Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins
Abstract
:1. Introduction
2. Okadaic Acid and Derivatives
3. Pectenotoxins
4. Yessotoxins
5. Azaspiracids
6. Brevetoxins
7. Cyclic Imines
8. Saxitoxin and Analogues
9. Domoic Acid Group
10. Ciguatoxins
11. Palytoxins and Ostreocins
12. Tetrodotoxin
13. Concluding Remarks
Acknowledgments
References and Notes
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar]
- Rodriguez-Velasco, M.L. Toxin monitoring programs and regulatory review. In Seafood and freshwater toxins: pharmacology, physiology and detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 919–932. [Google Scholar]
- Hoagland, P; Scatasta, S. The economic effects of harmful algal blooms. In Ecology of harmful algae; Graneli, E, Turner, J., Eds.; Ecology Studies Series; Springer-Verlag: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Vieites, J.M.; Cabado, A.G. Incidence of marine toxins on industrial activity. In Seafood and freshwater toxins. Pharmacology, physiology and detection; Botana, L.M., Ed.; CRC Press (Taylor and Francis Group): Boca Raton, FL, USA, 2008; pp. 899–916. [Google Scholar]
- Sauer, U.G. Animal vs. non-animal tests for the monitoring of marine biotoxins in the EU. Altex 2005, 22, 19–24. [Google Scholar]
- Holland, P. Analysis of marine toxins—techniques, method validation, calibration standards and screening methods. In Seafood and freshwater toxins: pharmacology, physiology and detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 21–49. [Google Scholar]
- Combes, R.D. The mouse bioassay for diarrhetic shellfish poisoning: a gross misuse of laboratory animals and of scientific methodology. Altern. Lab. Anim. 2003, 31, 595–610. [Google Scholar]
- EC. Council Directive 86/609/EEC of November 24, 1986 on the approximation of laws, regulation and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Offic. J. L Counc. Eur. Communities 1986, 358, 1–29. [Google Scholar]
- AOAC. Official method 959.08. Paralytic shellfish poison. Biological method. In AOAC Official Methods of Analysis, 18th ed.; International, A.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- EC. Commision Regulation (EC) No 1664/2006 of November 6, 2006 amending Regulation (EC) No 2074/2005 as regards implementing measures for certain products of animal origin intended for human consumption and repealing certain implementing measures. Offic. J. L Counc. Eur. Communities 2006, 320, 13–45. [Google Scholar]
- Kleivdal, H.; Kristiansen, S.I.; Nilsen, M.V.; Goksoyr, A.; Briggs, L.; Holland, P.; McNabb, P. Determination of domoic acid toxins in shellfish by biosense ASP ELISA--a direct competitive enzyme-linked immunosorbent assay: collaborative study. J. AOAC Int. 2007, 90, 1011–1027. [Google Scholar]
- Amine, A.; Mohammadi, H.; Bourais, I.; Palleschi, G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens. Bioelectron. 2006, 21, 1405–1423. [Google Scholar]
- Baeumner, A.J. Biosensors for environmental pollutants and food contaminants. Anal. Bioanal. Chem. 2003, 377, 434–45. [Google Scholar]
- Luong, J.H.; Bouvrette, P.; Male, K.B. Developments and applications of biosensors in food analysis. Trend. Biotechnol. 1997, 15, 369–77. [Google Scholar]
- Conroy, P.J.; Hearty, S.; Leonard, P.; O'Kennedy, R.J. Antibody production, design and use for biosensor-based applications. Semin. Cell Dev. Biol. 2009, 20, 10–26. [Google Scholar]
- Banerjee, P.; Bhunia, A.K. Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol. 2009, 27, 179–88. [Google Scholar]
- Gestal-Otero, J.J. Epidemiologic impact of diarrheic toxins. In Seafood and freshwater toxins: pharmacology, physiology and detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: New York, NY, USA, 2008; pp. 53–75. [Google Scholar]
- Lee, J.S.; Igarashi, T.; Fraga, S.; Dahl, E.; Hovgaard, P.; Yasumoto, T. Determination of diarrhetic shellfish toxins in various dinoflagellate species. J. Appl. Phycol. 1989, 1, 147–152. [Google Scholar]
- Morton, S.L; Tindall, D.R. Determination of okadaic acid content of dinoflagellate cells: a comparison of the HPLC-fluorescent method and two monoclonal antibody ELISA test kits. Toxicon 1996, 34, 947–54. [Google Scholar]
- Zhou, J; Fritz, L. Ultrastructure of two toxic marine dinoflagellates, Prorocentrum lima and Prorocentrum maculosum. Phycologia 1993, 32, 444–450. [Google Scholar]
- Dawson, J.F; Holmes, C.F. Molecular mechanisms underlying inhibition of protein phosphatases by marine toxins. Front. Biosci. 1999, 4, D646–58. [Google Scholar]
- Honkanen, R.E.; Codispoti, B.A.; Tse, K.; Boynton, A.L.; Honkanan, R.E. Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases. Toxicon 1994, 32, 339–350. [Google Scholar]
- Yasumoto, T.; Oshima, Y.; Yamaguchi, M. Occurence of a new type of shellfish poisoning in the Tohuku district. Bull. Jap. Soc. Sci. Fish. 1978, 44, 1249–1255. [Google Scholar]
- EC. Regulation (EC) No 853/2004 of the European Parliament and of the Council of April 29, 2004 laying down specific hygiene rules for food of animal origin. Offic. J. L Counc. Eur. Communities 2004, 139, 55. [Google Scholar]
- EC. Comission Regulation (EC) No 2074/2005 of December 5, 2005. Offic. J. L Counc. Eur. Communities 2005, 338, 27–59. [Google Scholar]
- Fujiki, H; Suganuma, M. Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv. Cancer. Res. 1993, 61, 143–94. [Google Scholar]
- Fujiki, H.; Suganuma, M.; Suguri, H.; Yoshizawa, S.; Takagi, K.; Uda, N.; Wakamatsu, K.; Yamada, K.; Murata, M.; Yasumoto, T. Diarrhetic shellfish toxin, dinophysistoxin-1, is a potent tumor promoter on mouse skin. Jpn. J. Cancer. Res. 1988, 79, 1089–1093. [Google Scholar]
- Tang, A.X.J.; Pravda, M.; Guilbault, G.G.; Piletsky, S.; Turner, A.P.F. Immunosensor for okadaic acid using quartz crystal microbalance. Anal. Chim. Acta 2002, 471, 33–40. [Google Scholar]
