Immune Checkpoint Inhibition in Oesophago-Gastric Carcinoma
Abstract
:1. Introduction
2. Molecular Interaction of Checkpoint Inhibitors in Oesophago-Gastric Cancer
3. Immune Checkpoint Inhibition in the Treatment of Oesophageal Cancer
3.1. Curative Setting
3.2. Palliative Setting: First-Line Therapy
3.3. Palliative Setting: Second-Line Therapy
3.4. Summary Oesophageal Cancer
- In the curative setting, nivolumab prolonged DFS in patients with ESCC and EAC across all subgroups, with a more pronounced effect in ESCC. OS data are awaited. Nivolumab may become a new standard of care in adjuvant therapy of oesophageal cancer (CHECKMATE-577).
- Based on KEYNOTE-590 results, implementation of pembrolizumab in combination with chemotherapy, especially in squamous cell carcinoma, might develop into a new treatment in palliative first-line therapy of advanced oesophageal cancer, especially ESCC.
- Improvement of OS by pembrolizumab in patients with advanced ESCC, especially with PD-L1 CPS ≥ 10, led to FDA’s approval of pembrolizumab in the second-line setting in the USA (KEYNOTE-181).
4. Immune Checkpoint Inhibition in the Treatment of GEJ and Gastric Cancer (GC)
4.1. Curative Setting
4.2. Palliative Setting: First-Line Therapy
4.3. Palliative Setting: Second-Line Therapy
4.4. Palliative Setting: Third-Line Therapy
4.5. Role of Combination of Immune Checkpoint Inhibitors and Anti-HER2 Therapy in GEJ/Stomach Cancers
4.6. Summary GEJ/Gastric Cancer
- In the first-line setting, patients with PD-L1 CPS ≥ 5 benefit from the combination of nivolumab and chemotherapy (CHECKMATE-649). Pembrolizumab also shows efficacy in combination with chemotherapy in patients with Siewert Type 1 GEJ adenocarcinoma (KEYNOTE-590) and is beneficial as a monotherapy in a subgroup of gastric cancer patients with PD-L1 CPS ≥ 10 and MSI-high tumors (KEYNOTE-062).
- Response to immunotherapy seems to be dependent on the grade of PD-L1 CPS positivity with the strongest effect in OS in PD-L1 CPS ≥ 10 patients.
- In the third-line setting, nivolumab prolonged OS in patients with advanced GEJ/gastric cancer after progression of at least two prior therapy regimes and is approved for third-line treatment in Asia (ATTRACTION-02 trial). Similar results were achieved with pembrolizumab in Caucasian patients in the single-arm phase II KEYNOTE-059 trial, resulting in FDA approval of pembrolizumab in the USA in patients with chemotherapy refractory PD-L1 positive GEJ and gastric cancer. So far, there is no approval for checkpoint inhbition in gastric cancer in Europe.
- Augmenting the effect of anti-HER2-targeted therapy in combination with immune checkpoint blockade is under investigation.
- In particular, MSI-high patients seem to benefit from anti-PD-L1/PD-1-targeted therapy.
Entity | Author | Ref. | Trial | Phase | Treatment | N | Localisation | Histology | PD-L1 Score | Results (Primary Enpoint, Median) | Results (Further Analysis, Median) |
