Radiopharmaceutical Switch Maintenance for Relapsed Ovarian Carcinoma
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cancer Stat Facts: Ovarian Cancer. Available online: Seer.cancer.gov/statfacts/html/ovary.html (accessed on 22 June 2020).
- Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Boergen, R. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A Gynecologic Oncology Group study. J. Clin. Oncol. 2003, 21, 3194–3200. [Google Scholar] [CrossRef] [PubMed]
- Fung-Kee-Fung, M.; Oliver, T.; Elit, L.; Oza, A.; Hirte, H.W.; Bryson, P. Optimal chemotherapy treatment for women with recurrent ovarian cancer. Curr. Oncol. 2007, 14, 195–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leijen, S.; van Geel, R.M.; Sonke, G.S.; de Jong, D.; Rosenberg, E.H.; Marchetti, S.; Pluim, D.; van Werkhoven, E.; Rose, S.; Lee, M.A.; et al. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J. Clin. Oncol. 2016, 34, 4354–4361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Martin, A.; Pothuri, B.; Vergote, I.; Christensen, R.D.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 2019, 381, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Zejula (niraparib). Available online: www.accessdata.fda.gov/drugsatfda_docs/label/2017/208447lbl.pdf (accessed on 1 July 2020).
- Freidlin, B.; Little, R.F.; Korn, E.L. Design issues in randomized clinical trials of maintenance therapies. J. Natl. Cancer Inst. 2015, 107. [Google Scholar] [CrossRef]
- Kunos, C.A.; Rubinstein, L.V.; Capala, J.; McDonald, M.A. Phase 0 radiopharmaceutical-agent clinical development. Front. Oncol. 2020, 10, 1310. [Google Scholar] [CrossRef]
- Kunos, C.A.; Capala, J.; Finnigan, S.; Smith, G.L.; Ivy, S.P. Radiopharmaceuticals for relapsed or refractory ovarian cancers. Front. Oncol. 2019, 9, 180. [Google Scholar] [CrossRef]
- Alvarez, R.D.; Partridge, E.E.; Khazaeli, M.B.; Plott, G.; Austin, M.; Kilgore, L.; Russell, C.D.; Liu, T.; Grizzle, W.E.; Schlom, J.; et al. Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: A phase I/II study. Gynecol. Oncol. 1997, 65, 94–101. [Google Scholar] [CrossRef]
- Meredith, R.F.; Alvarez, R.D.; Partridge, E.E.; Khazaeli, M.B.; Lin, C.Y.; Macey, D.J.; Austin, J.M., Jr.; Kilgore, L.C.; Grizzle, W.E.; Schlom, J.; et al. Intraperitoneal radioimmunochemotherapy of ovarian cancer: A phase I study. Cancer Biother. Radiopharm. 2001, 16, 305–315. [Google Scholar] [CrossRef]
- Alvarez, R.D.; Huh, W.K.; Khazaeli, M.B.; Meredith, R.F.; Partridge, E.E.; Kilgore, L.C.; Grizzle, W.E.; Shen, S.; Austin, J.M.; Barnes, M.N.; et al. A phase I study of combined modality 90Yttrium-CC49 intraperitoneal radioimmunotherapy for ovarian cancer. Clin. Cancer Res. 2002, 8, 2806–2811. [Google Scholar] [PubMed]
- Mahé, M.A.; Fumoleau, P.; Fabbro, M.; Guastalla, J.P.; Faurous, P.; Chauvot, P.; Chetanoud, L.; Classe, J.M.; Rouanet, P.; Chatal, J.F. A phase II study of intraperitoneal radioimmunotherapy with iodine-131-labeled monoclonal antibody OC-125 in patients with residual ovarian carcinoma. Clin. Cancer Res. 1999, 5 (Suppl. S10), 3249–3253. [Google Scholar]