- Marquette, C.A.; Coulet, P.R.; Blum, L.J. Semi-automated membrane based chemiluminescent immunosensor for flow injection analysis of okadaic acid in mussels. Anal. Chim. Acta 1999, 398, 173–182. [Google Scholar]
- Llamas, N.M.; Stewart, L.; Fodey, T.; Higgins, H.C.; Velasco, M.L.; Botana, L.M.; Elliott, C.T. Development of a novel immunobiosensor method for the rapid detection of okadaic acid contamination in shellfish extracts. Anal. Bioanal. Chem. 2007, 389, 581–7. [Google Scholar]
- Stewart, L.D.; Elliott, C.T.; Walker, A.D.; Curran, R.M.; Connolly, L. Development of a monoclonal antibody binding okadaic acid and dinophysistoxins-1, -2 in proportion to their toxicity equivalence factors. Toxicon 2009, 54, 491–8. [Google Scholar]
- Campas, M.; de la Iglesia, P.; Le Berre, M.; Kane, M.; Diogene, J.; Marty, J.L. Enzymatic recycling-based amperometric immunosensor for the ultrasensitive detection of okadaic acid in shellfish. Biosens. Bioelectron. 2008, 24, 716–22. [Google Scholar]
- Kreuzer, M.P.; Pravda, M.; O'Sullivan, C.K.; Guilbault, G.G. Novel electrochemical immunosensors for seafood toxin analysis. Toxicon 2002, 40, 1267–74. [Google Scholar]
- Tang, A.X.J.; Kreuzer, M.; Lehane, M.; Pravda, M.; Guilbault, G.G. Immunosensor for the Determination of Okadaic Acid Based on Screen-Printed Electrode. Int. J. Environ. Anal. Chem. 2003, 83, 663–670. [Google Scholar]
- Campas, M; Marty, J.L. Enzyme sensor for the electrochemical detection of the marine toxin okadaic acid. Anal. Chim. Acta 2007, 605, 87–93. [Google Scholar]
- Volpe, G.; Cotroneo, E.; Moscone, D.; Croci, L.; Cozzi, L.; Ciccaglioni, G.; Palleschi, G. A bienzyme electrochemical probe for flow injection analysis of okadaic acid based on protein phosphatase-2A inhibition: an optimization study. Anal. Biochem. 2009, 385, 50–56. [Google Scholar]
- Kreuzer, M.P.; O'Sullivan, C.K.; Guilbault, G.G. Development of an ultrasensitive immunoassay for rapid measurement of okadaic acid and its isomers. Anal. Chem. 1999, 71, 4198–4202. [Google Scholar]
- Della Loggia, R.; Sosa, S.; Tubaro, A. Methodological improvement of the protein phosphatase inhibition assay for the detection of okadaic acid in mussels. Nat. Toxins 1999, 7, 387–391. [Google Scholar]
- Tubaro, A.; Florio, C.; Luxich, E.; Sosa, S.; Della Loggia, R.; Yasumoto, T. A protein phosphatase 2A inhibition assay for a fast and sensitive assessment of okadaic acid contamination in mussels. Toxicon 1996, 34, 743–752. [Google Scholar]
- Vieytes, M.R.; Fontal, O.I.; Leira, F.; Baptista de Sousa, J.M.; Botana, L.M. A fluorescent microplate assay for diarrheic shellfish toxins. Anal. Biochem. 1997, 248, 258–64. [Google Scholar]
- Mountfort, D.O.; Suzuki, T.; Truman, P. Protein phosphatase inhibition assay adapted for determination of total DSP in contaminated mussels. Toxicon 2001, 39, 383–90. [Google Scholar]
- Canete, E; Diogène, J. Comparative study of the use of neuroblastoma cells (Neuro-2a) and neuroblastomaxglioma hybrid cells (NG108-15) for the toxic effect quantification of marine toxins. Toxicon 2008, 52, 541–550. [Google Scholar]
- Leira, F.; Alvarez, C.; Cabado, A.G.; Vieites, J.M.; Vieytes, M.R.; Botana, L.M. Development of a F actin-based live-cell fluorimetric microplate assay for diarrhetic shellfish toxins. Anal. Biochem. 2003, 317, 129–135. [Google Scholar]
- Tubaro, A.; Florio, C.; Luxich, E.; Vertua, R.; Della Loggia, R.; Yasumoto, T. Suitability of the MTT-based cytotoxicity assay to detect okadaic acid contamination of mussels. Toxicon 1996, 34, 965–974. [Google Scholar]
- Gonzalez, J.C.; Leira, F.; Vieytes, M.R.; Vieites, J.M.; Botana, A.M.; Botana, L.M. Development and validation of a high-performance liquid chromatographic method using fluorimetric detection for the determination of the diarrhetic shellfish poisoning toxin okadaic acid without chlorinated solvents. J. Chromatogr. A 2000, 876, 117–25. [Google Scholar]
- Quilliam, M.A. Analysis of diarrhetic shellfish poisoning toxins in shellfish tissue by liquid chromatography with fluorometric and mass spectrometric detection. J. AOAC Int. 1995, 78, 555–70. [Google Scholar]
- McNabb, P.; Selwood, A.I.; Holland, P.T.; Aasen, J.; Aune, T.; Eaglesham, G.; Hess, P.; Igarishi, M.; Quilliam, M.; Slattery, D.; Van de Riet, J.; Van Egmond, H.; Van den Top, H.; Yasumoto, T. Multiresidue method for determination of algal toxins in shellfish: single-laboratory validation and interlaboratory study. J. AOAC Int. 2005, 88, 761–72. [Google Scholar]
- Gerssen, A.; McElhinney, M.A.; Mulder, P.P.; Bire, R.; Hess, P.; de Boer, J. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry. Anal. BioAnal. Chem. 2009, 394, 1213–1226. [Google Scholar]
- These, A.; Scholz, J.; Preiss-Weigert, A. Sensitive method for the determination of lipophilic marine biotoxins in extracts of mussels and processed shellfish by high-performance liquid chromatography-tandem mass spectrometry based on enrichment by solid-phase extraction. J. Chromatogr. A 2009, 1216, 4529–4538. [Google Scholar]
- Miles, C.O. Pectenotoxins. In Phycotoxins. Chemistry and Biochemistry; Botana, L.M., Ed.; Blackwell Publishing: Oxford, UK, 2007; pp. 159–186. [Google Scholar]
- Vilariño, N; Espiña, B. Pharmacology of pectenotoxins. In Seafood and freshwater toxins: pharmacology, physiology and detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 361–369. [Google Scholar]
- Miles, C.O.; Wilkins, A.L.; Munday, R.; Dines, M.H.; Hawkes, A.D.; Briggs, L.R.; Sandvik, M.; Jensen, D.J.; Cooney, J.M.; Holland, P.T.; Quilliam, M.A.; MacKenzie, A.L.; Beuzenberg, V.; Towers, N.R. Isolation of pectenotoxin-2 from Dinophysis acuta and its conversion to pectenotoxin-2 seco acid, and preliminary assessment of their acute toxicities. Toxicon 2004, 43, 1–9. [Google Scholar]
