Quantification of 15 Antibiotics Widely Used in the Critical Care Unit with a LC-MS/MS System: An Easy Method to Perform a Daily Therapeutic Drug Monitoring
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimisation of the Method
2.2. Validation of the Method
2.2.1. Linearity, Precision, and Accuracy
2.2.2. Specificity and Selectivity
2.2.3. Matrix Effect
2.2.4. Stability
2.2.5. Carry-Over Effects
2.3. Applicability
2.3.1. Example
2.3.2. Comparison with Reported Methods
3. Materials and Methods
3.1. LC-MS Analysis
3.1.1. Chemicals
3.1.2. Chromatographic and Mass-Spectrometric Conditions
3.1.3. Preparation of Stock Solutions, Calibration Standards and Quality Control Samples
3.1.4. Sample Processing
3.2. Validation Procedure
3.2.1. Linearity
3.2.2. Precision and Accuracy
3.2.3. Selectivity
3.2.4. Matrix Effect
3.2.5. Stability
3.2.6. Carry over Effects
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised Antibiotic Dosing for Patients Who Are Critically Ill: Challenges and Potential Solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Markwart, R.; Saito, H.; Harder, T.; Tomczyk, S.; Cassini, A.; Fleischmann-Struzek, C.; Reichert, F.; Eckmanns, T.; Allegranzi, B. Epidemiology and Burden of Sepsis Acquired in Hospitals and Intensive Care Units: A Systematic Review and Meta-Analysis. Intensive Care Med. 2020, 46, 1536–1551. [Google Scholar] [CrossRef] [PubMed]
- The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968574/ (accessed on 17 May 2021).
- Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing Sepsis as a Global Health Priority—A WHO Resolution. Available online: https://www.nejm.org/doi/10.1056/NEJMp1707170 (accessed on 17 May 2021).
- WHO|Global Action Plan on AMR. Available online: http://www.who.int/antimicrobial-resistance/global-action-plan/en/ (accessed on 17 May 2021).
- Roberts, J.A.; De Waele, J.J.; Dimopoulos, G.; Koulenti, D.; Martin, C.; Montravers, P.; Rello, J.; Rhodes, A.; Starr, T.; Wallis, S.C.; et al. DALI: Defining Antibiotic Levels in Intensive Care Unit Patients: A Multi-Centre Point of Prevalence Study to Determine Whether Contemporary Antibiotic Dosing for Critically Ill Patients Is Therapeutic. BMC Infect. Dis. 2012, 12, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the Treatment with Beta-Lactam Antibiotics in Critically Ill Patients-Guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit. Care 2019, 23, 104. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining Antibiotic Levels in Intensive Care Unit Patients: Are Current β-Lactam Antibiotic Doses Sufficient for Critically Ill Patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef]
- Mabilat, C.; Gros, M.F.; Nicolau, D.; Mouton, J.W.; Textoris, J.; Roberts, J.A.; Cotta, M.O.; van Belkum, A.; Caniaux, I. Diagnostic and Medical Needs for Therapeutic Drug Monitoring of Antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.; Cotta, M.O.; Roberts, J.A. Pharmacokinetics/Pharmacodynamics of β-Lactams and Therapeutic Drug Monitoring: From Theory to Practical Issues in the Intensive Care Unit. Semin. Respir. Crit. Care Med. 2019, 40, 476–487. [Google Scholar] [CrossRef]
- Muller, A.E.; Huttner, B.; Huttner, A. Therapeutic Drug Monitoring of Beta-Lactams and Other Antibiotics in the Intensive Care Unit: Which Agents, Which Patients and Which Infections? Drugs 2018, 78, 439–451. [Google Scholar] [CrossRef]
- Rayner, C.R.; Forrest, A.; Meagher, A.K.; Birmingham, M.C.; Schentag, J.J. Clinical Pharmacodynamics of Linezolid in Seriously Ill Patients Treated in a Compassionate Use Programme. Clin. Pharmacokinet. 2003, 42, 1411–1423. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, Z.; Sun, L.; Zhang, X.; Hou, G.; Han, Q.; Li, X.; Liu, G.; Gao, Y.; Ye, M.; et al. Pharmacokinetics and Pharmacodynamics of Linezolid in Patients With Sepsis Receiving Continuous Venovenous Hemofiltration and Extended Daily Hemofiltration. J. Infect. Dis. 2020, 221, S279–S287. [Google Scholar] [CrossRef]
