Association of 5-FU Therapeutic Drug Monitoring to DPD Phenotype Assessment May Reduce 5-FU Under-Exposure
Abstract
:1. Introduction
2. Results
2.1. Patient Population and Treatment
2.2. Intra-Individual Variability of Uracilemia and UH2/U Ratio
2.3. Relationships between Genotype and U or UH2/U Ratio
2.4. Relationships between 5-FU Pharmacokinetics and U or UH2/U Ratio
2.5. Dose Adaptation at Subsequent Cycles for Patients with U ≥ 16 ng/mL
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. DPD Phenotyping
4.3. DPYD Genotyping
4.4. 5-FU Administration, Blood Sampling, and Plasma Concentration Determination
4.5. Dose Adaptation at Subsequent Cycles for Patients with U 16 ng/mL
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Capitain, O.; Boisdron-Celle, M.; Poirier, A.-L.; Abadie-Lacourtoisie, S.; Morel, A.; Gamelin, E. The influence of fluorouracil outcome parameters on tolerance and efficacy in patients with advanced colorectal cancer. Pharmacogenomics J. 2008, 8, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Tsalic, M.; Bar-Sela, G.; Beny, A.; Visel, B.; Haim, N. Severe toxicity related to the 5-fluorouracil/leucovorin combination (the Mayo Clinic regimen): A prospective study in colorectal cancer patients. Am. J. Clin. Oncol. 2003, 26, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Meulendijks, D.; Henricks, L.M.; Sonke, G.S.; Deenen, M.J.; Froehlich, T.K.; Amstutz, U.; Largiadèr, C.R.; Jennings, B.A.; Marinaki, A.M.; Sanderson, J.D.; et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: A systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015, 16, 1639–1650. [Google Scholar] [CrossRef]
- Meulendijks, D.; Henricks, L.M.; Jacobs, B.A.W.; Aliev, A.; Deenen, M.J.; de Vries, N.; Rosing, H.; van Werkhoven, E.; de Boer, A.; Beijnen, J.H.; et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br. J. Cancer 2017, 116, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.P.; Duarte, G.S.; Sterrantino, C.; Pais, H.L.; Quintela, A.; Martins, A.P.; Costa, J. Triplet (FOLFOXIRI) versus doublet (FOLFOX or FOLFIRI) backbone chemotherapy as first-line treatment of metastatic colorectal cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2017, 118, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Kaldate, R.R.; Haregewoin, A.; Grier, C.E.; Hamilton, S.A.; McLeod, H.L. Modeling the 5-Fluorouracil Area Under the Curve Versus Dose Relationship to Develop a Pharmacokinetic Dosing Algorithm for Colorectal Cancer Patients Receiving FOLFOX6. Oncologist 2012, 17, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Mattison, L.K.; Fourie, J.; Desmond, R.A.; Modak, A.; Saif, M.W.; Diasio, R.B. Increased Prevalence of Dihydropyrimidine Dehydrogenase Deficiency in African-Americans Compared with Caucasians. Clin. Cancer Res. 2006, 12, 5491–5495. [Google Scholar] [CrossRef] [Green Version]
- Etienne, M.C.; Lagrange, J.L.; Dassonville, O.; Fleming, R.; Thyss, A.; Renée, N.; Schneider, M.; Demard, F.; Milano, G. Population study of dihydropyrimidine dehydrogenase in cancer patients. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1994, 12, 2248–2253. [Google Scholar] [CrossRef]
