Formulation and Optimization of Nanospanlastics for Improving the Bioavailability of Green Tea Epigallocatechin Gallate
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Method Development, Optimization and Validation
2.2. Preliminary Screening Studies
2.3. Analysis of the 23 Factorial Design of EGCG-Loaded SNVs
2.3.1. The Effect of Formulation Variables on EE% of EGCG-Loaded SNVs
2.3.2. The Effect of Formulation Variables on Q12h of EGCG-Loaded Spanlastics
2.3.3. The Effect of Formulation Variables on PS of EGCG-Loaded SNVs
2.3.4. The Optimization of EGCG-Loaded SNVs
2.4. Comparative Study of the Optimized EGCG-Loaded SNVs and the Conventional Niosomes
2.4.1. Determination of EE%
2.4.2. In Vitro Release Study
2.4.3. Ex Vivo Intestinal Permeation Study
2.4.4. Measurement of Vesicle Deformability
2.4.5. The Stability Study
2.5. Characterization of the Optimized EGCG-Loaded Spanlastic Formula
2.5.1. Morphological Characterization by SEM
2.5.2. Determination of Particle Size and Zeta Potential
2.6. Pharmacokinetic Study
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. HPLC Analysis of EGCG Using a Newly Developed and Validated RP-HPLC Method of Instrumentation
Chromatographic Parameters
Preparation of Standard and Calibration Solutions of EGCG
Assay Validation
3.2.2. Preliminary Screening Studies
3.2.3. Preparation of EGCG-Loaded Spanlastics
3.2.4. Experimental Design
3.2.5. In Vitro Characterization of EGCG-Loaded Nanospanlastics
Determination of Drug Content and Entrapment Efficiency of EGCG-Loaded Nanospanlastics
In Vitro Release Study of EGCG-Loaded SNVs
Determination of the Particle Size (PS) and Polydispersity Index (PDI) of EGCG-Loaded SNVs
3.2.6. Statistical Optimization of EGCG-Loaded SNVs
3.2.7. Comparative Study of the Optimized EGCG-Loaded Nanospanlastic Formula and the Conventional Niosome
Preparation of EGCG-Loaded Conventional Niosomes
Evaluation of EE%, Drug Content and the In Vitro Release Study
Ex Vivo Intestinal Permeation Study
Measurement of Vesicle Deformability
The Stability Test
3.2.8. Characterization of the Optimized EGCG-Loaded SNVs
Scanning Electron Microscopy (SEM)
Determination of Particle Size and Zeta Potential
3.2.9. Pharmacokinetic Study
3.2.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rashidinejad, A.; Birch, E.J.; Sun-Waterhouse, D.; Everett, D.W. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 2014, 156, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Ruan, C.; Zhang, Y.; Wang, J.; Han, J.; Shao, Z.; Sun, Y.; Liang, J. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. J. Funct. Foods 2020, 65, 103732. [Google Scholar] [CrossRef]
- Ramadan, G.; Nadia, M.; Abd El-Ghffar, E.A. Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. Br. J. Nutr. 2009, 102, 1611–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sayed, E.; Abdel-Daim, M.M. Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri. Drug Dev. Res. 2018, 79, 157–164. [Google Scholar] [CrossRef]
- Pandit, A.P.; Joshi, S.R.; Dalal, P.S.; Patole, V.C. Curcumin as a permeability enhancer enhanced the antihyperlipidemic activity of dietary green tea extract. BMC Complement. Altern. Med. 2019, 19, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fujiki, H.; Suganuma, M. Green tea: An effective synergist with anticancer drugs for tertiary cancer prevention. Cancer Lett. 2012, 324, 119–125. [Google Scholar] [CrossRef]