---|---|---|---|---|---|---|---|---|---|---|---|
Oesophageal cancer | |||||||||||
Curative | Kelly et al. | [14] | Checkmate-577 | III | Adjuvant Nivo vs. placebo | 794 | Oe/GEJ | ESCC (30%), EAC (70%) | all comers | DFS 22.4 vs. 11 months (HR 0.69 (95% CI 96.4% CI 0.56–0.86), p = 0.0003 | |
First-line | Kato et al. | [15] | Keynote-590 | III | Pembro + Cis/5-FU vs. Cis/5-FU alone | 749 | Oe/GEJ | ESCC (73%), EAC (27%) | all comers | OS all 12.4 vs 9.8 months (HR, 0.73, 95% CI, 0.62–0.86), p < 0.0001 | ORR all 45% vs. 29.3%, p < 0.0001 |
OS ESCC 12.6 vs. 9.8 months (HR 0.72; 95% CI, 0.60–0.88), p = 0.0006 | |||||||||||
OS PD-L1 CPS ≥ 10: 13.5 vs. 9.4 months (HR 0.62; 95% CI, 0.49–0.78), p < 0.0001 | |||||||||||
OS ESCC PD-L1 CPS ≥10 median 13.9 vs. 8.8 mo; (HR 0.57; 95% CI, 0.43–0.75) | |||||||||||
PFS all pts 6.3 vs. 5.8 months (HR 0.65; 95% CI, 0.55–0.76), p < 0.0001 | |||||||||||
PFS ESCC 6.3 vs. 5.8 months (HR 0.65; 95% CI, 0.54–0.78), p < 0.0001 | |||||||||||
PFS CPS ≥10: 7.5 vs. 5.5 months (HR 0.51; 95% CI, 0.41–0.65) p < 0.0001 | |||||||||||
Second-line | Kojima et al. | [16] | Keynote-181 | III | Pembro vs. Pacli/Doce/Irino | 628 | Oe/GEJ | ESCC (64%), EAC (36%) | all comers | OS all 7.1 vs. 7.1 months (HR 0.89; 95% CI, 0.75–1.05), p = 0.0560 | |
OS ESCC 8.2 vs. 7.1 months (HR 0.78; 5% CI, 0.63–0.96), p = 0.0095 | |||||||||||
OS CPS ≥ 10: 9.3 vs. 6.7 months (HR 0.69; 95% CI, 0.52–0.93), p = 0.0074 | |||||||||||
Kato et al. | [17] | Attraction-03 | III | Nivo vs. Pacli/Doce | 419 | Oe | ESCC | all comers | OS 10.9 vs. 8.4 months (HR 0.77, 95% CI 0.62–0.96), p = 0.019 | ||
GEJ/Stomach cancer | |||||||||||
Curative | Al-Batran et al. | [18] | Dante | II | Atezo + FLOT vs. FLOT alone | 295 | GEJ/GC | Adenocarcinoma | all comers | DFS (awaited) | Rate of pathological regression (awaited) |
First-line | Moehler et al. | [22] | Checkmate-649 | III | Nivo + XELOX/FOLFOX vs. Nivo + Ipi vs. Chemo alone | 1581 | GEJ/GC | Adenocarcinoma | all comers | OS PD-L1 CPS ≥ 5: 14.4 vs. 11.1 months, HR 0.71 (98.4% CI 0.59–0.86), p < 0.0001 | OS all 13.8 vs. 11.6 months (HR 0.80; 99.3% CI 0.68–0.94), p = 0.0002 |
(60% PD-L1 CPS ≥ 5) | PFS PD-L1 CPS ≥ 5: 7.7 vs. 6.0 months; HR (98% CI 0.56–0.81), p < 0.0001 | OS PD-L1 CPS ≥ 1: 14.0 vs. 11.3 months, HR 0.77 (99.3% CI 0.64–0.92), p = 0.0001 | |||||||||
PFS all 7.7 vs. 6.9 months; HR 0.77 (95% CI 0.68–0.87), p > 0.05 | |||||||||||
PFS PD-L1 CPS ≥1: 7.5 vs. 6.9 months; HR 0.74 (95% CI 0.65–0.85), p > 0.05 | |||||||||||
Shitara et al. | [20] | Keynote-062 | III | Pembro vs. Cis/5-FU or Cape; (p/p + c/placebo + c) | 763 | GEJ/GC | Adenocarcinoma | PD-L1 CPS ≥ 1 | OS PD-L1 CPS ≥1: 10.6 vs. 11.1 months; HR 0.74 (95% CI 0.74–1.10), p = 0.162, p non inferior to c | ||
OS PD-L1 CPS ≥10: 17.4 (p) vs 10.8 months (c); HR 0.69 (95% CI 0.49–0.97) | |||||||||||
OS PD-L1 CPS ≥1: 12.5 (p + c) vs. 11.1 months (c); HR 0.85 (95% CI 0.7–1.03), p = 0.046, p + c not superior | |||||||||||