- Suzuki, T.; Walter, J.A.; LeBlanc, P.; MacKinnon, S.; Miles, C.O.; Wilkins, A.L.; Munday, R.; Beuzenberg, V.; MacKenzie, A.L.; Jensen, D.J.; Cooney, J.M.; Quilliam, M.A. Identification of pectenotoxin-11 as 34S-hydroxypectenotoxin-2, a new pectenotoxin analogue in the toxic dinoflagellate Dinophysis acuta from New Zealand. Chem. Res. Toxicol. 2006, 19, 310–318. [Google Scholar]
- Ares, I.R.; Louzao, M.C.; Espina, B.; Vieytes, M.R.; Miles, C.O.; Yasumoto, T.; Botana, L.M. Lactone ring of pectenotoxins: a key factor for their activity on cytoskeletal dynamics. Cell. Physiol. Biochem. 2007, 19, 283–292. [Google Scholar]
- Espina, B.; Louzao, M.C.; Ares, I.R.; Cagide, E.; Vieytes, M.R.; Vega, F.V.; Rubiolo, J.A.; Miles, C.O.; Suzuki, T.; Yasumoto, T.; Botana, L.M. Cytoskeletal toxicity of pectenotoxins in hepatic cells. Br. J. Pharmacol. 2008, 155, 934–944. [Google Scholar]
- Spector, I.; Braet, F.; Shochet, N.R.; Bubb, M.R. New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc. Res. Tech. 1999, 47, 18–37. [Google Scholar]
- Zhou, Z.H.; Komiyama, M.; Terao, K.; Shimada, Y. Effects of pectenotoxin-1 on liver cells in vitro. Nat. Toxins 1994, 2, 132–135. [Google Scholar]
- Fladmark, K.E.; Serres, M.H.; Larsen, N.L.; Yasumoto, T.; Aune, T.; Doskeland, S.O. Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon 1998, 36, 1101–1114. [Google Scholar]
- Sasaki, K.; Takizawa, A.; Tubaro, A.; Sidari, L.; Loggia, R.D.; Yasumoto, T. Fluorometric analysis of pectenotoxin-2 in microalgal samples by high performance liquid chromatography. Nat. Toxins 1999, 7, 241–6. [Google Scholar]
- Quilliam, M.A. The role of chromatography in the hunt for red tide toxins. J. Chromatogr. A 2003, 1000, 527–48. [Google Scholar]
- Paz, B.; Daranas, A.H.; Norte, M.; Riobo, P.; Franco, J.M.; Fernandez, J.J. Yessotoxins, a group of marine polyether toxins: an overview. Mar. Drugs 2008, 6, 73–102. [Google Scholar]
- Draisci, R.; Ferretti, E.; Palleschi, L.; Marchiafava, C.; Poletti, R.; Milandri, A.; Ceredi, A.; Pompei, M. High levels of yessotoxin in mussels and presence of yessotoxin and homoyessotoxin in dinoflagellates of the Adriatic Sea. Toxicon 1999, 37, 1187–1193. [Google Scholar]
- Rhodes, L.L.; McNabb, P.; De Salas, M.; Briggs, L.; Beuzenberg, V.; Gladstone, M. Yessotoxin production by Gonyaulax spinifera. Harmful Algae 2006, 5, 148–15. [Google Scholar]
- Satake, M.; MacKenzie, L.; Yasumoto, T. Identification of Protoceratium reticulatum as the biogenetic origin of yessotoxin. Nat. Toxins 1997, 5, 164–7. [Google Scholar]
- FAO/WHOI/IOC. Report of the Joint FAO/IOC/WHO ad hoc Expert Consultation on Biotoxins in Bivalve Molluscs; Oslo, Norway, 2004. [Google Scholar]
- Aune, T.; Sorby, R.; Yasumoto, T.; Ramstad, H.; Landsverk, T. Comparison of oral and intraperitoneal toxicity of yessotoxin towards mice. Toxicon 2002, 40, 77–82. [Google Scholar]
- Tubaro, A.; Sosa, S.; Carbonatto, M.; Altinier, G.; Vita, F.; Melato, M.; Satake, M.; Yasumoto, T. Oral and intraperitoneal acute toxicity studies of yessotoxin and homoyessotoxins in mice. Toxicon 2003, 41, 783–792. [Google Scholar]
- Ogino, H.; Kumagai, M.; Yasumoto, T. Toxicologic evaluation of yessotoxin. Nat. Toxins 1997, 5, 255–259. [Google Scholar]
- Fonfria, E.S.; Vilarino, N.; Vieytes, M.R.; Yasumoto, T.; Botana, L.M. Feasibility of using a surface plasmon resonance-based biosensor to detect and quantify yessotoxin. Anal. Chim. Acta 2008, 617, 167–170. [Google Scholar]
- Pazos, M.J.; Alfonso, A.; Vieytes, M.R.; Yasumoto, T.; Botana, L.M. Kinetic analysis of the interaction between yessotoxin and analogues and immobilized phosphodiesterases using a resonant mirror optical biosensor. Chem. Res. Toxicol. 2005, 18, 1155–1160. [Google Scholar]
- Pazos, M.J.; Alfonso, A.; Vieytes, M.R.; Yasumoto, T.; Vieites, J.M.; Botana, L.M. Resonant mirror biosensor detection method based on yessotoxin-phosphodiesterase interactions. Anal. Biochem. 2004, 335, 112–8. [Google Scholar]
- Mouri, R.; Oishi, T.; Torikai, K.; Ujihara, S.; Matsumori, N.; Murata, M.; Oshima, Y. Surface plasmon resonance-based detection of ladder-shaped polyethers by inhibition detection method. Bioorg. Med. Chem. Lett. 2009, 19, 2824–2828. [Google Scholar]
- Alfonso, A.; Vieytes, M.R.; Yasumoto, T.; Botana, L.M. A rapid microplate fluorescence method to detect yessotoxins based on their capacity to activate phosphodiesterases. Anal. Biochem. 2004, 326, 93–99. [Google Scholar]
- Alfonso, C.; Alfonso, A.; Vieytes, M.R.; Yasumoto, T.; Botana, L.M. Quantification of yessotoxin using the fluorescence polarization technique and study of the adequate extraction procedure. Anal. Biochem. 2005, 344, 266–274. [Google Scholar]
- Pierotti, S.; Albano, C.; Milandri, A.; Callegari, F.; Poletti, R.; Rossini, G.P. A slot blot procedure for the measurement of yessotoxins by a functional assay. Toxicon 2007, 49, 36–45. [Google Scholar]
- Pierotti, S.; Malaguti, C.; Milandri, A.; Poletti, R.; Paolo Rossini, G. Functional assay to measure yessotoxins in contaminated mussel samples. Anal. Biochem. 2003, 312, 208–216. [Google Scholar]
- Ronzitti, G.; Hess, P.; Rehmann, N.; Rossini, G.P. Azaspiracid-1 alters the E-cadherin pool in epithelial cells. Toxicol Sci 2007, 95, 427–435. [Google Scholar]
- Briggs, L.R.; Miles, C.O.; Fitzgerald, J.M.; Ross, K.M.; Garthwaite, I.; Towers, N.R. Enzyme-linked immunosorbent assay for the detection of yessotoxin and its analogues. J. Agric. Food Chem. 2004, 52, 5836–5842. [Google Scholar]
- Garthwaite, I.; Ross, K.M.; Miles, C.O.; Briggs, L.R.; Towers, N.R.; Borrell, T.; Busby, P. Integrated enzyme-linked immunosorbent assay screening system for amnesic, neurotoxic, diarrhetic, and paralytic shellfish poisoning toxins found in New Zealand. J. AOAC Int. 2001, 84, 1643–1648. [Google Scholar]