- Galar, A.; Muñoz, P.; Valerio, M.; Cercenado, E.; García-González, X.; Burillo, A.; Sánchez-Somolinos, M.; Juárez, M.; Verde, E.; Bouza, E. Current Use of Daptomycin and Systematic Therapeutic Drug Monitoring: Clinical Experience in a Tertiary Care Institution. Int. J. Antimicrob. Agents 2019, 53, 40–48. [Google Scholar] [CrossRef] [PubMed]
- D’Avolio, A.; Pensi, D.; Baietto, L.; Pacini, G.; Di Perri, G.; De Rosa, F.G. Daptomycin Pharmacokinetics and Pharmacodynamics in Septic and Critically Ill Patients. Drugs 2016, 76, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, A.; Ewoldt, T.M.J.; Hunfeld, N.G.M.; Muller, A.E.; Rietdijk, W.J.R.; Polinder, S.; van Gelder, T.; Endeman, H.; Koch, B.C.P. The Effect of Therapeutic Drug Monitoring of Beta-Lactam and Fluoroquinolones on Clinical Outcome in Critically Ill Patients: The DOLPHIN Trial Protocol of a Multi-Centre Randomised Controlled Trial. BMC Infect. Dis. 2020, 20, 57. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, P.G.; Grasela, D.M.; Grasela, T.H.; Passarell, J.; Mayer, H.B.; Pierce, P.F. Pharmacodynamics of Fluoroquinolones against Streptococcus Pneumoniae in Patients with Community-Acquired Respiratory Tract Infections. Antimicrob. Agents Chemother. 2001, 45, 2793–2797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrest, A.; Nix, D.E.; Ballow, C.H.; Goss, T.F.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of Intravenous Ciprofloxacin in Seriously Ill Patients. Antimicrob. Agents Chemother. 1993, 37, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Aziz, M.H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial Therapeutic Drug Monitoring in Critically Ill Adult Patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef] [PubMed]
- Caro, Y.S.; Cámara, M.S.; De Zan, M.M. A Review of Bioanalytical Methods for the Therapeutic Drug Monitoring of β-Lactam Antibiotics in Critically Ill Patients: Evaluation of the Approaches Used to Develop and Validate Quality Attributes. Talanta 2020, 210, 120619. [Google Scholar] [CrossRef]
- Djerada, Z.; Feliu, C.; Tournois, C.; Vautier, D.; Binet, L.; Robinet, A.; Marty, H.; Gozalo, C.; Lamiable, D.; Millart, H. Validation of a Fast Method for Quantitative Analysis of Elvitegravir, Raltegravir, Maraviroc, Etravirine, Tenofovir, Boceprevir and 10 Other Antiretroviral Agents in Human Plasma Samples with a New UPLC-MS/MS Technology. J. Pharm. Biomed. Anal. 2013, 86, 100–111. [Google Scholar] [CrossRef]
- Feliu, C.; Fouley, A.; Millart, H.; Gozalo, C.; Marty, H.; Djerada, Z. Clinical and Analytical Toxicology of Opiate, Cocaine and Amphetamine. Ann. Biol. Clin. (Paris) 2015, 73, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Gradinaru, J.; Vullioud, A.; Eap, C.B.; Ansermot, N. Quantification of Typical Antipsychotics in Human Plasma by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry for Therapeutic Drug Monitoring. J. Pharm. Biomed. Anal. 2014, 88, 36–44. [Google Scholar] [CrossRef]
- Liu, T.; Kotha, R.R.; Jones, J.W.; Polli, J.E.; Kane, M.A. Fast Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of Eight Antiepileptic Drugs and an Active Metabolite in Human Plasma Using Polarity Switching and Timed Selected Reaction Monitoring. J. Pharm. Biomed. Anal. 2019, 176, 112816. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Wang, S. Advances in Antifungal Drug Measurement by Liquid Chromatography-Mass Spectrometry. Clin. Chim. Acta 2019, 491, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Dailly, E.; Bouquié, R.; Deslandes, G.; Jolliet, P.; Le Floch, R. A Liquid Chromatography Assay for a Quantification of Doripenem, Ertapenem, Imipenem, Meropenem Concentrations in Human Plasma: Application to a Clinical Pharmacokinetic Study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Souza, E.; Felton, J.; Crass, R.L.; Hanaya, K.; Pai, M.P. Development of a Sensitive LC-MS/MS Method for Quantification of Linezolid and Its Primary Metabolites in Human Serum. J. Pharm. Biomed. Anal. 2020, 178, 112968. [Google Scholar] [CrossRef]