- Verheijen, R.H.; Massuger, L.F.; Benigno, B.B.; Epenetos, A.A.; Lopes, A.; Soper, J.T.; Markowska, J.; Vyzula, R.; Jobling, T.; Stamp, G.; et al. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J. Clin. Oncol. 2006, 24, 571–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulligan, T.; Carrasquillo, J.A.; Chung, Y.; Milenic, D.E.; Schlom, J.; Feuerstein, I.; Paik, C.; Perentesis, P.; Reynolds, J.; Curt, G.; et al. Phase I study of intravenous 177Lu-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. Clin. Cancer Res. 1995, 1, 1447–1454. [Google Scholar] [PubMed]
- Schlom, J.; Siler, K.; Milenic, D.E.; Eggensperger, D.; Colcher, D.; Miller, L.S.; Houchens, D.; Cheng, R.; Kaplan, D.; Goeckeler, W. Monoclonal antibody-based therapy of a human tumor xenograph with a 177lutetium-labeled immunoconjugate. Cancer Res. 1991, 51, 2889–2896. [Google Scholar] [PubMed]
- Murray, J.L.; Macey, D.J.; Grant, E.J.; Rosenblum, M.G.; Kasi, L.P.; Zhang, H.Z.; Katz, R.L.; Rieger, P.T.; LeBherz, D.; Bhadkamkar, V.; et al. Enhanced TAG-72 expression and tumor uptake of radiolabeled monoclonal antibody CC49 in metastatic breast cancer patients following α-interferon treatment. Cancer Res. 1995, 55, 5925–5928. [Google Scholar] [PubMed]
- Roselli, M.; Guadagni, F.; Buonomo, O.; Belardi, A.; Vittorini, V.; Mariani-Costantini, R.; Greiner, J.W.; Casciani, C.U.; Schlom, J. Systemic administration of recombinant interferon α in carcinoma patients upregulates the expression of the carcinoma-associated antigens tumor-associated glycoprotein-72 and carcinoembryonic antigen. J. Clin. Oncol. 1996, 14, 2031–2042. [Google Scholar] [CrossRef]
- Steren, A.; Sevin, B.; Perras, J.; Angioli, R.; Nguyen, H.; Guerra, L.; Koechli, O.; and Averette, H. Taxol sensitizes human ovarian cancer cells to radiation. Gynecol. Oncol. 1993, 48, 252–258. [Google Scholar] [CrossRef]
- Karlsson, J.; Hagemann, U.B.; Schatz, C.; Grant, D.; Kristian, A.; Ellingsen, C.; Mihaylova, D.; Geraudie, S.; Indrevoil, B.; Wirnitzer, U.; et al. HER2-targeted thorium-227 conjugate (HER2-TTC): Efficacy in preclinical models of trastuzumab and T-DM1 resistance. Cancer Res. 2017, 77, 5859. [Google Scholar] [CrossRef]
- Chung, Y.-W.; Kim, S.; Hong, J.-H.; Lee, J.-K.; Lee, N.-W.; Lee, Y.-S.; Song, J.-Y. Overexpression of HER2/HER3 and clinical feature of ovarian cancer. J. Gynecol. Oncol. 2019, 30, 75. [Google Scholar] [CrossRef]
- Schmoeckel, E.; Hofmann, S.; Fromberger, D.; Rottmann, M.; Luthardt, B.; Burges, A.; Jeschke, U.; Kirchner, T.; Lax, S.F.; Mayr, D. Comprehensive analysis of PD-L1 expression, HER2 amplification, ALK/EML4 fusion, and mismatch repair deficiency as putative predictive and prognostic factors in ovarian carcinoma. Virchows Arch. 2019, 474, 599–608. [Google Scholar] [CrossRef]
- Dijkers, E.C.; Oude Munnink, T.H.; Kosterink, J.G.; Brouwers, A.H.; Jager, P.L.; de Jong, J.R.; van Dongen, G.A.; Schroder, C.P.; Lub-de Hooge, M.N.; Vries, E.G. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharm. Ther. 2010, 87, 586–592. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, J.A.; Lewis, J.S.; Pandit-Taskar, N.; Fleming, S.E.; Schöder, H.; Larson, S.M.; Beylergil, V.; Ruan, S.; Lyashchenko, S.K.; Zanzonico, P.B.; et al. Pharmacokinetics, biodistribution, and radiation dosimetry for 89Zr-trastuzumab in patients with esophagogastric cancer. J. Nucl. Med. 2018, 59, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, N.; Bruland, Ø.S.; Brevik, E.M.; Dahle, J. Preclinical evaluation of 227Th-labeled and 177Lu-labeled trastuzumab in mice with HER-2-positive ovarian cancer xenografts. Nucl. Med. Commun. 