- de la Iglesia, P.; Gago-Martinez, A. Determination of yessotoxins and pectenotoxins in shellfish by capillary electrophoresis-electrospray ionization-mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess 2009, 26, 221–228. [Google Scholar]
- Gago-Martinez, A.; Pineiro, N.; Aguete, E.C.; Vaquero, E.; Nogueiras, M.; Leao, J.M.; Rodriguez-Vazquez, J.A.; Dabek-Zlotorzynska, E. Further improvements in the application of high-performance liquid chromatography, capillary electrophoresis and capillary electrochromatography to the analysis of algal toxins in the aquatic environment. J. Chromatogr. A 2003, 992, 159–168. [Google Scholar]
- Yasumoto, T; Takizawa, A. Fluorometric measurement of yessotoxins in shellfish by high-pressure liquid chromatography. Biosci. Biotechnol. Biochem. 1997, 61, 1775–1777. [Google Scholar]
- McMahon, T; Silke, J. Winter toxicity of unknown aetiology in mussels. Harmful Algae News 1996, 14, 2. [Google Scholar]
- Ofuji, K.; Satake, M.; McMahon, T.; James, K.J.; Naoki, H.; Oshima, Y.; Yasumoto, T. Structures of azaspiracid analogs, azaspiracid-4 and azaspiracid-5, causative toxins of azaspiracid poisoning in Europe. Biosci. Biotechnol. Biochem. 2001, 65, 740–742. [Google Scholar]
- Ofuji, K.; Satake, M.; McMahon, T.; Silke, J.; James, K.J.; Naoki, H.; Oshima, Y.; Yasumoto, T. Two analogs of azaspiracid isolated from mussels, Mytilus edulis, involved in human intoxication in Ireland. Nat. Toxins 1999, 7, 99–102. [Google Scholar]
- Rehmann, N.; Hess, P.; Quilliam, M.A. Discovery of new analogs of the marine biotoxin azaspiracid in blue mussels (Mytilus edulis) by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom 2008, 22, 549–558. [Google Scholar]
- Satake, M.; Ofuji, K.; Naoki, H.; James, K.; Furey, A.; McMahon, T.; Silke, J.; Yasumoto, T. Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish Mussels, Mytilus edulis. J. Am. Chem. Soc. 1998, 120, 9967–9968. [Google Scholar]
- James, K.J.; Sierra, M.D.; Lehane, M.; Brana Magdalena, A.; Furey, A. Detection of five new hydroxyl analogues of azaspiracids in shellfish using multiple tandem mass spectrometry. Toxicon 2003, 41, 277–283. [Google Scholar]
- James, K.J.; Moroney, C.; Roden, C.; Satake, M.; Yasumoto, T.; Lehane, M.; Furey, A. Ubiquitous ‘benign’ alga emerges as the cause of shellfish contamination responsible for the human toxic syndrome, azaspiracid poisoning. Toxicon 2003, 41, 145–151. [Google Scholar]
- James, K.J.; Furey, A.; Lehane, M.; Ramstad, H.; Aune, T.; Hovgaard, P.; Morris, S.; Higman, W.; Satake, M.; Yasumoto, T. First evidence of an extensive northern European distribution of azaspiracid poisoning (AZP) toxins in shellfish. Toxicon 2002, 40, 909–915. [Google Scholar]
- Magdalena, A.B.; Lehane, M.; Krys, S.; Fernandez, M.L.; Furey, A.; James, K.J. The first identification of azaspiracids in shellfish from France and Spain. Toxicon 2003, 42, 105–108. [Google Scholar]
- Aasen, J.; Samdal, I.A.; Miles, C.O.; Dahl, E.; Briggs, L.R.; Aune, T. Yessotoxins in Norwegian blue mussels (Mytilus edulis): uptake from Protoceratium reticulatum, metabolism and depuration. Toxicon 2005, 45, 265–272. [Google Scholar]
- Elgarch, A.; Vale, P.; Rifai, S.; Fassouane, A. Detection of diarrheic shellfish poisoning and azaspiracid toxins in Moroccan mussels: comparison of the LC-MS method with the commercial immunoassay kit. Mar. Drugs 2008, 6, 587–594. [Google Scholar]
- Forsyth, C.J.; Xu, J.; Nguyen, S.T.; Samdal, I.A.; Briggs, L.R.; Rundberget, T.; Sandvik, M.; Miles, C.O. Antibodies with broad specificity to azaspiracids by use of synthetic haptens. J. Am. Chem. Soc. 2006, 128, 15114–15116. [Google Scholar]
- Frederick, M.O.; De Lamo Marin, S.; Janda, K.D.; Nicolaou, K.C.; Dickerson, T.J. Monoclonal antibodies with orthogonal azaspiracid epitopes. Chembiochem 2009, 10, 1625–1629. [Google Scholar]
- Furey, A.; Garcia, J.; O'Callaghan, K.; Lehane, M.; Férnandez, M.; James, K.J. Brevetoxins: structure, toxicology and origin. In Phycotoxins: chemistry and biochemistry; Botana, L.M., Ed.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 19–46. [Google Scholar]
- Magaña, H.A.; Contreras, C.; Villareal, T.A. A historical assessment of Karenia brevis in the western Gulf of Mexico. Harmful Algae 2003, 2, 163–171. [Google Scholar]
- Nozawa, A.; Tsuji, K.; Ishida, H. Implication of brevetoxin B1 and PbTx-3 in neurotoxic shellfish poisoning in New Zealand by isolation and quantitative determination with liquid chromatography-tandem mass spectrometry. Toxicon 2003, 42, 91–103. [Google Scholar]
- Van Dolah, F.M. Diversity of marine and freswater algal toxins. In Seafood and freswater toxins: pharmacology, physiology and detection; Botana, L.M., Ed.; Marcel Dekker: New York, NY, USA, 2000; pp. 19–43. [Google Scholar]
- Gessner, B.D; McLaughlin, J.B. Epidemiologic impact of toxic episodes: neurotoxic toxins. In Seafood and freshwater toxins: pharmacology, physiology and detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 77–103. [Google Scholar]
- Bossart, G.D.; Baden, D.G.; Ewing, R.Y.; Roberts, B.; Wright, S.d. Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: gross, histologic, and immunohistochemical features. Toxicol. Pathol. 1998, 26, 276–282. [Google Scholar]
- Flewelling, L.J.; Naar, J.P.; Abbott, J.P.; Baden, D.G.; Barros, N.B.; Bossart, G.D.; Bottein, M.Y.; Hammond, D.G.; Haubold, E.M.; Heil, C.A.; Henry, M.S.; Jacocks, H.M.; Leighfield, T.A.; Pierce, R.H.; Pitchford, T.D.; Rommel, S.A.; Scott, P.S.; Steidinger, K.A.; Truby, E.W.; Van Dolah, F.M.; Landsberg, J.H. Brevetoxicosis: red tides and marine mammal mortalities. Nature 2005, 435, 755–756. [Google Scholar]
- Kreuder, C.; Mazet, J.A.; Bossart, G.D.; Carpenter, T.E.; Holyoak, M.; Elie, M.S.; Wright, S.D. Clinicopathologic features of suspected brevetoxicosis in double-crested cormorants (Phalacrocorax auritus) along the Florida Gulf Coast. J. Zoo Wildl. Med. 2002, 33, 8–15. [Google Scholar]