- Yu, H.; Pan, C.; Xie, Q.; Zheng, Y.; Hu, Y.; Lin, Y. Simultaneous Determination of Tedizolid and Linezolid in Rat Plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Study. J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1011, 94–98. [Google Scholar] [CrossRef]
- Tanaka, R.; Suzuki, Y.; Goto, K.; Yasuda, N.; Koga, H.; Kai, S.; Ohchi, Y.; Sato, Y.; Kitano, T.; Itoh, H. Development and Validation of Sensitive and Selective Quantification of Total and Free Daptomycin in Human Plasma Using Ultra-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 165, 56–64. [Google Scholar] [CrossRef]
- Bazoti, F.N.; Gikas, E.; Skoutelis, A.; Tsarbopoulos, A. Development and Validation of an Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry Method for the Quantification of Daptomycin in Human Plasma. J. Pharm. Biomed. Anal. 2011, 56, 78–85. [Google Scholar] [CrossRef]
- LLopis, B.; Funck-Brentano, C.; Tissot, N.; Bleibtreu, A.; Jaureguiberry, S.; Fourniols, E.; Aubry, A.; Zahr, N. Development and Validation of a UPLC-MS/MS Method for Simultaneous Quantification of Levofloxacin, Ciprofloxacin, Moxifloxacin and Rifampicin in Human Plasma: Application to the Therapeutic Drug Monitoring in Osteoarticular Infections. J. Pharm. Biomed. Anal. 2020, 183, 113137. [Google Scholar] [CrossRef]
- Hösl, J.; Gessner, A.; El-Najjar, N. Liquid Chromatography-Tandem Mass Spectrometry for the Quantification of Moxifloxacin, Ciprofloxacin, Daptomycin, Caspofungin, and Isavuconazole in Human Plasma. J. Pharm. Biomed. Anal. 2018, 157, 92–99. [Google Scholar] [CrossRef]
- Lefeuvre, S.; Bois-Maublanc, J.; Hocqueloux, L.; Bret, L.; Francia, T.; Eleout-Da Violante, C.; Billaud, E.M.; Barbier, F.; Got, L. A Simple Ultra-High-Performance Liquid Chromatography-High Resolution Mass Spectrometry Assay for the Simultaneous Quantification of 15 Antibiotics in Plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1065–1066, 50–58. [Google Scholar] [CrossRef]
- Decosterd, L.A.; Mercier, T.; Ternon, B.; Cruchon, S.; Guignard, N.; Lahrichi, S.; Pesse, B.; Rochat, B.; Burger, R.; Lamoth, F.; et al. Validation and Clinical Application of a Multiplex High Performance Liquid Chromatography—Tandem Mass Spectrometry Assay for the Monitoring of Plasma Concentrations of 12 Antibiotics in Patients with Severe Bacterial Infections. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1157, 122160. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, D.; Ripa, M.; Premaschi, S.; Banfi, G.; Castagna, A.; Locatelli, M. LC-MS/MS Method for Simultaneous Determination of Linezolid, Meropenem, Piperacillin and Teicoplanin in Human Plasma Samples. J. Pharm. Biomed. Anal. 2019, 169, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Paal, M.; Zoller, M.; Schuster, C.; Vogeser, M.; Schütze, G. Simultaneous Quantification of Cefepime, Meropenem, Ciprofloxacin, Moxifloxacin, Linezolid and Piperacillin in Human Serum Using an Isotope-Dilution HPLC-MS/MS Method. J. Pharm. Biomed. Anal. 2018, 152, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Mesini, A.; Barbagallo, L.; Maffia, A.; Tripodi, G.; Pea, F.; Saffioti, C.; Castagnola, E.; Cangemi, G. A Liquid Chromatography-Tandem Mass Spectrometry Platform for the Routine Therapeutic Drug Monitoring of 14 Antibiotics: Application to Critically Ill Pediatric Patients. J. Pharm. Biomed. Anal. 2020, 186, 113273. [Google Scholar] [CrossRef] [PubMed]
- Appendix 5—Antibiotic Overview. Available online: https://drug.wellingtonicu.com/Appendices/5/index.html (accessed on 18 May 2021).