- Launay, M.; Ciccolini, J.; Fournel, C.; Blanquicett, C.; Dupuis, C.; Fakhry, N.; Duffaud, F.; Salas, S.; Lacarelle, B. Upfront DPD deficiency detection to secure 5-FU administration: Part 2—Application to head-and-neck cancer patients. Clin. Cancer Drugs 2017, 4, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Beumer, J.H.; Chu, E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother. Pharmacol. 2016, 78, 447–464. [Google Scholar] [CrossRef]
- Caudle, K.E.; Thorn, C.F.; Klein, T.E.; Swen, J.J.; McLeod, H.L.; Diasio, R.B.; Schwab, M. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin. Pharmacol. Ther. 2013, 94, 640–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.W.; Wang, G.Q.; Wan, D.S.; Lu, Z.H.; Chen, Y.B.; Li, S.; Chen, G.; Pan, Z.Z. The dihydrouracil/uracil ratios in plasma and toxicities of 5-fluorouracil-based adjuvant chemotherapy in colorectal cancer patients. Chemotherapy 2007, 53, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Wettergren, Y.; Carlsson, G.; Odin, E.; Gustavsson, B. Pretherapeutic uracil and dihydrouracil levels of colorectal cancer patients are associated with sex and toxic side effects during adjuvant 5-fluorouracil-based chemotherapy. Cancer 2012, 118, 2935–2943. [Google Scholar] [CrossRef] [PubMed]
- Galarza, A.F.A.; Linden, R.; Antunes, M.V.; Hahn, R.Z.; Raymundo, S.; da Silva, A.C.C.; Staggemeier, R.; Spilki, F.R.; Schwartsmann, G. Endogenous plasma and salivary uracil to dihydrouracil ratios and DPYD genotyping as predictors of severe fluoropyrimidine toxicity in patients with gastrointestinal malignancies. Clin. Biochem. 2016, 49, 1221–1226. [Google Scholar] [CrossRef]
- Ciccolini, J.; Mercier, C.; Evrard, A.; Dahan, L.; Boyer, J.-C.; Duffaud, F.; Richard, K.; Blanquicett, C.; Milano, G.; Blesius, A.; et al. A rapid and inexpensive method for anticipating severe toxicity to fluorouracil and fluorouracil-based chemotherapy. Ther. Drug Monit. 2006, 28, 678–685. [Google Scholar] [CrossRef]
- Loriot, M.-A.; Ciccolini, J.; Thomas, F.; Barin-Le-Guellec, C.; Royer, B.; Milano, G.; Picard, N.; Becquemont, L.; Verstuyft, C.; Narjoz, C.; et al. Dihydropyrimidine dehydrogenase (DPD) deficiency screening and securing of fluoropyrimidine-based chemotherapies: Update and recommendations of the French GPCO-Unicancer and RNPGx networks. Bull. Cancer 2018, 105, 397–407. [Google Scholar] [CrossRef]
- Macaire, P.; Morawska, K.; Vincent, J.; Quipourt, V.; Marilier, S.; Ghiringhelli, F.; Bengrine-Lefevre, L.; Schmitt, A. Therapeutic drug monitoring as a tool to optimize 5-FU-based chemotherapy in gastrointestinal cancer patients older than 75 years. Eur. J. Cancer 2019, 111, 116–125. [Google Scholar] [CrossRef]
- Morawska, K.; Goirand, F.; Marceau, L.; Devaux, M.; Cueff, A.; Bertaut, A.; Vincent, J.; Bengrine-Lefevre, L.; Ghiringhelli, F.; Schmitt, A. 5-FU therapeutic drug monitoring as a valuable option to reduce toxicity in patients with gastrointestinal cancer. Oncotarget 2018, 9, 11559–11571. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, M.; Mueller, L.; Miller, M.C.; Link, K.; Holdenrieder, S.; Bertsch, T.; Kunzmann, V.; Stoetzer, O.J.; Suttmann, I.; Braess, J.; et al. Prospective, Multicenter Study of 5-Fluorouracil Therapeutic Drug Monitoring in Metastatic Colorectal Cancer Treated in Routine Clinical Practice. Clin. Colorectal Cancer 2016, 15, 381–388. [Google Scholar] [CrossRef]
- Saam, J.; Critchfield, G.C.; Hamilton, S.A.; Roa, B.B.; Wenstrup, R.J.; Kaldate, R.R. Body surface area-based dosing of 5-fluoruracil results in extensive interindividual variability in 5-fluorouracil exposure in colorectal cancer patients on FOLFOX regimens. Clin. Colorectal Cancer 2011, 10, 203–206. [Google Scholar] [CrossRef]