- APHA. Method for Ptychodiscus brevis toxins. In Laboratory procedures for the examination of seawater and shellfish, 5th ed.; American Public Health Association: Washington, D. C., USA, 1985; pp. 64–80. [Google Scholar]
- Watkins, S.M.; Reich, A.; Fleming, L.E.; Hammond, R. Neurotoxic shellfish poisoning. Mar. Drugs 2008, 6, 431–455. [Google Scholar]
- Kulagina, N.V.; Mikulski, C.M.; Gray, S.; Ma, W.; Doucette, G.J.; Ramsdell, J.S.; Pancrazio, J.J. Detection of marine toxins, brevetoxin-3 and saxitoxin, in seawater using neuronal networks. Environ. Sci. Technol. 2006, 40, 578–583. [Google Scholar]
- Twiner, M.J.; Bottein Dechraoui, M.Y.; Wang, Z.; Mikulski, C.M.; Henry, M.S.; Pierce, R.H.; Doucette, G.J. Extraction and analysis of lipophilic brevetoxins from the red tide dinoflagellate Karenia brevis. Anal. Biochem. 2007, 369, 128–135. [Google Scholar]
- Baden, D.G.; Mende, T.J.; Walling, J.; Schultz, D.R. Specific antibodies directed against toxins of Ptychodiscus brevis (Florida's red tide dinoflagellate). Toxicon 1984, 22, 783–789. [Google Scholar]
- Poli, M.A.; Rein, K.S.; Baden, D.G. Radioimmunoassay for PbTx-2-type brevetoxins: epitope specificity of two anti-PbTx sera. J. AOAC Int. 1995, 78, 538–542. [Google Scholar]
- Baden, D.G.; Melinek, R.; Sechet, V.; Trainer, V.L.; Schultz, D.R.; Rein, K.S.; Tomas, C.R.; Delgado, J.; Hale, L. Modified immunoassays for polyether toxins: implications of biological matrixes, metabolic states, and epitope recognition. J. AOAC Int. 1995, 78, 499–508. [Google Scholar]
- Naar, J.; Bourdelais, A.; Tomas, C.; Kubanek, J.; Whitney, P.L.; Flewelling, L.; Steidinger, K.; Lancaster, J.; Baden, D.G. A competitive ELISA to detect brevetoxins from Karenia brevis (formerly Gymnodinium breve) in seawater, shellfish, and mammalian body fluid. Environ. Health Perspect. 2002, 110, 179–185. [Google Scholar]
- Louzao, M.C.; Vieytes, M.R.; Yasumoto, T.; Botana, L.M. Detection of sodium channel activators by a rapid fluorimetric microplate assay. Chem. Res. Toxicol. 2004, 17, 572–578. [Google Scholar]
- Hua, Y.; Lu, W.; Henry, M.S.; Pierce, R.H.; Cole, R.B. On-line high-performance liquid chromatography-electrospray ionization mass spectrometry for the determination of brevetoxins in “red tide” algae. Anal. Chem. 1995, 67, 1815–1823. [Google Scholar]
- Shea, D. Analysis of brevetoxins by micellar electrokinetic capillary chromatography and laser-induced fluorescence detection. Electrophoresis 1997, 18, 277–283. [Google Scholar]
- Molgó, J.; Girard, E.; Benoit, E. Cyclic imines: an insight into this emerging group of bioactive marine toxins. In Phycotoxins: chemistry and biochemistry; Botana, L.M., Ed.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 319–335. [Google Scholar]
- Munday, R.; Towers, N.R.; Mackenzie, L.; Beuzenberg, V.; Holland, P.T.; Miles, C.O. Acute toxicity of gymnodimine to mice. Toxicon 2004, 44, 173–178. [Google Scholar]
- Kharrat, R.; Servent, D.; Girard, E.; Ouanounou, G.; Amar, M.; Marrouchi, R.; Benoit, E.; Molgo, J. The marine phycotoxin gymnodimine targets muscular and neuronal nicotinic acetylcholine receptor subtypes with high affinity. J. Neurochem. 2008, 107, 952–963. [Google Scholar]
- Molgó, J.; Amar, M.; Aráoz, R.; Benoit, E.; Silveira, P.; Schlumberger, S.; Lecardeur, S.; Servent, D. The dinoflagellate toxin 13-Desmethyl Spirolide-C broadly targets muscle and neuronal nicotinic acetylcholine receptors with high affinity. 16th European Section Meeting of the International Society on Toxinolog, Leuven, Belgium, September 7-10, 2008.
- Cembella, A; Krock, B. Cyclic imine toxins: chemistry, biogeography, biosynthesis and pharmacology. In Seafood and freshwater toxins: pharmacology, physiology and detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Munday, R. Toxicology of Cyclic Imines: Gymnodimine, Spirolides, Pinnatoxins, Pteriatoxins, Prorocentrolide, Spiro-prorocentrimine and Symbioimines. In Seafood and freshwater toxins: pharmacology, physiology and detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 581–594. [Google Scholar]
- Aasen, J.; MacKinnon, S.L.; LeBlanc, P.; Walter, J.A.; Hovgaard, P.; Aune, T.; Quilliam, M.A. Detection and identification of spirolides in norwegian shellfish and plankton. Chem. Res. Toxicol. 2005, 18, 509–515. [Google Scholar]
- Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Magno, S.; Tartaglione, L.; Cangini, M.; Pompei, M.; Guerrini, F.; Boni, L.; Pistocchi, R. Toxin profile of Alexandrium ostenfeldii (Dinophyceae) from the Northern Adriatic Sea revealed by liquid chromatography-mass spectrometry. Toxicon 2006, 47, 597–604. [Google Scholar]
- Hu, T.; Burton, I.W.; Cembella, A.D.; Curtis, J.M.; Quilliam, M.A.; Walter, J.A.; Wright, J.L. Characterization of spirolides a, c, and 13-desmethyl c, new marine toxins isolated from toxic plankton and contaminated shellfish. J. Nat. Prod. 2001, 64, 308–312. [Google Scholar]
- Stirling, D.J. Survey of historical New Zealand shellfish samples for accumulation of gymnodimine. N. Z. J. Mar. Freshwater Res. 2001, 35, 851–857. [Google Scholar]
- Fux, E.; McMillan, D.; Bire, R.; Hess, P. Development of an ultra-performance liquid chromatography-mass spectrometry method for the detection of lipophilic marine toxins. J. Chromatogr. A 2007, 1157, 273–280. [Google Scholar]
- Vilariño, N.; Fonfria, E.S.; Molgo, J.; Araoz, R.; Botana, L.M. Detection of Gymnodimine-A and 13-Desmethyl C Spirolide Phycotoxins by Fluorescence Polarization. Anal. Chem. 2009, 81, 2708–2714. [Google Scholar]
- Van Dolah, F.M. Marine algal toxins: origins, health effects, and their increased occurrence. Environ. Health Perspect 2000, 108, 133–141. [Google Scholar]