- European Medicines Agency (EMA) Guideline on Bioanalytical Method Validation. 21 July 2011. Available online: Http://Www.Ema.Europa.Eu/Docs/En_GB/Document_library/Scientific_guideline/2011/08/WC500109686.Pdf (accessed on 17 May 2021).
- U.S. Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research (CDER); Center for Veterinary Medicine (CVM). Guidance for Industry. Bioanalytical Method Validation. May 2001. Available online: Http://Www.Fda.Gov/Downloads/Drugs/Guidances/Ucm070107.Pdf (accessed on 17 May 2021).
- Feliu, C.; Millart, H.; Guillemin, H.; Vautier, D.; Binet, L.; Fouley, A.; Djerada, Z. Validation of a Fast UPLC-MS/MS Method for Quantitative Analysis of Opioids, Cocaine, Amphetamines (and Their Derivatives) in Human Whole Blood. Bioanalysis 2015, 7, 2685–2700. [Google Scholar] [CrossRef]
- Chow, K.M.; Szeto, C.C.; Hui, A.C.-F.; Wong, T.Y.-H.; Li, P.K.-T. Retrospective Review of Neurotoxicity Induced by Cefepime and Ceftazidime. Pharmacotherapy 2003, 23, 369–373. [Google Scholar] [CrossRef]
- Chow, K.M.; Szeto, C.C.; Hui, A.C.-F.; Li, P.K.-T. Mechanisms of Antibiotic Neurotoxicity in Renal Failure. Int. J. Antimicrob. Agents 2004, 23, 213–217. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
Compound Name | Retention Time (min) | Precursor | Precursor (m/z) | Products (m/z) Quantification and Confirmation | Collision Energy (eV) | Dwell Time (ms) | RF Lens (V) |
---|---|---|---|---|---|---|---|
Amoxicillin | 2.44 | [M + H]+ | 366.125 | 114.042; 349.125 | 20.00; 8.58 | 10 | 89 |
Aztreonam | 2.61 | [M + H]+ | 436.096 | 313.054; 356.125 | 14.48; 9.59 | 38 | 124 |
Cefazolin | 3.05 | [M + H]+ | 455.170 | 156.113; 323.042 | 15.28; 10.43 | 12 | 111 |
Cefepime | 2.40 | [M + H]+ | 241.150 | 84.155; 227.071 | 18.44; 10.39 | 10 | 75 |
Cefotaxime | 2.82 | [M + H]+ | 456.152 | 167.057; 324.125 | 19.49; 13.59 | 12 | 139 |
Cefoxitin | 3.29 | [M + NH4]+ | 445.170 | 339.054; 367.042 | 12.88; 8.71 | 20 | 102 |
Ceftazidime | 2.56 | [M + 2H]2+ | 274.150 | 80.125; 126,042 | 13.89; 22.90 | 8 | 96 |
Ciprofloxacin | 2.81 | [M + H]+ | 332.162 | 231.125; 314.125 | 35.96; 19.91 | 12 | 154 |
Clindamycin | 3.02 | [M + H]+ | 425.300 | 126.208; 377.280 | 28.63; 19.83 | 12 | 164 |
Daptomycin | 3.58 | [M + 2H]2+ | 811.000 | 159.000; 640.667 | 46.00; 20.00 | 25 | 204 |
Ertapenem | 2.80 | [M + H]+ | 476.150 | 346.208; 432.137 | 14.31; 8.71 | 12 | 117 |
Linezolid | 3.20 | [M + H]+ | 338.200 | 195.000; 296,083 | 22.00; 18.00 | 15 | 157 |