- Grassi, D.; Desideri, G.; Di Giosia, P.; De Feo, M.; Fellini, E.; Cheli, P.; Ferri, L.; Ferri, C. Tea, flavonoids, and cardiovascular health: Endothelial protection. Am. J. Clin. Nutr. 2013, 98, 1660S–1666S. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Deng, Y.; Lu, B.-M.; Liu, Y.-X.; Li, J.; Bao, J.-K. Green tea catechins: A fresh flavor to anticancer therapy. Apoptosis 2014, 19, 1–18. [Google Scholar] [CrossRef]
- Gu, J.-W.; Makey, K.L.; Tucker, K.B.; Chinchar, E.; Mao, X.; Pei, I.; Thomas, E.Y.; Miele, L. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc. Cell 2013, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Crespy, V.; Williamson, G. A review of the health effects of green tea catechins in in vivo animal models. J. Nutr. 2004, 134, 3431S–3440S. [Google Scholar] [CrossRef]
- Prasanth, M.I.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, S.; Osakabe, N.; Natsume, M.; Muto, Y.; Takizawa, T.; Terao, J. In vivo comparison of the bioavailability of (+)-catechin,(−)-epicatechin and their mixture in orally administered rats. J. Nutr. 2001, 131, 2885–2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.-Y.; Li, X.-M.; Liang, J.-P.; Xiang, L.-P.; Wang, K.-R.; Shi, Y.-L.; Yang, R.; Shi, M.; Ye, J.-H.; Lu, J.-L. Bioavailability of tea catechins and its improvement. Molecules 2018, 23, 2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Q.; Li, D.; Zhou, Y.; Yang, J.; Yang, W.; Zhou, G.; Wen, J. Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int. J. Nanomed. 2014, 9, 2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dube, A.; Ng, K.; Nicolazzo, J.A.; Larson, I. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chem. 2010, 122, 662–667. [Google Scholar] [CrossRef]
- Mahale, N.; Thakkar, P.; Mali, R.; Walunj, D.; Chaudhari, S. Niosomes: Novel sustained release nonionic stable vesicular systems—An overview. Adv. Colloid Interface Sci. 2012, 183, 46–54. [Google Scholar] [CrossRef]
- Zou, L.-Q.; Peng, S.-F.; Liu, W.; Gan, L.; Liu, W.-l.; Liang, R.-H.; Liu, C.-M.; Niu, J.; Cao, Y.-l.; Liu, Z. Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation. Food Res. Int. 2014, 64, 492–499. [Google Scholar] [CrossRef]
- Badria, F.; Mazyed, E. Formulation of Nanospanlastics as a Promising Approach for Improving the Topical Delivery of a Natural Leukotriene Inhibitor (3- Acetyl-11-Keto-β-Boswellic Acid): Statistical Optimization, in vitro Characterization, and ex vivo Permeation Study. Drug Des. Dev. Ther. 2020, 14, 3697. [Google Scholar] [CrossRef]
- Al-Mahallawi, A.M.; Khowessah, O.M.; Shoukri, R.A. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int. J. Pharm. 2017, 522, 157–164. [Google Scholar] [CrossRef]
- Kakkar, S.; Kaur, I.P. Spanlastics—A novel nanovesicular carrier system for ocular delivery. Int. J. Pharm. 2011, 413, 202–210. [Google Scholar] [CrossRef]
- Zheng, W.-S.; Fang, X.-Q.; Wang, L.-l.; Zhang, Y.-J. Preparation and quality assessment of itraconazole transfersomes. Int. J. Pharm. 2012, 436, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, S.; Saini, V.; Magon, N.; Bala, S.; Jhawat, V. Vesicular drug delivery systems: A novel approach for drug targeting. Brain 2013, 1, 11. [Google Scholar]