- Cestele, S; Catterall, W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 2000, 82, 883–892. [Google Scholar]
- Noda, M.; Suzuki, H.; Numa, S.; Stuhmer, W. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 1989, 259, 213–216. [Google Scholar]
- Catterall, W.A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol. 1980, 20, 15–43. [Google Scholar]
- Kao, C.Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. Rev. 1966, 18, 997–1049. [Google Scholar]
- Hallegraeff, G.M. Harmful algal blooms: a global overview. In Manual on Harmful Marine Microalgae; UNESCO: Paris, France, 2003; pp. 25–49. [Google Scholar]
- Lawrence, J.F; Niedzwiadek, B. Quantitative determination of paralytic shellfish poisoning toxins in shellfish by using prechromatographic oxidation and liquid chromatography with fluorescence detection. J. AOAC Int. 2001, 84, 1099–1108. [Google Scholar]
- Kele, P.J.O.; Calhoun, T.L.; Gawley, R.E.; LEBlanc, R.M. Coumaryl crown ether based chemosensors: selective detection of saxitoxin in the presence of sodium and potassium ions. Tetrahedron Lett. 2002, 43, 4413–4416. [Google Scholar]
- Gawley, R.E.; Pinet, S.; Cardona, C.M.; Datta, P.K.; Ren, T.; Guida, W.C.; Nydick, J.; Leblanc, R.M. Chemosensors for the marine toxin saxitoxin. J. Am. Chem. Soc. 2002, 124, 13448–13453. [Google Scholar]
- Gawley, R.E.; Shanmugasundaram, M.; Thorne, J.B.; Tarkka, R.M. Selective detection of saxitoxin over tetrodotoxin using acridinylmethyl crown ether chemosensor. Toxicon 2005, 45, 783–787. [Google Scholar]
- Gawley, R.E.; Mao, H.; Haque, M.M.; Thorne, J.B.; Pharr, J.S. Visible fluorescence chemosensor for saxitoxin. J. Org. Chem. 2007, 72, 2187–2191. [Google Scholar]
- Campbell, K.; Steart, L.D.; Doucette, G.J.; Fodey, T.L.; Haughey, S.A.; Vilariño, N.; Kawatsu, K.; Elliott, C.T. Assessment of specific binding proteins suitable for the detection of paralytic shellfish poisons using optical biosensor technology. Anal. Chem. 2007, 79, 5906–5914. [Google Scholar]
- Fonfría, E.S.; Vilariño, N.; Campbell, K.; Elliott, C.T.; Haughey, S.A.; Ben-Gigirey, B.; Vieites, J.M.; Kawatsu, K.; Botana, L.M. Paralytic shellfish poisoning detection by surface plasmon resonance-based biosensor in shellfish matrixes. Anal. Chem. 2007, 79, 6303–6311. [Google Scholar]
- Chu, F.S; Fan, T.S. Indirect enzyme-linked immunosorbent assay for saxitoxin in shellfish. J. Assoc. Anal. Chem. 1985, 68, 13–16. [Google Scholar]
- Carlson, R.E.; Lever, M.L.; Lee, B.W.; Guire, P.E. Development of immunoassays for paralytic shellfish poisoning. A radioimmunoassay for saxitoxin. In Seafood toxins, SCS symposium Series 262; Ragelis, E.P., Ed.; American Chemical Society: Washington, DC, USA, 1984; pp. 181–192. [Google Scholar]
- Doucette, G.J.; Logan, M.M.; Ramsdell, J.S.; Van Dolah, F.M. Development and preliminary validation of a microtiter plate-based receptor binding assay for paralytic shellfish poisoning toxins. Toxicon 1997, 35, 625–636. [Google Scholar]
- Ruberu, S.R.; Liu, Y.G.; Wong, C.T.; Perera, S.K.; Langlois, G.W.; Doucette, G.J.; Powell, C.L. Receptor binding assay for paralytic shellfish poisoning toxins: optimization and interlaboratory comparison. J. AOAC Int. 2003, 86, 737–745. [Google Scholar]
- Vieytes, M.R.; Cabado, A.G.; Alfonso, A.; Louzao, M.C.; Botana, A.M.; Botana, L.M. Solid-phase radioreceptor assay for paralytic shellfish toxins. Anal. Biochem. 1993, 211, 87–93. [Google Scholar]
- Vélez, P.; Suárez-Isla, B.A.; Sierralta, J.; Fonseca, M.; Loyola, H.; Johns, D.C.; Tomaselli, G.F.; Marbán, E. Electrophysiological assay to quantify saxitoxins in contaminated shellfish. Biophys. J. 1999, 76, A82. [Google Scholar]
- Louzao, M.C.; Rodriguez Vieytes, M.; Garcia Cabado, A.; Vieites Baptista De Sousa, J.M.; Botana, L.M. A fluorimetric microplate assay for detection and quantitation of toxins causing paralytic shellfish poisoning. Chem. Res. Toxicol. 2003, 16, 433–438. [Google Scholar]
- Louzao, M.C.; Vieytes, M.R.; Baptista de Sousa, J.M.; Leira, F.; Botana, L.M. A fluorimetric method based on changes in membrane potential for screening paralytic shellfish toxins in mussels. Anal. Biochem. 2001, 289, 246–250. [Google Scholar]
- Thibault, P.; Pleasance, S.; Laycock, M.V. Analysis of paralytic shellfish poisons by capillary electrophoresis. J. Chromatogr. 1991, 542, 483–501. [Google Scholar]
- Jeffery, B.; Barlow, T.; Moizer, K.; Paul, S.; Boyle, C. Amnesic shellfish poison. Food Chem. Toxicol. 2004, 42, 545–557. [Google Scholar]
- Quilliam, M.A. Phycotoxins. J. AOAC Int. 1999, 82, 773–781. [Google Scholar]
- Amzil, Z.; Fresnel, J.; Le Gal, D.; Billard, C. Domoic acid accumulation in French shellfish in relation to toxic species of Pseudo-nitzschia multiseries and P. pseudodelicatissima. Toxicon 2001, 39, 1245–1251. [Google Scholar]
- Vale, P. Chemistry of dhiarrhetic shellfish poisoning toxins. In Phycotoxins: chemistry and biochemistry; Botana, L.M., Ed.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 211–221. [Google Scholar]
- Bates, S.S.; Bird, C.J.; deFreitas, A.S.W.; Foxall, R.; Gilgan, M.; Hanic, L.A.; Johnson, G.R.; McCulloch, A.W.; Odense, P.; Pocklington, R.; Quilliam, M.A.; Sim, P.G.; Smith, J.C.; SubbaRao, D.V.; Todd, E.C.D.; Walter, J.A.; Wright, J.L.C. Pennate diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can. J. Fisheries Aquat. Sci. 1991, 46, 1203–1215. [Google Scholar]
- Nijjar, M.S; Nijjar, S.S. Ecobiology, clinical symptoms, and mode of action of domoic acid, an amnesic shellfish toxin. In Seafood and freshwater toxins: pharmacology, physiology and detection; Botana, L.M., Ed.; Marcel Dekker: New York, NY, USA, 2000; pp. 325–358. [Google Scholar]
- EC. Commision Regulation (EC) No 1244/2007 of 24 October 2007 amending Regulation (EC) No 2074/2005 as regards implementing measures for certain products of animal origin intended for human consumption and laying down specific rules on official controls for the inspection of meat. Offic. J. L Counc. Eur. Communities 2007, 281, 12–18. [Google Scholar]