Meropenem | 2.58 | [M + H]+ | 384.200 | 141.155; 340.208 | 15.19; 10.31 | 8 | 111 |
Ofloxacin | 2.78 | [M + H]+ | 362.205 | 261.137; 318.137 | 26.10; 18.40 | 10 | 154 |
Piperacillin | 3.52 | [M + H]+ | 518.330 | 143.125; 160.125 | 19.66; 10.56 | 15 | 156 |
Amoxicillin-D4 | 2.44 | [M + H]+ | 370.130 | 114.042; 353.130 | 20.00; 8.58 | 10 | 89 |
Cefazolin-13C215N | 3.05 | [M + H]+ | 458.170 | 156.113; 326.042 | 15.28; 10.43 | 12 | 111 |
Cefotaxime-D3 | 2.82 | [M + H]+ | 459.152 | 167.054; 327,125 | 19.49; 13.59 | 12 | 139 |
Ciprofloxacin-D8 | 2.81 | [M + H]+ | 340.160 | 235.130; 322.130 | 35.96; 19.91 | 12 | 154 |
Linezolid-D3 | 3.20 | [M + H]+ | 341.200 | 195.000; 296.800 | 22.00; 18.00 | 15 | 157 |
Meropenem-D6 | 2.58 | [M + H]+ | 390.200 | 147.210; 346.208 | 15.19; 10.00 | 8 | 111 |
Ofloxacin-D8 | 2.78 | [M + H]+ | 370.210 | 265.140; 326.140 | 26.10; 18.40 | 10 | 154 |
Piperacillin-D5 | 3.52 | [M + H]+ | 523.330 | 143.125; 160.125 | 19.66; 10.56 | 15 | 156 |
Compound Name | Internal Standard | LOD (mg/L) | LLOQ (mg/L) | Precision of LLOQ (20%) | Accuracy of LLOQ (80–120%) | ULOQ (mg/L) | Precision of ULOQ (20%) | Accuracy of ULOQ (80–120%) | Calibration Curve (ax2 + bx + c) | r2 |
---|---|---|---|---|---|---|---|---|---|---|
Amoxicillin | Amoxicillin-D4 | 0.1 | 1.6 | 1.9 | 98.3 | 200 | 1.2 | 102.0 | −1.93 × 10−4x2 + 3.31 × 101x + 0.27794 | 0.9990 |
Aztreonam | Piperacillin-D5 | 0.1 | 3.9 | 2.5 | 113.2 | 500 | 2.0 | 108.5 | −4.70 × 10−5x2 + 0.27481x + 0.005967 | 0.9993 |
Cefazolin | Cefazolin-13C215N | 0.01 | 1.6 | 1.9 | 97.7 | 200 | 1.1 | 101.9 | −1.84 × 10−4x2 + 0.1663x + 0.000542 | 0.9999 |
Cefepime | Cefazolin-13C215N | 0.01 | 1.6 | 1.6 | 95.8 | 200 | 2.1 | 100.9 | −1.23 × 10−4x2 + 0.1077x + 0.000992 | 0.9997 |
Cefotaxime | Cefotaxime-D3 | 0.1 | 1.6 | 2.0 | 94.0 | 200 | 2.2 | 100.5 | −2.29 × 10−4x2 + 0.21423x + 00.2344 | 0.9999 |
Cefoxitin | Cefazolin-13C215N | 0.01 | 0.6 | 1.3 | 118.39 | 100 | 1.2 | 100.6 | −1.16 × 10−4x2 + 0.16816x + 0.000769 | 0.9998 |
Ceftazidime | Cefazolin-13C215N | 0.02 | 1.6 | 1.7 | 93.0 | 200 | 1.4 | 100.3 | −7.75 × 10−5x2 + 0.08612x + 0.000919 | 0.9998 |
Ciprofloxacin | Ciprofloxacin-D8 | 0.001 | 0.1 | 3.5 | 99.8 | 10 | 1.2 | 97.8 | 2.15 × 10−3x2 + 1.5345x + 0.003918 | 0.9998 |
Clindamycin | Cefazolin-13C215N | 0.002 | 0.1 | 1.4 | 97.3 | 10 | 0.9 | 96.4 | 8.85 × 10−3x2 + 1.49766x + 0.000190 | 0.9998 |