- Badria, F.; Fayed, H.A.; Ibraheem, A.K.; Mazyed, E.A. Formulation of Sodium Valproate Nanospanlastics as a Promising Approach for Drug Repurposing in the Treatment of Androgenic Alopecia. Pharmaceutics 2020, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- McCalley, D.V. Selection of suitable stationary phases and optimum conditions for their application in the separation of basic compounds by reversed-phase HPLC. J. Sep. Sci. 2003, 26, 187–200. [Google Scholar] [CrossRef]
- Hopkins, T. The role of methanol and acetonitrile as organic modifiers in reversed-phase liquid chromatography. Chromatogr. Today 2019, 26, 24–26. [Google Scholar]
- European Agency for the Evaluation of Medical Products. ICH Topic Q 2B Note for Guidance on Validation of Analytical Procedures: Methodology; European Agency for the Evaluation of Medical Products: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Li, D.; Martini, N.; Wu, Z.; Wen, J. Development of an isocratic HPLC method for catechin quantification and its application to formulation studies. Fitoterapia 2012, 83, 1267–1274. [Google Scholar] [CrossRef]
- Yassin, G.E.; Amer, R.I.; Fayez, A.M. Carbamazepine loaded vesicular structures for enhanced brain targeting via intranasal route: Optimization, in vitro evaluation, and in vivo study. Int. J. Appl. Pharm. 2019, 11, 264–274. [Google Scholar] [CrossRef]
- Ngan, C.L.; Basri, M.; Lye, F.F.; Masoumi, H.R.F.; Tripathy, M.; Karjiban, R.A.; Abdul-Malek, E. Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene. Int. J. Nanomed. 2014, 9, 4375. [Google Scholar] [CrossRef] [Green Version]
- Li, P.-H.; Chiang, B.-H. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochem. 2012, 19, 192–197. [Google Scholar] [CrossRef]
- Fahmy, A.M.; El-Setouhy, D.A.; Ibrahim, A.B.; Habib, B.A.; Tayel, S.A.; Bayoumi, N.A. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: In vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. 2018, 25, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Pandit, J.; Garg, M.; Jain, N.K. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J. Liposome Res. 2014, 24, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Abdelbary, G.; El-Gendy, N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS Pharmscitech 2008, 9, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.; Gonzalez-Mira, E.; Egea, M.; Garcia, M.; Souto, E. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int. J. Pharm. 2010, 393, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Aziz, D.E.; Abdelbary, A.A.; Elassasy, A.I. Implementing Central Composite Design for Developing Transdermal Diacerein-Loaded Niosomes: Ex vivo Permeation and In vivo Deposition. Curr. Drug Deliv. 2018, 15, 1330–1342. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.-Y.; Yu, S.-Y.; Wu, P.-C.; Huang, Y.-B.; Tsai, Y.-H. In vitro skin permeation of estradiol from various proniosome formulations. Int. J. Pharm. 2001, 215, 91–99. [Google Scholar] [CrossRef]
- Nematollahi, M.H.; Pardakhty, A.; Torkzadeh-Mahanai, M.; Mehrabani, M.; Asadikaram, G. Changes in physical and chemical properties of niosome membrane induced by cholesterol: A promising approach for niosome bilayer intervention. RSC Adv. 2017, 7, 49463–49472. [Google Scholar] [CrossRef] [Green Version]
- Dharashivkar, S.; Sahasrabuddhe, S.; Saoji, A. Silver sulfadiazine niosomes: A novel sustained release once a day formulation for burn treatment. Int. J. Pharm. Pharm. Sci. 2014, 6, 611–616. [Google Scholar]
