-crown-5 | 55.0 | 3.16×10-6 -1.0×10-1 | K+ | 132 |
K+ | styrene/4(-vinyl-benzo-24-crown-8) copolymer | 58 | 1.0×10-6 -1.0×10-1 | - | 140 |
Rb+ | crown ethers incorporating anthraquinone, benzoquinone, and 1,4-dimethoxybezene | 54.7 | 1.0×10-5 -1.0×10-1 | Na+,K+,Mg2+,NH4+,Li+ | 145 |
Cs+ | calix[4]arene derivative [25-(3-bromo- proploxy)-5,11,-17,23-tetrakis(tert-butyl)-26,27,28-tris(1- propyloxy) calix[4]arene] | 58 | 1.0×10-6-1.0×10-1 | - | 153 |
Cation | Ionophore | Slope (mV decade-1) | Linear Range (M) | Most Important Interfering ions (log Ksel> -2) | Ref. |
---|---|---|---|---|---|
Be2+-1 | 2,3,5,6,8,9-hexahydro-1,4,7,10-benzotetra oxacyclododecine-12-carbaldehyde-12-(2,4-dinitrophenyl)hy | 29.9 | 1.0×10-7 -1.0 × 10-1 | Na+, Ca+2, Li+, | 151 |
Be2+-2 | 2,6-diphenyl-4-benzo-9-crown-3-pyridine | 29.6 | 1.0×10-7-1.0×10 | Mg+2,Ca+2,K+,Na+ | 152 |
Mg2+-1 | synthetic neutral carrier ETHT 5504 | 28.6 | 1.0× 10-5-1.0 ×10-1 | Ca2+ | 166 |
Mg2+-2 | araldite zirconium(IV) selenomolybdate | 23 | 1.0 × 10-5-1.0 ×10-1 | Ca2+ | 167 |
Ca+2-1 | [2-(2-hydroxyphenyl)imino]-1,2-diphenylethanone | 28.5 | 1.0×10-6 -1.0×10-1 | - | 173 |
Ca+2-2 | dimethyl 1-(4-nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate | 29.5 | 8.0×10-7-1.0×10-1 | - | 99 |
Sr+2-1 | 5,7,12,14-dibenzo-2,3,9,10-tetraoxa-1,4,8,11-tetraazacyclotetradecane | 29.0 | 3.98×10-6 -1.0 × 10-1 | Ca2+ | 179 |
Sr+2-2 | 1,10-diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dione | 30.0 | 1.6 × 10-6 -3.0 × 10-3 | - | 180 |
Ba2+ | dimethyl 1-acetyl-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate | 29.7 | 1.0 × 10-6 -1.0 × 10-1 | - | 184 |
Cation | Ionophore | Slope (mV decade-1) | Linear Range (M) | Most Important Interfering ions (log Ksel> -2) | Ref. |
---|---|---|---|---|---|
Al+3 | xanthone derivative | 20.0 | 1.0 × 10-6-1.6 × 10-1 | Hg2+, Ba2+ | 188 |
Ga3+ | chlorogallium(III) | 30 | 10-6 −10-2 | - | 190 |
In3+ | 1-benzyl-3-methyl-4- benzoyl-5-pyrazolone (PMBP) | 18.7 | 3.2×10-5 - 1.0× 10-1 | Ga3+ | 192 |
Tl3+-1 | 2′-amino-1,3,5′-trioxo- spiro[indane-2,4′(5′H)-3′-cyano-indeno(1 .2-b)]pyran | 59 | 0.1-1.0 × 10-6 | Rb+, Cs+ | 197 |
Tl3+-2 | N′-dioctylethylene-diamine-N′-disuccinic acid | 56 | 6.4 × 10-7- 10-2 | Rb+ | 200 |
Cation | Ionophore | Slope (mV decade-1) | Linear Range (M) | Most Important Interfering ions (log Ksel> -2) | Ref. |
---|---|---|---|---|---|
Sn2+-1 | dibenzo-18-crown-6(DB18C6) | 27.5 | 1.0 × 10-6 - 1.0 × 10-2 | - | 201 |