Daptomycin | Cefazolin-13C215N | 0.3 | 1.6 | 1.6 | 109.9 | 200 | 1.5 | 112.5 | −2.78 × 10−5x2 + 0.087183x + 0.002125 | 0.9996 |
Ertapenem | Meropenem-D6 | 0.004 | 0.8 | 2.7 | 102.6 | 100 | 1.2 | 100.9 | 2.72 × 10−4x2 + 0.32696x + 0.004432 | 0.9996 |
Linezolid | Linezolid-D3 | 0.004 | 0.4 | 1.6 | 87.8 | 50 | 0.6 | 98.5 | 8.92 × 10−6x2 + 0.33976x + 0.000520 | 0.9999 |
Meropenem | Meropenem-D6 | 0.003 | 0.8 | 3.6 | 100.0 | 100 | 1.5 | 102.7 | 6.52 × 10−6x2 + 0.19146x + 0.10970 | 0.9998 |
Ofloxacin | Ofloxacin-D8 | 0.006 | 0.1 | 2.6 | 100.7 | 10 | 0.9 | 99.7 | −3.12 × 10−3x2 + 0.66686x + 0.000875 | 0.9998 |
Piperacillin | Piperacillin-D5 | 0.03 | 1.6 | 2.0 | 87.8 | 200 | 2.0 | 96.6 | −9.61 × 10−5x2 + 0.4253x + 0.003480 | 0.9999 |
QC Low | QC Medium | QC High | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Assay | Inter-Assay | Intra-Assay | Inter-Assay | Intra-Assay | Inter-Assay | |||||||
Precision | Accuracy | Precision | Accuracy | Precision | Accuracy | Precision | Accuracy | Precision | Accuracy | Precision | Accuracy | |
Amoxicillin | 1.3 | 109.0 | 8.1 | 101.8 | 1.9 | 95.7 | 7.1 | 106.5 | 2.2 | 111.1 | 6.2 | 104.1 |
Aztreonam | 1.8 | 100.1 | 10.2 | 90.3 | 1.9 | 101.2 | 9.2 | 90.0 | 2.4 | 103.3 | 5.7 | 108.5 |
Cefazolin | 1.8 | 91.6 | 5.3 | 91.4 | 2.5 | 91.7 | 4.8 | 105.3 | 2.2 | 106.6 | 6.1 | 104.0 |
Cefepime | 2.2 | 101.7 | 4.5 | 97.4 | 2.8 | 104.3 | 4.2 | 99.8 | 2.5 | 101.2 | 6.4 | 95.5 |
Cefotaxime | 1.6 | 104.7 | 10.3 | 104.1 | 2.2 | 107.8 | 8.8 | 104.5 | 0.9 | 112.3 | 6.1 | 114.4 |
Cefoxitin | 1.3 | 93.2 | 8.9 | 95.1 | 2.7 | 96.0 | 9.1 | 98.8 | 2.0 | 99.7 | 12.5 | 106.3 |
Ceftazidime | 2.1 | 105.2 | 6.6 | 104.3 | 3.2 | 105.1 | 5.7 | 102.7 | 2.7 | 100.9 | 6.2 | 100.3 |
Ciprofloxacin | 1.1 | 90.9 | 6.6 | 88.9 | 1.9 | 94.2 | 5.3 | 91.1 | 2.3 | 94.9 | 6.3 | 91.3 |
Clindamycin | 1.6 | 110.0 | 6.5 | 89.4 | 2.3 | 109.0 | 5.3 | 91.8 | 1.2 | 112.7 | 6.1 | 97.0 |
Daptomycin | 1.8 | 110.2 | 11.3 | 92.4 | 2.2 | 111.5 | 10.7 | 91.7 | 1.2 | 110.2 | 8.2 | 97.6 |
Ertapenem | 1.5 | 90.7 | 8.4 | 86.3 | 2.6 | 103.8 | 7.1 | 94.7 | 1.5 | 113.0 | 8.1 | 100.8 |
Linezolid | 2.1 | 87.9 | 6.1 | 89.3 | 2.2 | 90.9 | 5.2 | 90.5 | 1.1 | 91.6 | 3.1 | 95.3 |
Meropenem | 1.9 | 111.8 | 8.1 | 103.3 | 2.7 | 112.1 | 6.6 | 107.5 | 2.1 | 112.4 | 8.8 | 107.9 |
Ofloxacin | 2.1 | 110.6 | 7.6 | 92.7 | 2.3 | 113.4 | 4.9 | 89.6 | 1.8 | 104.1 | 5.1 | 85.9 |
Piperacillin | 2.1 | 109.1 | 9.6 | 98.3 | 2.7 | 114.4 | 7.9 | 102.0 | 2.9 | 113.6 | 5.6 | 104.0 |