- Ruckmani, K.; Sankar, V. Formulation and optimization of zidovudine niosomes. AAPS Pharmscitech 2010, 11, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Sambhakar, S.; Paliwal, S.; Sharma, S.; Singh, B. Formulation of risperidone loaded proniosomes for effective transdermal delivery: An in-vitro and in-vivo study. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 239–247. [Google Scholar] [CrossRef]
- Mazyed, E.A.; Abdelaziz, A.E. Fabrication of Transgelosomes for Enhancing the Ocular Delivery of Acetazolamide: Statistical Optimization, In Vitro Characterization, and In Vivo Study. Pharmaceutics 2020, 12, 465. [Google Scholar] [CrossRef]
- Safwat, M.A.; Kandil, B.A.; Elblbesy, M.A.; Soliman, G.M.; Eleraky, N.E. Epigallocatechin-3-Gallate-Loaded Gold Nanoparticles: Preparation and Evaluation of Anticancer Efficacy in Ehrlich Tumor-Bearing Mice. Pharmaceuticals 2020, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- El Zaafarany, G.M.; Awad, G.A.; Holayel, S.M.; Mortada, N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 2010, 397, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A.A.; Eladawy, S.A.; El-Enin, A.S.M.A.; Hussein, Z.M. Development and investigation of timolol maleate niosomal formulations for the treatment of glaucoma. J. Pharm. Investig. 2020, 50, 59–70. [Google Scholar] [CrossRef]
- Khoee, S.; Yaghoobian, M. Niosomes: A novel approach in modern drug delivery systems. In Nanostructures for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2017; pp. 207–237. [Google Scholar]
- Taymouri, S.; Varshosaz, J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv. Biomed. Res. 2016, 5. [Google Scholar] [CrossRef]
- Baker, R. Controlled release: Mechanisms and rates. Control. Release Biol. Act. Agents 1974, 15, 15–71. [Google Scholar]
- Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 1961, 50, 874–875. [Google Scholar] [CrossRef]
- Dora, C.P.; Singh, S.K.; Kumar, S.; Datusalia, A.K.; Deep, A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol. Pharm. 2010, 67, 283–290. [Google Scholar]
- Akbari, V.; Abedi, D.; Pardakhty, A.; Sadeghi-Aliabadi, H. Release studies on ciprofloxacin loaded non-ionic surfactant vesicles. Avicenna J. Med. Biotechnol. 2015, 7, 69. [Google Scholar] [PubMed]
- Yoshioka, T.; Sternberg, B.; Florence, A.T. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int. J. Pharm. 1994, 105, 1–6. [Google Scholar] [CrossRef]
- ElMeshad, A.N.; Mohsen, A.M. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016, 23, 2115–2123. [Google Scholar] [CrossRef] [PubMed]
- Basalious, E.B.; Shawky, N.; Badr-Eldin, S.M. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: Development and optimization. Int. J. Pharm. 2010, 391, 203–211. [Google Scholar] [CrossRef] [PubMed]