OS PD-L1 CPS ≥10: 12.3 (p + c) vs. 10.8 months (c): HR 0.85 (0.62–1.17), p = 0.158, p + c not superior | |||||||||||
PFS PD-L1 CPS ≥1: 6.9 (p + c) vs. 6.4 months (c): HR 0.84 (0.70–1.02), p = 0.04 | |||||||||||
Second-line | Shitara et al. | [24] | Keynote-061 | III | Pembro vs. Pacli | 592 | GEJ/GC | Adenocarcinoma | all comers (67% PD-L1 CPS ≥ 1) | OS PD-L1 CPS ≥1: 9.1 vs. 8.3 months; HR 0.81 (95% CI 0.66–1.00), p > 0.05 | OS PD-L1 CPS ≥ 5: 10.4 vs. 8.3 months; HR 0.72 (95% CI 0.53–0.99), p > 0.05 |
PFS PD-L1 CPS ≥1: 1.5 vs. 4.1 months; HR 1.27 (95% CI 1.03–1.57) | OS PD-L1 CPS ≥ 10: 10.4 vs. 8.0 months; HR 0.69 (95% CI 0.46–1.05), p > 0.05 | ||||||||||
Thuss-Patience et al. | [27] | RAP | II | Ram + Avel + Pacli, single arm | 60 | GEJ/GC | Adenocarcinoma | all comers | OSR at 6 months (awaited) | OS, OSR at 12 months, PFS, DoR (awaited) | |
Moehler et al. | [21] | Javelin Gastric-100 | II | Avel vs. maintainance 1st line | 499 | GEJ/GC | Adenocarcinoma | all comers | OS all 10.4 vs. 10.9 months; HR 0.91 (95% CI 0.74–1.11), p = 0.1779; | ORR 13.3% (95% CI 9.3–18.1) vs. 14.4% (95% CI 10.3–19.4) | |
OS PD-L1 + (n = 54): HR 1.13 (95% CI 0.57–2.23) | DOR (12 months): 62.3% (95% CI 40.9–77.9) vs. 28.4% (95% CI 13.2–45.7) | ||||||||||
Third-line | Kang et al. | [30] | Attraction-02 | III | Nivo vs. placebo | 493 | GEJ/GC | Adenocarcinoma | all comers | OS 5.3 vs. 4.14 months; HR 0.63 (95% CI 0.51–0.78), p < 0.0001) | |
Fuchs et al. | [29] | Keynote-059 | II | Pembro mono | 259 | GEJ/GC | Adenocarcinoma | all comers | ORR PD-L1+/-: 15.5% (95% CI, 10.1–22.4%) vs. 6.4% (95% CI 2.6%–12.8%) | Response duration PD-L1+/-: 16.3 months (95% CI 1.6–17.3) vs. 6.9 months (95% CI 2.4–7.0) | |
HER2 positive cancer | |||||||||||
First-line | Tintelnot et al. | [36] | Intega | II | Ipi/FOLFOX + Nivo + Tmab | 97 | GEJ | Adenocarcinoma | all comers | OS (awaited) | PFS, ORR (awaited) |
Janjigian et al. | [33] | Pembro + Tmab | II | Pembro + Tmab + chemo (Oxali/Cis + Cape/5-FU) Single-arm | 37 | Oe/GEJ/GC | Adenocarcinoma | all comers | PFS 6 months: 70% (95% CI 54–83); mPFS 13.0 months (95% CI 8.6-NR) | OS 27.3 months (95% CI 18.8-NR), 12 months OSR: 80% (95% CI 68–95) | |
Treatment duration: 10 months (IQR 5.7–13.7) |
5. Role of Biomarkers in Oesophago-Gastric Cancers (PD-L1 CPS, EBV, MSI-High)
5.1. PD-L1 CPS (PD-L1 Combined Positivity Score) in GEJ/Gastric Cancers
5.2. EBV-Positive Gastric Cancers
5.3. MSI-High GEJ/Gastric Cancers
5.4. Summary Biomarkers in Oesophago-Gastric Cancers
- The specific molecular subsets of patients with PD-L1 CPS, EBV or MSI-high status, qualify as potential predictive biomarkers and may identify individual patients who benefit most from immunotherapy in terms of prolonged overall survival.
- In the authors’ view, especially patients with advanced MSI-high and PD-L1 CPS-positive cancers should obtain access to immune checkpoint inhibition in various palliative therapy settings.