Sn2+-2 | 6-(4-nitrophenyl)-2,4-diphenyl-3,5-diaza-bicyclo[3.1.0] hex-2-ene | 28.8 | 1.0 × 10-5 - 1.0 × 10-1 | - | 202 |
Pb2+-1 | anthraquinone derivative | 29.5 | 1.0 × 10-7 - 1.0 × 10-2 | - | 207 |
Pb2+-2 | 1-phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo)phenyl-hydrazone | 28.7 | 1.0 × 10-6 - 1 × 10-1 | - | 222 |
Pb2+-3 | diporphyrin xanthene(ADPX) | 28.2 | 2.6 × 10-6 - 1.0 × 10-1 | - | 229 |
Pb2+-4 | N,N′-bis(salicylidene)-2,6-pyridinediamine | 29.4 | 1.0 × 10-6-1.0 × 10-1 | K+, Ag+ | 234 |
Cation | Ionophore | Slope (mV decade-1) | Linear Range (M) | Most Important Interfering ions (log Ksel > -2) | Ref. |
---|---|---|---|---|---|
Y3+ | A new Schiff's base with sulfur and nitrogen donor atoms (2-({(E)1,2-diphenyl-2-[(2-2-sulfanylphenyl)imino]ethylidene} amino)-1-benzenethiol, DSAB) | 19.2 | 1.0×10-7-1.0×10-2 | Sc3+ | 240 |
Zr4+ | bis(diphenylphosphino) ferrocene | 59.7 | 1.0×10-7-1.0×10-1 | - | 241 |
Vo2+ | N,N′-bis-(salicylidene)-2,2-dimethylpropane-1,3-diamine (NNPD) | - | 242 | ||
Cr3+-1 | tetraazacyclotetradecane, tetratosyltetraaza 12C4, and tritosyltriaza 9C3 | 20±1 | 1.0×10-7 - 1.0×10-1 | Fe3+, Ni2+ | 250 |
Cr3+-2 | 1,5-diphenylcarbazide | 19.52 ± 0.40 | 6.3×10-8 - 1.0×10-2 | Ag+ | 253 |
Mn2+-1 | N,N′,N″,N‴-1,5,8,12-tetraazadodecane-bis(salicylaldiminato)(H2L) | 30 | 5.0×10-6 -1.0×10-1 | Cd2+, Fe3+, Ni2+ | 255 |
Mn2+-2 | 14,16-dimethyl-1,4,7,10,13-pentaazacyclohexadeca-13,16-diene | 29.5 | 1.25×10-1 1.0×10-1 | Zn2+, La3+, Hg2+ | 256 |
Fe3+-1 | benzo-18-crown-6 crown ether | 15.7±1 | 1×10-6 -1.0×10-1 | - | 259 |
Fe3+-2 | 2,4,6-tri(2-pyridyl)-1,3,5-triazine (TPTZ) | 30±1 | 5×10-7-1×10-2 | K+ | 266 |
Co2+-1 | N,N′-bis(salicylidene)-3,4-diaminotoluene | 30 ± 0.2 | 7.9×10-8 -1.0×10-1 | Cu2+, Ni2+, Cd2+ | 269 |
Co2+-2 | dibenzopyridino-substituted macrocyclic diamide | 27.5 | 7.0×10-7-1.0×10-2 | - | 272 |
Ni2+-1 | N,N′-bis-(4-dimethylamino-benzylidene)- benzene-1,2-diamine | 30 ± 1 | 2.0×10-7-1.0×10-2 | Ag+,Hg2+ | 285 |
Ni2+-2 | benzylbis(thiosemicarbazone) | 29.0±0.5 | 1.0×10-7-1.0×10-2 | - | 287 |
Ni2+-3 | 1,3,7,9,13,15,19,21-octaazapentacyclooctacosane (pentacyclooctaaza) | 30.0 | 1×10-6 -1×10-1 | Ba2+ | 288 |
Ni2+-4 | dibenzodiaza-15-crown-4 | 28.6 | 7.1×10-7-1.2×10-2 | Ag+, Pd2+ | 290 |
Cu2+-1 | bis-2-thiophenal propanediamine (TPDA) | 29.1 | 6.0×10-8 -1.0×10-1 | Ag+ | 298 |