- John, B. Application of desirability function for optimizing the performance characteristics of carbonitrided bushes. Int. J. Ind. Eng. Comput. 2013, 4, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Salama, H.A.; Mahmoud, A.A.; Kamel, A.O.; Abdel Hady, M.; Awad, G.A. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J. Liposome Res. 2012, 22, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, A.; Jantrawut, P.; Manosroi, J. Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. Int. J. Pharm. 2008, 360, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Leonyza, A.; Surini, S. Optimization of sodium deoxycholate-based transfersomes for percutaneous delivery of peptides and proteins. Int. J. Appl. Pharm. 2019, 11, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Garg, V.; Singh, H.; Bhatia, A.; Raza, K.; Singh, S.K.; Singh, B.; Beg, S. Systematic development of transethosomal gel system of piroxicam: Formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS Pharmscitech 2017, 18, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Das, M.K.; Palei, N.N. Sorbitan ester niosomes for topical delivery of rofecoxib. Indian J. Exp. Biol. 2011, 49, 438–445. [Google Scholar]
- Mazyed, E.A.; Zakaria, S. Enhancement of dissolution characteristics of clopidogrel bisulphate by proniosomes. Int. J. Appl. Pharm. 2019, 11, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Sengodan, T.; Sunil, B.; Vaishali, R.; Chandra, R.J.; Nagar, S.; Nagar, O. Formulation and evaluation of maltodextrin based proniosomes loaded with indomethacin. Int. J. Pharmtech Res. 2009, 1, 517–523. [Google Scholar]
- Junyaprasert, V.B.; Teeranachaideekul, V.; Supaperm, T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS Pharmscitech 2008, 9, 851. [Google Scholar] [CrossRef]
- Caracciolo, G.; Pozzi, D.; Caminiti, R.; Marianecci, C.; Moglioni, S.; Carafa, M.; Amenitsch, H. Effect of hydration on the structure of solid-supported Niosomal membranes investigated by in situ energy dispersive X-ray diffraction. Chem. Phys. Lett. 2008, 462, 307–312. [Google Scholar] [CrossRef]
- Pawar, H.A.; Attarde, V.B.; Parag Subhash, G. Optimization of Bifonazole-Loaded Nisomal Formulation Using Plackett-Burman Design and 23 Factorial Design. Open Pharm. Sci. J. 2016, 3, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Uchechi, O.; Ogbonna, J.D.; Attama, A.A. Nanoparticles for dermal and transdermal drug delivery. Appl. Nanotechnol. Drug Deliv. 2014, 4, 193–227. [Google Scholar]
- Arzani, G.; Haeri, A.; Daeihamed, M.; Bakhtiari-Kaboutaraki, H.; Dadashzadeh, S. Niosomal carriers enhance oral bioavailability of carvedilol: Effects of bile salt-enriched vesicles and carrier surface charge. Int. J. Nanomed. 2015, 10, 4797. [Google Scholar]
- Dube, A.; Nicolazzo, J.A.; Larson, I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur. J. Pharm. Sci. 2010, 41, 219–225. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Q.; Zhao, G.; Yao, W.; Xia, Q. Improved oral absorption of (−)-epigallocatechin-3-gallate via self-double-emulsifying solid formulation. Eur. J. Lipid Sci. Technol. 2016, 118, 1115–1124. [Google Scholar] [CrossRef]
- Smith, A.J.; Kavuru, P.; Arora, K.K.; Kesani, S.; Tan, J.; Zaworotko, M.J.; Shytle, R.D. Crystal engineering of green tea epigallocatechin-3-gallate (EGCg) cocrystals and pharmacokinetic modulation in rats. Mol. Pharm. 2013, 10, 2948–2961. [Google Scholar] [CrossRef]
- ICH. Q2B Validation of Analytical Procedures: Methodology; ICH: Geneva, Switzerland, 1997; Volume 62. [Google Scholar]
- Peris-Vicente, J.; Esteve-Romero, J.; Carda-Broch, S. Validation of analytical methods based on chromatographic techniques: An overview. Anal. Sep. Sci. 2015, 1757–1808. [Google Scholar] [CrossRef]