Timing | Samples (n) | Patients (n) | Mean Conc (Min–Max) | % of Concentrations Below the Reference Values | % of Concentrations Over the Reference Values | |
---|---|---|---|---|---|---|
Amoxicillin | Cmin | 92 | 58 | 52.8 (1.6–345.6) | 51.1 | 17.4 |
Cefazolin | Cmin | 10 | 8 | 66.3 (17.6–201.9) | 22.2 | 22.2 |
Cefepime | Cmin | 27 | 19 | 42.2 (1.6–158.7) | 11.1 | 40.7 |
Cefotaxime | Cmin | 23 | 5 | 63.6 (0.03–121.5) | 13.1 | 47.8 |
Cefotaxime | Cont.inf | 5 | 4 | 66.18 (25.3–140) | 0 | 40 |
Ceftazidime | Cont.inf | 33 | 24 | 71.3 (5.50–172.5) | 28.1 | 40.6 |
Ertapenem | Cmin | 4 | 2 | 16.4 (11.2–29.7) | 0 | 100 |
Meropenem | Cmin | 6 | 4 | 16.4 (0.8–40.9) | 16.6 | 33.3 |
Piperacillin | Cmin | 9 | 6 | 69.7 (14.7–144.1) | 66.6 | 0 |
Time | Flow (mL/Min) | MP-A% Water + Formic Acid 0.1% (v/v) | MP-B% ACN+ Formic Acid 0.1% (v/v) | Curve |
---|---|---|---|---|
0.000 | 0.3 | 100 | 0 | 5 |
3.600 | 0.3 | 14.5 | 85.5 | 5 |
3.601 | 0.3 | 5 | 95.0 | 5 |
4.10 | 0.3 | 5 | 95.0 | 5 |
4.110 | 0.3 | 100 | 0 | 5 |
5.500 | 0.3 | 100 | 0 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feliu, C.; Konecki, C.; Candau, T.; Vautier, D.; Haudecoeur, C.; Gozalo, C.; Cazaubon, Y.; Djerada, Z. Quantification of 15 Antibiotics Widely Used in the Critical Care Unit with a LC-MS/MS System: An Easy Method to Perform a Daily Therapeutic Drug Monitoring. Pharmaceuticals 2021, 14, 1214. https://doi.org/10.3390/ph14121214
Feliu C, Konecki C, Candau T, Vautier D, Haudecoeur C, Gozalo C, Cazaubon Y, Djerada Z. Quantification of 15 Antibiotics Widely Used in the Critical Care Unit with a LC-MS/MS System: An Easy Method to Perform a Daily Therapeutic Drug Monitoring. Pharmaceuticals. 2021; 14(12):1214. https://doi.org/10.3390/ph14121214
Chicago/Turabian StyleFeliu, Catherine, Celine Konecki, Tristan Candau, Damien Vautier, Cyril Haudecoeur, Claire Gozalo, Yoann Cazaubon, and Zoubir Djerada. 2021. "Quantification of 15 Antibiotics Widely Used in the Critical Care Unit with a LC-MS/MS System: An Easy Method to Perform a Daily Therapeutic Drug Monitoring" Pharmaceuticals 14, no. 12: 1214. https://doi.org/10.3390/ph14121214
APA StyleFeliu, C., Konecki, C., Candau, T., Vautier, D., Haudecoeur, C., Gozalo, C., Cazaubon, Y., & Djerada, Z. (2021). Quantification of 15 Antibiotics Widely Used in the Critical Care Unit with a LC-MS/MS System: An Easy Method to Perform a Daily Therapeutic Drug Monitoring. Pharmaceuticals, 14(12), 1214. https://doi.org/10.3390/ph14121214