- Kline, C.L.; Sheikh, H.S.; Scicchitano, A.; Gingrich, R.; Beachler, C.; Finnberg, N.K.; Liao, J.; Sivik, J.; El-Deiry, W.S. Preliminary observations indicate variable patterns of plasma 5-fluorouracil (5-FU) levels during dose optimization of infusional 5-FU in colorectal cancer patients. Cancer Biol. Ther. 2011, 12, 557–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braiteh, F.S.; Salamone, S.J.; Li, Y.; Courtney, J.B.; Duda, M.; Diamond, S.; Miller, M.C. Pharmacokinetic (PK)-guided optimization of 5-fluorouracil (5FU) exposure in colorectal cancer (CRC) patients: U.S.-based clinical practices experience. J. Clin. Oncol. 2014, 32, 3574. [Google Scholar] [CrossRef]
- Lostia, A.M.; Lionetto, L.; Ialongo, C.; Gentile, G.; Viterbo, A.; Malaguti, P.; Paris, I.; Marchetti, L.; Marchetti, P.; De Blasi, A.; et al. A liquid chromatography-tandem mass spectrometry method for the determination of 5-Fluorouracil degradation rate by intact peripheral blood mononuclear cells. Ther. Drug Monit. 2009, 31, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Mattison, L.K.; Fourie, J.; Hirao, Y.; Koga, T.; Desmond, R.A.; King, J.R.; Shimizu, T.; Diasio, R.B. The uracil breath test in the assessment of dihydropyrimidine dehydrogenase activity: Pharmacokinetic relationship between expired 13CO2 and plasma [2-13C]dihydrouracil. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccolini, J.; Lacarelle, B.; Milano, G. PRIMUM NON NOCERE: Now and again an echo of DPD with capecitabine. Cancer Chemother. Pharmacol. 2017, 80, 1265–1266. [Google Scholar] [CrossRef] [PubMed]
- Sistonen, J.; Büchel, B.; Froehlich, T.K.; Kummer, D.; Fontana, S.; Joerger, M.; van Kuilenburg, A.B.; Largiadèr, C.R. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio. Pharmacogenomics 2014, 15, 1653–1666. [Google Scholar] [CrossRef]
- Pallet, N.; Hamdane, S.; Garinet, S.; Blons, H.; Zaanan, A.; Paillaud, E.; Taieb, J.; Laprevote, O.; Loriot, M.-A.; Narjoz, C. A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency. Br. J. Cancer 2020, 123, 811–818. [Google Scholar] [CrossRef]
- Boisdron-Celle, M.; Remaud, G.; Traore, S.; Poirier, A.L.; Gamelin, L.; Morel, A.; Gamelin, E. 5-Fluorouracil-related severe toxicity: A comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett. 2007, 249, 271–282. [Google Scholar] [CrossRef]
- Déporte-Féty, R.; Picot, M.; Amiand, M.; Moreau, A.; Campion, L.; Lanoë, D.; Renée, N.; Milano, G. High-performance liquid chromatographic assay with ultraviolet detection for quantification of dihydrofluorouracil in human lymphocytes: Application to measurement of dihydropyrimidine dehydrogenase activity. J. Chromatogr. B. Biomed. Sci. Appl. 2001, 762, 203–209. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, J.; Hu, P.; Hu, Y. Measurement of endogenous uracil and dihydrouracil in plasma and urine of normal subjects by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life. Sci. 2002, 769, 169–176. [Google Scholar] [CrossRef]