- Elkhoudary, M.M.; Abdel Salam, R.A.; Hadad, G.M. Development and optimization of HPLC analysis of metronidazole, diloxanide, spiramycin and cliquinol in pharmaceutical dosage forms using experimental design. J. Chromatogr. Sci. 2016, 54, 1701–1712. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Inactive ingredient search for approved drug products. In FDA Database; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2017. [Google Scholar]
- U.S. Food and Drug Administration. GRAS Substances (SCOGS) Database; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2012.
- Gaafar, P.M.; Abdallah, O.Y.; Farid, R.M.; Abdelkader, H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J. Liposome Res. 2014, 24, 204–215. [Google Scholar] [CrossRef]
- Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010, 20, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Farghaly, D.A.; Aboelwafa, A.A.; Hamza, M.Y.; Mohamed, M.I. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: Optimization using experimental design and in vivo evaluation. AAPS Pharmscitech 2017, 18, 2898–2909. [Google Scholar] [CrossRef] [PubMed]
- El Gamal, S.S.; Naggar, V.F.; Allam, A.N. Optimization of acyclovir oral tablets based on gastroretention technology: Factorial design analysis and physicochemical characterization studies. Drug Dev. Ind. Pharm. 2011, 37, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Badria, F.A.; Abdelaziz, A.E.; Hassan, A.H.; Elgazar, A.A.; Mazyed, E.A. Development of Provesicular Nanodelivery System of Curcumin as a Safe and Effective Antiviral Agent: Statistical Optimization, In Vitro Characterization, and Antiviral Effectiveness. Molecules 2020, 25, 5668. [Google Scholar] [CrossRef]
- Larsson, J. Methods for measurement of solubility and dissolution rate of sparingly soluble drugs. Master’s Thesis, Lund University, Lund, Sweden, 2009. [Google Scholar]
- Sanna, V.; Singh, C.K.; Jashari, R.; Adhami, V.M.; Chamcheu, J.C.; Rady, I.; Sechi, M.; Mukhtar, H.; Siddiqui, I.A. Targeted nanoparticles encapsulating (−)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sci. Rep. 2017, 7, 41573. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elal, R.M.; Shamma, R.N.; Rashed, H.M.; Bendas, E.R. Trans-nasal zolmitriptan novasomes: In-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv. 2016, 23, 3374–3386. [Google Scholar] [CrossRef] [Green Version]
- Mali, N.; Darandale, S.; Vavia, P. Niosomes as a vesicular carrier for topical administration of minoxidil: Formulation and in vitro assessment. Drug Deliv. Transl. Res. 2013, 3, 587–592. [Google Scholar] [CrossRef]
- Hollands, C. The Animals (scientific procedures) Act 1986. Lancet (Lond. Engl.) 1986, 2, 32. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Directive, E. 63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 276, 33–79. [Google Scholar]
- Sallam, M.A.; Boscá, M.T.M. Optimization, ex vivo permeation, and stability study of lipid nanocarrier loaded gelatin capsules for treatment of intermittent claudication. Int. J. Nanomed. 2015, 10, 4459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, S.K.; Karki, R.; Puttegowda, V.D.; Harinarayana, D. In vitro intestinal permeability studies and pharmacokinetic evaluation of famotidine microemulsion for oral delivery. Int. Sch. Res. Not. 2014, 2014, 452051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mady, O.Y.; Donia, A.A.; Al-Shoubki, A.A.; Qasim, W. Paracellular pathway enhancement of metformin hydrochloride via molecular dispersion in span 60 microparticles. Front. Pharmacol. 2019, 10, 713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-mahallawi, A.M.; Khowessah, O.M.; Shoukri, R.A. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: In-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int. J. Pharm. 2014, 472, 304–314. [Google Scholar] [CrossRef]