Cu2+-2 | new thiophene-derivative Schiffs base | 29.3± 0.7 | 6.0×10-8- 1.0×10-1 | Zn2+, Hg2+ | 299 |
Cu2+-3 | diphenylisocyanate bis(acetylacetone) ethylenedinnine (DIBAE) | 29.8 | 1.0×10-6 -1.0×10-1 | - | 300 |
Cu2+-4 | 1,2,5,6,8,11-hexaazacyclododeca-7,12-dione-2,4,8,10-tetraene | 29.5± 0.3 | 2.0×10-7 - 1×10-1 | - | 308 |
Cu2+-5 | Cu-II-cyclohexaneone thiosemicarbazone complex | 29.2 | 1×10-9 -1×10-1 | - | 309 |
Cu2+-6 | bis-2-thiophenal propanediamine (TPDA) | 29.1±.1 | 6.0×10-8 -1.0×10-1 | - | 328 |
Ag+-1 | 25,27-dihydroxy-26,28-bis[5-(4-methyl-6- hydroxypurimidine)thiaamyloxy] calix[4]arene | 61.4 | 5×10-8-1×10-1 | - | 352 |
Ag+-2 | 2-mercaptobenzimidazole (MBI) and 2-mercaptobenzothiazole (MBT) | 60.2 and 57.8 | 1.0×10-6 -1.0×10-1 | - | 354 |
Ag+-3 | cyclam (1,4,8,11-tetraazacyclotetradecane) | 59±2 | 1.0×10-7 -1.0×10-1 | - | 363 |
Zn2+-1 | 5,6-benzo-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8,8,8]hexacos-5-ene | 29.1 ± 0.4 | 1.0×10-6-1.0×10-1 | - | 374 |
Zn2+-2 | benzo-substituted macrocyclic diamide | 28 | 1.0×10-9-1.0×10-5 | Li+, Na+ | 376 |
Cd2+-1 | tetrathia-12-crown-4 | 29.0 ±1.0 | 4×10-7 -1.0×10-1 | - | 383 |
Cd2+-2 | N,N′-[bis(pyridm-2-yl)formylidene] butane-1,4-diamine and N-(2-pyridinylmethylene)-1,2-benzenediamine | 29.5 | 7.9×10-8-1.0×10-1 | Cu2+, NH4+, Cr3+ | 394 |
Hg2+-1 | ethylenediamine bisthiophenecarboxaldehyde | 30.0 ± 0.4 | 10-7-10-2 | Ag+ | 400 |
Hg2+-2 | diamine donor ligand | 25 ± 0.1 | 1.25×10-7 -1.0×10-1 | - | 411 |
Cation | Ionophore | Slope (mV decade-1) | Linear Range (M) | Most Important Interfering ions (log Ksel> -2) | Ref. |
---|---|---|---|---|---|
La3+-1 | N-2,4-dimethylphenyl-N′- ethylformamidine (amitraz) | 19.8 ± 0.2 | 1.0 × 10-7-1.0 ×10-1 | - | 432 |
La3+-2 | 8-amino-N-(2-hydroxy- benzylidene)naphthylamine | 20.3 ± 0.3 | 1.0 × 10-7-1.0 ×10-1 | Pr3+ | 423 |
Ce3+ | N,N-bis[2-(salicylidene- amino)ethyl]ethane-1,2-diamine | 20 | 1.41× 10-7- 1.0×10-2 | La3+ | 442 |
Pr+3 | N-(pyridin-2-yl-methylene)- benzohydrazide | 21.1 | 10−2-10−6 | Sm3+, Er3+ | 446 |
Nd+3-1 | 5-pyridino-2,8-dithia[9](2,9)- 1,10-phenanthrolinephane | 20.1 | 10-6-10-2 | Yb3+, Gd3+ | 449 |
Nd+3-2 | benzyl bisthiosemicarbazone (BTC) | 19.7 | 10-6-10-2 | Gd3+, Sm3+ | 450 |
Sm3+-1 | 3-{[2-oxo-1(2H)-acenaphthyl- enyliden]amino}-2-thioxo-1,3-thiazolidin-4-one | 19.3 | 10-6-10-1 | - | 455 |
Sm3+-2 | [1-phenyl-3′(2-nitrophenyl) spiro[oxirane-2.4-pyrazoline]-3,5-dione] (PNSOP) | 19.30 | 10-6-10-1 | Gd3+ | 456 |