- Yu, Q.; Chen, S.; Taylor, A.D.; Homola, J.; Hock, B.; Jiang, S. Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sens. Actuat. B. 2005, 107, 193–201. [Google Scholar]
- Kania, M; Hock, B. Development of monoclonal antibodies to domoic acid for the detection of domoic acid in blue mussel (Mytilus edulis) tissue by ELISA. Anal. Lett. 2002, 35, 855–868. [Google Scholar]
- Traynor, I.M.; Plumpton, L.; Fodey, T.L.; Higgins, C.; Elliott, C.T. Immunobiosensor detection of domoic acid as a screening test in bivalve molluscs: comparison with liquid chromatography-based analysis. J. AOAC Int. 2006, 89, 868–872. [Google Scholar]
- Lotierzo, M.; Henry, O.Y.; Piletsky, S.; Tothill, I.; Cullen, D.; Kania, M.; Hock, B.; Turner, A.P. Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. Biosens. Bioelectron. 2004, 20, 145–152. [Google Scholar]
- Micheli, L.; Radoi, A.; Guarrina, R.; Massaud, R.; Bala, C.; Moscone, D.; Palleschi, G. Disposable immunosensor for the determination of domoic acid in shellfish. Biosens. Bioelectron. 2004, 20, 190–196. [Google Scholar]
- Quilliam, M.A.; Thomson, B.A.; Scott, G.J.; Siu, K.W. Ion-spray mass spectrometry of marine neurotoxins. Rapid Commun. Mass. Spectrom 1989, 3, 145–150. [Google Scholar]
- Quilliam, M.A.; Thomas, K.; Wright, J.L. Analysis of domoic acid in shellfish by thin-layer chromatography. Nat. Toxins 1998, 6, 147–152. [Google Scholar]
- Zhao, J.Y.; Thibault, P.; Quilliam, M.A. Analysis of domoic acid and isomers in seafood by capillary electrophoresis. Electrophoresis 1997, 18, 268–276. [Google Scholar]
- Poli, M.A.; Lewis, R.J.; Dickey, R.W.; Musser, S.M.; Buckner, C.A.; Carpenter, L.G. Identification of Caribbean ciguatoxins as the cause of an outbreak of fish poisoning among U.S. soldiers in Haiti. Toxicon 1997, 35, 733–741. [Google Scholar]
- Lombet, A.; Bidard, J.N.; Lazdunski, M. Ciguatoxin and brevetoxins share a common receptor site on the neuronal voltage-dependent Na+ channel. FEBS Lett. 1987, 219, 355–359. [Google Scholar]
- Van Egmond, H.P.; Speyers, G.J.A.; Van den Top, H.J. Current situation on worldwide regulations for marine phycotoxins. J. Nat. Toxins 1992, 1, 67–85. [Google Scholar]
- Hokama, Y.; Banner, A.H.; Boylan, D.B. A radioimmunoassay for the detection of ciguatoxin. Toxicon 1977, 15, 317–325. [Google Scholar]
- Campora, C.E.; Hokama, Y.; Ebesu, J.S. Comparative analysis of purified Pacific and Caribbean ciguatoxin congeners and related marine toxins using a modified ELISA technique. J. Clin. Lab. Anal. 2006, 20(3), 121–5. [Google Scholar]
- Campora, C.E.; Hokama, Y.; Yabusaki, K.; Isobe, M. Development of an enzyme-linked immunosorbent assay for the detection of ciguatoxin in fish tissue using chicken immunoglobulin Y. J. Clin. Lab. Anal. 2008, 22, 239–245. [Google Scholar]
- Hokama, Y.; Abad, M.A.; Kimura, L.H. A rapid enzyme-immunoassay for the detection of ciguatoxin in contaminated fish tissues. Toxicon 1983, 21, 817–824. [Google Scholar]
- Oguri, H.; Hirama, M.; Tsumuraya, T.; Fujii, I.; Maruyama, M.; Uehara, H.; Nagumo, Y. Synthesis-based approach toward direct sandwich immunoassay for ciguatoxin CTX3C. J. Am. Chem. Soc. 2003, 125, 7608–7612. [Google Scholar]
- Hokama, Y. A rapid, simplified enzyme immunoassay stick test for the detection of ciguatoxin and related polyethers from fish tissues. Toxicon 1985, 23, 939–946. [Google Scholar]
- Park, D.L. Detection of ciguatera and diarrheic shellfish toxins in finfish and shellfish with Ciguatec kit. J. AOAC Int. 1995, 78, 535–537. [Google Scholar]
- Lewis, R.J; Jones, A. Characterization of ciguatoxins and ciguatoxin congeners present in ciguateric fish by gradient reverse-phase high-performance liquid chromatography/mass spectrometry. Toxicon 1997, 35, 159–168. [Google Scholar]
- Wiles, J.S.; Vick, J.A.; Christensen, M.K. Toxicological evaluation of palytoxin in several animal species. Toxicon 1974, 12, 427–433. [Google Scholar]
- Katikou, P. Palytoxin and analogues: ecobiology and origin, chemistry, metabolism, and chemical analysis. In Seafood and freshwater toxins: pharmacology, physiology and detection, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 631–663. [Google Scholar]
- Frolova, G.M.; Kuznetsova, T.A.; Mikhailov, V.V.; Elyakov, G.B. An enzyme linked immunosorbent assay for detecting palytoxin-producing bacteria. Russ. J. Bioorg. Chem. 2000, 26, 285–289. [Google Scholar]
- Uemura, D.; Hirata, Y.; Iwashita, T.; Naoki, H. Studies on palytoxin. Tetrahedron 1985, 41, 1007–1017. [Google Scholar]
- Beress, L.; Zwick, J.; Kolkenbrock, H.J.; Kaul, P.N.; Wassermann, O. A method for the isolation of the caribbean palytoxin (C-PTX) from the coelenterate (zooanthid) Palythoa caribaeorum. Toxicon 1983, 21, 285–290. [Google Scholar]
- Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Forino, M.; Magno, G.S.; Tartaglione, L.; Grillo, C.; Melchiorre, N. The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Anal. Chem. 2006, 78, 6153–6159. [Google Scholar]
- Kimura, S.; Hashimoto, Y.; Yamazato, K. Toxicity of the zoanthid Palythoa tuberculosa. Toxicon 1972, 10, 611–617. [Google Scholar]
- Moore, R.E; Scheuer, P.J. Palytoxin: a new marine toxin from a coelenterate. Science 1971, 172, 495–498. [Google Scholar]
- Artigas, P; Gadsby, D.C. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc. Natl. Acad. Sci. USA 2003, 100, 501–505. [Google Scholar]
- Fusetani, N.; Sato, S.; Hashimoto, K. Occurrence of a water soluble toxin in a parrotfish (Ypsiscarus ovifrons) which is probably responsible for parrotfish liver poisoning. Toxicon 1985, 23, 105–112. [Google Scholar]