- Bansal, S.; Aggarwal, G.; Chandel, P.; Harikumar, S. Design and development of cefdinir niosomes for oral delivery. J. Pharm. Bioall. Sci. 2013, 5, 318. [Google Scholar]
- Gupta, A.; Prajapati, S.K.; Balamurugan, M.; Singh, M.; Bhatia, D. Design and development of a proniosomal transdermal drug delivery system for captopril. Trop. J. Pharm. Res. 2007, 6, 687–693. [Google Scholar] [CrossRef]
- Goodlett, C.R.; Stringer, M.; LaCombe, J.; Patel, R.; Wallace, J.M.; Roper, R.J. Evaluation of the therapeutic potential of Epigallocatechin-3-gallate (EGCG) via oral gavage in young adult Down syndrome mice. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jung, Y.O.; Ryu, J.G.; Oh, H.J.; Son, H.J.; Lee, S.H.; Kwon, J.E.; Kim, E.K.; Park, M.K.; Park, S.H. Epigallocatechin-3-gallate ameliorates autoimmune arthritis by reciprocal regulation of T helper-17 regulatory T cells and inhibition of osteoclastogenesis by inhibiting STAT3 signaling. J. Leukoc. Biol. 2016, 100, 559–568. [Google Scholar] [CrossRef]
- Sezgin-Bayindir, Z.; Onay-Besikci, A.; Vural, N.; Yuksel, N. Niosomes encapsulating paclitaxel for oral bioavailability enhancement: Preparation, characterization, pharmacokinetics and biodistribution. J. Microencapsul. 2013, 30, 796–804. [Google Scholar] [CrossRef]
Formula | Variables | |||||
---|---|---|---|---|---|---|
Independent | Dependent | |||||
X1 | X2 | X3 | Y1 * | Y2 * | Y3 * | |
F1 | −1 | −1 | −1 | 88.04 ± 2.82 | 69.85 ± 1.33 | 263.6 ± 1.62 |
F2 | −1 | −1 | 1 | 92.35 ± 1.34 | 62.39 ± 2.14 | 229.0 ± 1.54 |
F3 | −1 | 1 | −1 | 70.53 ± 1.81 | 92.47 ± 1.28 | 318.8 ± 1.48 |
F4 # | −1 | 1 | 1 | 80.56 ± 1.57 | 84.98 ± 1.33 | 243.8 ± 1.24 |
F5 | 1 | −1 | −1 | 90.49 ± 1.22 | 74.97 ± 1.36 | 419.2 ± 1.82 |
F6 | 1 | −1 | 1 | 97.93 ± 1.28 | 70.02 ± 1.25 | 304.5 ± 1.55 |
F7 | 1 | 1 | −1 | 80.32 ± 1.38 | 94.52 ± 1.07 | 441.1 ± 2.03 |
F8 | 1 | 1 | 1 | 89.99 ± 2.16 | 90.08 ± 1.46 | 377.0 ± 1.93 |
Independent variables | Low (−1) | High (+1) | ||||
X1: Ratio of Span to EA | 3:2 | 4:1 | ||||
X2: Type of non-ionic surfactant | Span 60 | Span 80 | ||||
X3: Type of EA | Tween 80 | Tween 60 |
Responses | R2 | Adjusted R2 | Predicted R2 | Adequate Precision |
---|---|---|---|---|
EE% (Y1) | 0.9502 | 0.9129 | 0.8009 | 14.698 |
Q12h(Y2) | 0.9924 | 0.9867 | 0.9695 | 32.553 |
PS (Y3) | 0.9618 | 0.9331 | 0.8470 | 15.996 |
Independent Variable | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
EE% (Y1) | Model | 497.23 | 31 | 165.74 | 25.45 | 0.0046 |
X1 | 92.66 | 1 | 92.66 | 14.23 | 0.0196 | |
X2 | 280.95 | 1 | 280.95 | 43.14 | 0.0028 | |
X3 | 123.62 | 1 | 123.62 | 18.98 | 0.0121 | |
Q12h (Y2) | Model | 1022.56 | 3 | 340.85 | 173.49 | 0.0001 |
X1 | 49.54 | 1 | 49.54 | 25.22 | 0.0074 | |
X2 | 898.93 | 1 | 898.93 | 457.55 | <0.0001 | |
X3 | 74.09 | 1 | 74.09 | 37.71 | 0.0036 | |
PS (Y3) | Model | 43,375 | 3 | 14,458 | 33.30 | 0.0027 |