Eu3+ | 4-(2-hydroxybenzylideneamino)- 6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazi n-5(2H)-one (HMTDT) | 19.7 ± 0.4 | 1.0 × 10-6 -1.0× 10-1 | - | 457 |
Gd+3 | N-(2-pyridyl)-N′-(4-nitrophenyl)- thiourea | 19.95 ± 0.3 | 3.0 × 10-7-1.0 ×10-1 | - | 463 |
Tb+3 | 4-amino-3-{2-[4-amino-6- methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3(2H)-ylidene] hydrazono}-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (ATO) | 19.4 ± 0.5 | 1.0×10-6-1.0×10-1 | - | 465 |
Dy+3 | 6-hydrazino-1,5-diphenyl-6,7- dihydropyrazolo-[3,4-d]-pyrimidine-4(5H)-imine | 19.6± 0.3 | 1.0×10-1-1.0×10-7 | - | 469 |
Ho+3 | N,N′-Bis(2-pyridine- carboxamide)-1,2-benzene | 19.6 | 10-5-10-2 | Er3+, Dy3+,Sm3+ | 472 |
Er+3 | N′-(2-hydroxy-1,2-diphenyl- ethylidene) benzohydrazide | 21 | 10-7-10-2 | - | 475 |
Tm+3 | 2,2′-dianiline disulfide (DADS) | 19.5 ± 0.3 | 1.0×10-6 -1.0×10-2 | - | 478 |
Yb+3 | 3-hydroxy-N-[(2-hydroxyphenyl)-methylene]-2-naphthohydrazide | 19.2 | 10-7-10-2 | Nd3+, Pb2+,Gd3+ | 480 |
Lu+3 | N-(thien-2-ylmethylene)pyridine-2,6-diamine (TPD) | 20.5 ± 0.4 | 1.0 × 10-6 - 1.0 × 10-2 | Nd3+, Dy3+,Gd3+ | 485 |
Th4+ | 2-(diphenylphosphorothioyl)-N′,N′-diphenylacetamide | 15.2 | 10-6-10-2 | Mg2+, Cu2+ | 487 |
Anion | Ionophore | Slope (mV decade-1) | Linear Range (M) | The most interfering ions (log KSel> -2) | Ref. |
---|---|---|---|---|---|
HCO3- | long chain S-akyl diphenylthiocarbazone. | -54 | 10-2-10-5 | - | 493 |
NO2- | (tetraphenylporphyrinato) cobalt(III) acetate | -58.4 - 60.8 | 1.0×10-6 -1.0×10-1 and 5.0×10-8-5.0×10-2 | F- | 496 |
NO3- | N,N,N-triallylleucine betaine chloride | -59.1 | 1×10-6- 2.25×10-2 | - | 507 |
HPO42- -1 | molybdenum acetylacetonate | -29.5 | 1.0×10-1-1.0×10-7 | - | 516 |
HPO42--2 | oxo-molybdenum methyl-salen | -28.6 | 1.0×10-1 -4.0×10-7 | - | 517 |
PO43- | bis(pentafluorobenzyl) tin(IV) dibromide | -70.8 | 10-5-10-1 | - | 523 |
CN- | thin electroplated membranes of silver chalcogenides | -90 | 10-6-10-2 | - | 527 |
SCN--1 | (octabromotetraphenylporphy rinato)manganese(III) chloride | -58.3 | 4.8×10-7-1.0×10-1 | - | 544 |
SCN--2 | manganese(III) tetraphenylporphyrin derivatives | -59.5 | 10-7-10-1 | - | 553 |
SCN--3 | nickel(II)-azamacrocycle complex | -57.8 | 1.0×10-7- 1.0×10-1 | - | 555 |
SO32- | bis-urea calix[4]diquinones | -51.5 | 6.0×10-5-1.0×10-2 | ClO4- | 557 |
SO42--1 | strontium Schiff's base complex (SS) | -29.2 | 10-2-10-6 | SO32-, CO32-, Cl- | 559 |