- Kodama, A.M.; Hokama, Y.; Yasumoto, T.; Fukui, M.; Manea, S.J.; Sutherland, N. Clinical and laboratory findings implicating palytoxin as cause of ciguatera poisoning due to Decapterus macrosoma (mackerel). Toxicon 1989, 27, 1051–1053. [Google Scholar]
- Gallitelli, M.; Ungaro, N.; Addante, L.M.; Procacci, V.; Silveri, N.G.; Sabba, C. Respiratory illness as a reaction to tropical algal blooms occurring in a temperate climate. JAMA 2005, 293, 2599–2600. [Google Scholar]
- Habermann, E. Palytoxin acts through Na+,K+-ATPase. Toxicon 1989, 27, 1171–1187. [Google Scholar]
- Hilgemann, D.W. From a pump to a pore: how palytoxin opens the gates. Proc. Natl. Acad. Sci. USA 2003, 100, 386–388. [Google Scholar]
- Reyes, N; Gadsby, D.C. Ion permeation through the Na+,K+-ATPase. Nature 2006, 443, 470–474. [Google Scholar]
- Espina, B.; Cagide, E.; Louzao, M.C.; Fernandez, M.M.; Vieytes, M.R.; Katikou, P.; Villar, A.; Jaen, D.; Maman, L.; Botana, L.M. Specific and dynamic detection of palytoxins by in vitro microplate assay with human neuroblastoma cells. Biosci. Rep. 2009, 29, 13–23. [Google Scholar]
- Bignami, G.S.; Raybould, T.J.; Sachinvala, N.D.; Grothaus, P.G.; Simpson, S.B.; Lazo, C.B.; Byrnes, J.B.; Moore, R.E.; Vann, D.C. Monoclonal antibody-based enzyme-linked immunoassays for the measurement of palytoxin in biological samples. Toxicon 1992, 30, 687–700. [Google Scholar]
- Lau, C.O.; Tan, C.H.; Khoo, H.E.; Yuen, R.; Lewis, R.J.; Corpuz, G.P.; Bignami, G.S. Lophozozymus pictor toxin: a fluorescent structural isomer of palytoxin. Toxicon 1995, 33, 1373–1377. [Google Scholar]
- Bignami, G.S. A rapid and sensitive hemolysis neutralization assay for palytoxin. Toxicon 1993, 31, 817–820. [Google Scholar]
- Kanchanapongkul, J; Krittayapoositpot, P. An epidemic of tetrodotoxin poisoning following ingestion of the horseshoe crab Carcinoscorpius rotundicauda. Southeast Asian J Trop. Med. Publ. Health 1995, 26, 364–367. [Google Scholar]
- Lange, W.R. Puffer fish poisoning. Am. Fam. Physician 1990, 42, 1029–1033. [Google Scholar]
- Yang, C.C.; Liao, S.C.; Deng, J.F. Tetrodotoxin poisoning in Taiwan: an analysis of poison center data. Vet. Hum. Toxicol. 1996, 38, 282–286. [Google Scholar]
- Bradley, S.G; Klika, L.J. A fatal poisoning from the Oregon rough-skinned newt (Taricha granulosa). JAMA 1981, 246, 247. [Google Scholar]
- Sims, J.K; Ostman, D.C. Pufferfish poisoning: emergency diagnosis and management of mild human tetrodotoxication. Ann. Emerg. Med. 1986, 15, 1094–1098. [Google Scholar]
- Adams, M.E; Olivera, B.M. Neurotoxins: overview of an emerging research technology. Trends Neurosci. 1994, 17, 151–155. [Google Scholar]
- EC. Council Directive 91/493/EEC of 22 July 1991 laying down the health conditions for the production and the placing on the market of fishery products. Offic. J. L Counc. Eur. Communities 1991, 332, 15–34. [Google Scholar]
- Neagu, D.; Micheli, L.; Palleschi, G. Study of a toxin-alkaline phosphatase conjugate for the development of an immunosensor for tetrodotoxin determination. Anal. BioAnal. Chem. 2006, 385, 1068–1074. [Google Scholar]
- Cheun, B.; Endo, H.; Hayashi, T.; Nagashima, Y.; Watanabe, E. Development of an ultra high sensitive tissue biosensor for determination of swellfish poisoning, tetrodotoxin. Biosens. Bioelectron. 1996, 11, 1185–1191. [Google Scholar]
- Cheun, B.S.; Loughran, M.; Hayashi, T.; Nagashima, Y.; Watanabe, E. Use of a channel biosensor for the assay of paralytic shellfish toxins. Toxicon 1998, 36, 1371–1381. [Google Scholar]
- Cheun, B.S.; Takagi, S.; Hayashi, T.; Nagashima, Y.; Watanabe, E. Determination of Na channel blockers in paralytic shellfish toxins and pufferfish toxins with a tissue biosensor. J. Nat. Toxins 1998, 7, 109–120. [Google Scholar]
- Pancrazio, J.J.; Gray, S.A.; Shubin, Y.S.; Kulagina, N.; Cuttino, D.S.; Shaffer, K.M.; Eisemann, K.; Curran, A.; Zim, B.; Gross, G.W.; O'Shaughnessy, T.J. A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection. Biosens. Bioelectron. 2003, 18, 1339–1347. [Google Scholar]
- Pancrazio, J.J.; Kulagina, N.V.; Shaffer, K.M.; Gray, S.A.; O'Shaughnessy, T.J. Sensitivity of the neuronal network biosensor to environmental threats. J. Toxicol. Environ. Health A 2004, 67, 809–818. [Google Scholar]
- Kawatsu, K.; Hamano, Y.; Yoda, T.; Terano, Y.; Shibata, T. Rapid and highly sensitive enzyme immunoassay for quantitative determination of tetrodotoxin. Jpn. J. Med. Sci. Biol. 1997, 50, 133–150. [Google Scholar]
- Rivera, V.R.; Poli, M.A.; Bignami, G.S. Prophylaxis and treatment with a monoclonal antibody of tetrodotoxin poisoning in mice. Toxicon 1995, 33, 1231–1237. [Google Scholar]
- Gallacher, S; Birkbeck, T.H. A tissue culture assay for direct detection of sodium channel blocking toxins in bacterial culture supernates. FEMS Microbiol. Lett. 1992, 71, 101–107. [Google Scholar]
- Zhang, Y.L.; Dunlop, J.; Dalziel, J.E. Recombinant human voltage-gated skeletal muscle sodium channels are pharmacologically functional in planar lipid bilayers. Biosens. Bioelectron. 2007, 22, 1006–1012. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vilariño, N.; Fonfría, E.S.; Louzao, M.C.; Botana, L.M. Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins. Sensors 2009, 9, 9414-9443. https://doi.org/10.3390/s91109414
Vilariño N, Fonfría ES, Louzao MC, Botana LM. Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins. Sensors. 2009; 9(11):9414-9443. https://doi.org/10.3390/s91109414
Chicago/Turabian StyleVilariño, Natalia, Eva S. Fonfría, M. Carmen Louzao, and Luis M. Botana. 2009. "Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins" Sensors 9, no. 11: 9414-9443. https://doi.org/10.3390/s91109414
APA StyleVilariño, N., Fonfría, E. S., Louzao, M. C., & Botana, L. M. (2009). Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins. Sensors, 9(11), 9414-9443. https://doi.org/10.3390/s91109414