X1 | 29,598 | 1 | 29,598 | 44.67 | 0.0012 | |
X2 | 3383.46 | 1 | 3383.5 | 14.89 | 0.0388 | |
X3 | 10,393 | 1 | 10,393 | 40.34 | 0.0080 |
Formula | Zero Order | First Order | Higuchi Model | Hixson Crowell | Baker–Lonsdale |
---|---|---|---|---|---|
F1 | 0.9372 | −0.9740 | 0.9751 | 0.9643 | 0.9867 |
F2 | 0.9123 | −0.9517 | 0.9612 | 0.9398 | 0.9784 |
F3 | 0.9365 | −0.9767 | 0.9730 | 0.9728 | 0.9793 |
F4 | 0.9073 | −0.9595 | 0.9539 | 0.9460 | 0.9725 |
F5 | 0.9346 | −0.9729 | 0.9765 | 0.9618 | 0.9809 |
F6 | 0.9493 | −0.9777 | 0.9849 | 0.9697 | 0.9859 |
F7 | 0.9419 | −0.9888 | 0.9782 | 0.9852 | 0.9920 |
F8 | 0.9643 | −0.9944 | 0.9904 | 0.9912 | 0.9951 |
EGCG | 0.9953 | −0.9698 | 0.9998 | 0.9913 | 0.9887 |
Formula | * Jss (µg cm−2 h−1) | * KP (cm h−1) | ER |
---|---|---|---|
EGCG dispersion | 1.35 ± 0.11 | 0.0034 ± 0.12 | ------- |
Niosomal formula | 6.38 ± 1.23 | 0.0119 ± 0.14 | 4.73 |
F4 | 9.13 ± 1.34 | 0.0228 ± 0.13 | 6.76 |
Formula | Zero Order | First Order | Higuchi Model | Hixson Crowell | Baker–Lonsdale |
---|---|---|---|---|---|
F4 | 0.9779 | −0.9954 | 0.9974 | 0.9911 | 0.9985 |
Niosomal formula | 0.9642 | −0.9820 | 0.9931 | 0.9768 | 0.9970 |
EGCG | 0.8841 | −0.8930 | 0.9396 | 0.8901 | 0.9263 |
Formula | PS before Extrusion (nm) | PS after Extrusion(nm) | DI |
---|---|---|---|
F4 | 243.8 ± 1.24 | 240.9 ± 1.27 | 19.27 ± 1.2 |
Niosomes | 287.4 ± 1.52 | 58.2 ± 1.14 | 1.48 ± 0.02 |
Parameter | Spanlastic Formula | Niosomal Formula | ||
---|---|---|---|---|
Fresh | Stored | Fresh | Stored | |
Drug content (%) | 98.22 ± 1.21 | 97.98 ± 1. 14 | 99.14 ± 0.82 | 90.22 ± 1.60 |
EE (%) | 80.56 ± 1.57 | 78.88 ± 1.18 | 69.84 ± 1.20 | 60.22 ± 1.57 |
Q12h (%) | 84.98 ± 1.14 | 83.74 ± 0.88 | 97.11 ± 1.24 | 85.92 ± 1.37 |
% drug permeated | 62.22 ±1.23 | 61.05 ± 1.33 | 50.22 ± 1.17 | 39.56 ± 1.22 |
DI | 19.27 ±0.92 | 18.81 ± 0.72 | 1.48 ±0.12 | 0.69 ± 0.05 |
Parameter | EGCG-Loaded SNVs | EGCG-Loaded Niosomes | EGCG Dispersion |
---|---|---|---|
Cmax (µg ml−1) | 0.58 ± 0.032 | 0.40 ± 0.025 | 0.19 ± 0.007 |
AUC0–24 (µg h ml−1) | 6.54 ± 0.16 | 4.24 ± 0.12 | 2.34 ± 0.03 |
t1/2 (h) | 17.43 ± 0.34 | 11.42 ± 0.21 | 3.7 ± 0.11 |
Fre % | 279.48 | 181.20 | -------- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazyed, E.A.; Helal, D.A.; Elkhoudary, M.M.; Abd Elhameed, A.G.; Yasser, M. Formulation and Optimization of Nanospanlastics for Improving the Bioavailability of Green Tea Epigallocatechin Gallate. Pharmaceuticals 2021, 14, 68. https://doi.org/10.3390/ph14010068
Mazyed EA, Helal DA, Elkhoudary MM, Abd Elhameed AG, Yasser M. Formulation and Optimization of Nanospanlastics for Improving the Bioavailability of Green Tea Epigallocatechin Gallate. Pharmaceuticals. 2021; 14(1):68. https://doi.org/10.3390/ph14010068
Chicago/Turabian StyleMazyed, Eman A., Doaa A. Helal, Mahmoud M. Elkhoudary, Ahmed G. Abd Elhameed, and Mohamed Yasser. 2021. "Formulation and Optimization of Nanospanlastics for Improving the Bioavailability of Green Tea Epigallocatechin Gallate" Pharmaceuticals 14, no. 1: 68. https://doi.org/10.3390/ph14010068
APA StyleMazyed, E. A., Helal, D. A., Elkhoudary, M. M., Abd Elhameed, A. G., & Yasser, M. (2021). Formulation and Optimization of Nanospanlastics for Improving the Bioavailability of Green Tea Epigallocatechin Gallate. Pharmaceuticals, 14(1), 68. https://doi.org/10.3390/ph14010068