2012, 33, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Al-Saden, N.; Lam, H.; Mobus, J.; Reilly, R.M.; Winnink, M.A. A Comparison of DFO and DFO* conjugated to trastuzumab-DM1 for complexing 89Zr—in vitro stability and in vivo microPET/CT imaging studies in NOD/SCID mice with HER2-positive SK-OV-3 human ovarian cancer xenografts. Nucl. Med. Biol. 2020, 84–85, 11–19. [Google Scholar] [CrossRef]
- Palm, S.; Enmon, R.M., Jr.; Matei, C.; Kolbert, K.S.; Xu, S.; Zanzonico, P.B.; Finn, R.L.; Koutcher, J.A.; Larson, S.M.; Sgouros, G. Pharmacokinetics and biodistribution of 86Y-trastuzumab for 90Y dosimetry in an ovarian carcinoma model: Correlative MicroPET and MRI. J. Nucl. Med. 2003, 44, 1148–1155. [Google Scholar] [PubMed]
- Meredith, R.F.; Torgue, J.J.; Shen, S.; Fisher, D.R.; Banaga, E.P.; Bunch, P.W.; Morgan, D.; Straughn, J.M., Jr. Dose escalation and dosimetry of first-in-human α radioimmunotherapy with 212Pb-TCMC-trastuzumab. J. Nucl. Med. 2014, 55, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Meredith, R.F.; Torgue, J.J.; Rozgaja, T.A.; Banaga, E.P.; Bunch, P.W.; Alvarez, R.D.; Straughn, J.M., Jr.; Dobelbower, M.C.; Lowy, A.M. Safety and outcome measures of first-in-human intraperitoneal α radioimmunotherapy with 212Pb-TCMC-trastuzumab. Am. J. Clin. Oncol. 2018, 41, 716–721. [Google Scholar] [CrossRef]
- Kunos, C.A.; Abdallah, R. Financial Toxicity Encountered in Therapeutic Radiopharmaceutical Clinical Development for Ovarian Cancer. Pharmaceuticals 2020, 13, 181. [Google Scholar] [CrossRef]
Disease Setting | N | Agents | Treatment Regimen | Platinum-Sensitive Patients | Ref. | |||
---|---|---|---|---|---|---|---|---|
Dose | Day | Cycle(s) | (%) <6 mo. | (%) ≥6 mo. | ||||
recurrent or refractory | 27 | 177lutetium-CC49 antibody | 45 mCi m−2 (1665 MBq) | 1 | 1 | 3 (11) | 24 (89) | [10] |
recurrent or refractory | 44 | 177lutetium-CC49 antibody paclitaxel | 40 mCi m−2 (1480 MBq)100 mg m−2 | 1 −2 | 1 | 43 (98) | 1 (2) | [11] |
recurrent or refractory | 20 | 90yttrium-CC49 antibody paclitaxel | 24 mCi m−2 (888 MBq)100 mg m−2 | 1 −2 | 1 | 11 (55) | 9 (45) | [12] |
post-second look surgery | 6 | 131iodine- OC-125 antibody | 120 mCi (4440 MBq) | 1 | 1 | 6 (100) | 0 (0) | [13] |
post-second look surgery | 447 | 90yttrium-muHMFG1 antibody | 18 mCi m−2 (666 MBq) | 1 | 1 | 99 (44) | 143 (56) | [14] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunos, C.A.; Capala, J. Radiopharmaceutical Switch Maintenance for Relapsed Ovarian Carcinoma. Pharmaceuticals 2020, 13, 287. https://doi.org/10.3390/ph13100287
Kunos CA, Capala J. Radiopharmaceutical Switch Maintenance for Relapsed Ovarian Carcinoma. Pharmaceuticals. 2020; 13(10):287. https://doi.org/10.3390/ph13100287
Chicago/Turabian StyleKunos, Charles A., and Jacek Capala. 2020. "Radiopharmaceutical Switch Maintenance for Relapsed Ovarian Carcinoma" Pharmaceuticals 13, no. 10: 287. https://doi.org/10.3390/ph13100287
APA StyleKunos, C. A., & Capala, J. (2020). Radiopharmaceutical Switch Maintenance for Relapsed Ovarian Carcinoma. Pharmaceuticals, 13(10), 287. https://doi.org/10.3390/ph13100287