- Marin, C.; Krache, A.; Palmaro, C.; Lucas, M.; Hilaire, V.; Ugdonne, R.; de Victor, B.; Quaranta, S.; Solas, C.; Lacarelle, B.; et al. A Simple and Rapid UPLC-UV Method for Detecting DPD Deficiency in Patients with Cancer. Clin. Transl. Sci. 2020, 13, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henricks, L.M.; Jacobs, B.A.W.; Meulendijks, D.; Pluim, D.; van den Broek, D.; de Vries, N.; Rosing, H.; Beijnen, J.H.; Huitema, A.D.R.; Guchelaar, H.; et al. Food-effect study on uracil and dihydrouracil plasma levels as marker for dihydropyrimidine dehydrogenase activity in human volunteers. Br. J. Clin. Pharmacol. 2018, 84, 2761–2769. [Google Scholar] [CrossRef] [PubMed]
- Grem, J.L.; Yee, L.K.; Venzon, D.J.; Takimoto, C.H.; Allegra, C.J. Inter- and intraindividual variation in dihydropyrimidine dehydrogenase activity in peripheral blood mononuclear cells. Cancer Chemother. Pharmacol. 1997, 40, 117–125. [Google Scholar] [CrossRef] [PubMed]
Median [Min, Max] | Mean (±SD) | % (n) | |
---|---|---|---|
Sex | |||
Male | 52.7 (89) | ||
Female | 74.3 (80) | ||
Age (years) | 68 [40, 88] | 67 (±10) | |
Tumor localization | |||
Colorectal | 40.8 (69) | ||
Pancreas | 31.4 (53) | ||
Stomach | 11.2 (19) | ||
Others | 16.6 (28) | ||
Chemotherapy | |||
FOLFIRINOX | 44.4 (75) | ||
Simplified FOLFOX-6 | 28.4 (48) | ||
Docetaxel/FOLFOX-4 | 10.6 (18) | ||
Others | 16.6 (28) | ||
Biotherapy (bevacizumab, cetuximab, etc.) associated with the chemotherapy | 34.9 (59) | ||
Uracilemia (ng/mL) | 10.8 [3, 37.6] | 11.5 (±5.00) | |
UH2/U ratio | 10.1 [3, 21.6] | 10.7 (±4.29) | |
5-FU dose at first occasion (mg) | 4075 [850, 5800] | 3980 (±681) | |
5-FU AUC at first occasion (mg) | 16.6 [3.3, 42.0] | 16.9 (±5.96) | |
DPYD genotype | |||
Wild-type | 71.0 (120) | ||
*6 (heterozygous) | 11.8 (20) | ||
HapB3 (heterozygous) | 1.8 (3) | ||
*2A (heterozygous) | 0.6 (1) | ||
D949V (heterozygous) | 0.6 (1) | ||
Not known | 14.2 (24) |
Uracilemia (ng/mL) Median [Min, Max] | UH2/U Ratio Median [Min, Max] | 5-FU Clearance Median [Min, Max] | |
---|---|---|---|
DPYD wild-type | 11 [3, 37.6] | 9.6 [3, 21.6] | 235.0 [104.2, 1121] |
DPYD mutated | 7.7 [4.9, 19.10] | 12.9 [5.6, 18.4] | 246.4 [144.6, 308.5] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolat, M.; Macaire, P.; Goirand, F.; Vincent, J.; Hennequin, A.; Palmier, R.; Bengrine-Lefevre, L.; Ghiringhelli, F.; Royer, B.; Schmitt, A. Association of 5-FU Therapeutic Drug Monitoring to DPD Phenotype Assessment May Reduce 5-FU Under-Exposure. Pharmaceuticals 2020, 13, 416. https://doi.org/10.3390/ph13110416
Dolat M, Macaire P, Goirand F, Vincent J, Hennequin A, Palmier R, Bengrine-Lefevre L, Ghiringhelli F, Royer B, Schmitt A. Association of 5-FU Therapeutic Drug Monitoring to DPD Phenotype Assessment May Reduce 5-FU Under-Exposure. Pharmaceuticals. 2020; 13(11):416. https://doi.org/10.3390/ph13110416
Chicago/Turabian StyleDolat, Marine, Pauline Macaire, Françoise Goirand, Julie Vincent, Audrey Hennequin, Rémi Palmier, Leïla Bengrine-Lefevre, François Ghiringhelli, Bernard Royer, and Antonin Schmitt. 2020. "Association of 5-FU Therapeutic Drug Monitoring to DPD Phenotype Assessment May Reduce 5-FU Under-Exposure" Pharmaceuticals 13, no. 11: 416. https://doi.org/10.3390/ph13110416
APA StyleDolat, M., Macaire, P., Goirand, F., Vincent, J., Hennequin, A., Palmier, R., Bengrine-Lefevre, L., Ghiringhelli, F., Royer, B., & Schmitt, A. (2020). Association of 5-FU Therapeutic Drug Monitoring to DPD Phenotype Assessment May Reduce 5-FU Under-Exposure. Pharmaceuticals, 13(11), 416. https://doi.org/10.3390/ph13110416