SO42--2 | zinc-Schiff base | -29.2 | 10-2-10-6 | - | 560 |
SO42--3 | alpha,alpha′-bis(N′-phenyl-thioureylene)-m-xylene | -29.6 | 10-6 - 10-2 | SCN- , Br-, NO2- | 563 |
F- | organotin compounds | -62.7 | 1.0×10-6 -1.0×10-1 | - | 571 |
Cl- | ruthenium(III) Schiff's base | -54.5 | 1.0×10-1-3.0×10-6 | - | 574 |
ClO4--1 | complex of uranil | -60.6 ± 1.0 | 1.0×10-6 -1.0 | - | 584 |
ClO4--2 | some recently synthesized Ni(II)-hexaazacyclo-tetradecane complexes | -59.3 | 10-1-5.0×10-7 | - | 586 |
Br--1 | iron(III)-salen (IS) | -59.0 | 7.0×10-6 -1.0×10-1 | SCN-, I-, Cl- | 588 |
Br--2 | Zn(II) macrocyclic complex | -59.2 | 2.2×10-6-1.0×10-1 | - | 589 |
I--1 | cobalt-salophen | - 58.9 | 5.0 ×10-7 1.0×10-1 | - | 597 |
I--2 | thiopyrilium ion derivative | -60 | 8.0×10-7 -1.0×10-1 | 604 | |
I--3 | bis(1,3,4-thiadiazole) complexes of Hg(II) | -59.0 | 2.0×10-8-2.0×10-2 | - | 607 |
I3--1 | bis (salicylaldehyde) ethylendiamine mercury(II) complex MS) | -59.0 | 5.0×10-8-1.0×10-2 | - | 613 |
I3--2 | a charge-transfer complex of (1,3-diphenyldihydro-1H-Imidazole-4,5-dione dioxide with Iodide | -59.3 | 10-7-10-1 | - | 615 |
I3--3 | 2-(((2(((E)-1-(2-hydroxy-phenyl) methylidine)amino)-phenyl)imino) methyl) phenol with iodine (CTC) | -59 | 5.0×10-8 -1.0×10-2 | - | 88 |
I3−4 | mercury-salen | -59.0±0.5 | 5.0 ×10-8− 1.0×10-2 | - | 623 |
IO4- | metaperiodate bis(triphenylphosphoranylide ne) ammonium | -60.1 | 8.0×10-3 -2.7×10-1 | - | 631 |
Arsenite | PVC based 5,10,15,20-tetrakis (4-methoxyphenyl) porphyrinato cobalt(II) | -28.8 | 7.9×10-5-1.0×10-1 | - | 632 |
© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Faridbod, F.; Norouzi, P.; Dinarvand, R.; Ganjali, M.R. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade. Sensors 2008, 8, 2331-2412. https://doi.org/10.3390/s8042331
Faridbod F, Norouzi P, Dinarvand R, Ganjali MR. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade. Sensors. 2008; 8(4):2331-2412. https://doi.org/10.3390/s8042331
Chicago/Turabian StyleFaridbod, Farnoush, Parviz Norouzi, Rassoul Dinarvand, and Mohammad Reza Ganjali. 2008. "Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade" Sensors 8, no. 4: 2331-2412. https://doi.org/10.3390/s8042331
APA StyleFaridbod, F., Norouzi, P., Dinarvand, R., & Ganjali, M. R. (2008). Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade. Sensors, 8(4), 2331-2412. https://doi.org/10.3390/s8042331