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Mariette, C.; Haustermans, K.; Obermannová, R.; Arnold, D. ESMO Guidelines Committee Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v50–v57. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Verheij, M.; Allum, W.; Cunningham, D.; Cervantes, A.; Arnold, D. ESMO Guidelines Committee Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v38–v49. [Google Scholar] [CrossRef] [PubMed]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.-C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Shitara, K.; Doi, T.; Dvorkin, M.; Mansoor, W.; Arkenau, H.-T.; Prokharau, A.; Alsina, M.; Ghidini, M.; Faustino, C.; Gorbunova, V.; et al. Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer (TAGS): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018, 19, 1437–1448. [Google Scholar] [CrossRef]
- Bonotto, M.; Garattini, S.K.; Basile, D.; Ongaro, E.; Fanotto, V.; Cattaneo, M.; Cortiula, F.; Iacono, D.; Cardellino, G.G.; Pella, N.; et al. Immunotherapy for gastric cancers: Emerging role and future perspectives. Expert Rev. Clin. Pharmacol. 2017, 10, 609–619. [Google Scholar] [CrossRef]
- de Mello, R.A.; Veloso, A.F.; Catarina, P.E.; Nadine, S.; Antoniou, G. Potential role of immunotherapy in advanced non-small-cell lung cancer. Onco Targets Ther. 2017, 10, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 2012, 24, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune Checkpoint Blockade in Cancer Therapy. J. Clin. Oncol. 2015, 33, 1974–1982. [Google Scholar] [CrossRef] [Green Version]
- Taieb, J.; Moehler, M.; Boku, N.; Ajani, J.A.; Ruiz, E.Y.; Ryu, M.-H.; Guenther, S.; Chand, V.; Bang, Y.-J. Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: Current status and future perspectives. Cancer Treat. Rev. 2018, 66, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Cutsem, E.V.; Piessen, G.; Mendez, G.; Feliciano, J.L.; Motoyama, S.; Lièvre, A.; et al. LBA9_PR Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer (EC/GEJC) following neoadjuvant chemoradiation therapy (CRT): First results of the CheckMate 577 study. Ann. Oncol. 2020, 31, S1193–S1194. [Google Scholar] [CrossRef]
- Kato, K.; Sun, J.-M.; Shah, M.A.; Enzinger, P.C.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. LBA8_PR Pembrolizumab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced esophageal cancer: The phase 3 KEYNOTE-590 study. Ann. Oncol. 2020, 31, S1192–S1193. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.-Y.; Chin, K.; Kadowaki, S.; Ahn, M.-J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Pauligk, C.; Hofheinz, R.; Lorenzen, S.; Wicki, A.; Siebenhuener, A.R.; Schenk, M.; Welslau, M.; Heuer, V.; Goekkurt, E.; et al. Perioperative atezolizumab in combination with FLOT versus FLOT alone in patients with resectable esophagogastric adenocarcinoma: DANTE, a randomized, open-label phase II trial of the German Gastric Group of the AIO and the SAKK. JCO 2019, 37, TPS4142. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Lorenzen, S.; Thuss-Patience, P.C.; Schenk, M.; Goekkurt, E.; Hofheinz, R.D.; Kretzschmar, A.; Heuer, V.; Bolling, C.; Haag, G.M.; et al. 1494P Updated safety data of the DANTE trial: Perioperative atezolizumab in combination with FLOT versus FLOT alone in patients with resectable esophagogastric adenocarcinoma—A randomized, open-label phase II trial of the German Gastric Group at the AIO and SAKK. Ann. Oncol. 2020, 31, S927–S928. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients With First-line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Moehler, M.H.; Dvorkin, M.; Ozguroglu, M.; Ryu, M.; Muntean, A.S.; Lonardi, S.; Nechaeva, M.; Bragagnoli, A.S.C.; Coskun, H.S.; Gracián, A.C.; et al. Results of the JAVELIN Gastric 100 phase 3 trial: Avelumab maintenance following first-line (1L) chemotherapy (CTx) vs continuation of CTx for HER2− advanced gastric or gastroesophageal junction cancer (GC/GEJC). JCO 2020, 38, 278. [Google Scholar] [CrossRef]
- Moehler, M.; Shitara, K.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; Liu, T.; et al. LBA6_PR Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): First results of the CheckMate 649 study. Ann. Oncol. 2020, 31, S1191. [Google Scholar] [CrossRef]
- Chen, L.-T.; Kang, Y.-K.; Tanimoto, M.; Boku, N. ATTRACTION-04 (ONO-4538-37): A randomized, multicenter, phase 2/3 study of nivolumab (Nivo) plus chemotherapy in patients (Pts) with previously untreated advanced or recurrent gastric (G) or gastroesophageal junction (GEJ) cancer. Ann. Oncol. 2017, 28, v266. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.; Fornaro, L.; Olesinski, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus paclitaxel for previously treated patients with PD-L1–positive advanced gastric or gastroesophageal junction cancer (GC): Update from the phase III KEYNOTE-061 trial. JCO 2020, 38, 4503. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.; Vivaldi, C.; Olesinski, T.; Chung, H.C.; Muro, K.; et al. The association of tissue tumor mutational burden (tTMB) using the Foundation Medicine genomic platform with efficacy of pembrolizumab versus paclitaxel in patients (pts) with gastric cancer (GC) from KEYNOTE-061. JCO 2020, 38, 4537. [Google Scholar] [CrossRef]
- Högner, A.; Breithaupt, K.; Stein, A.; Hinke, A.; Lorenz, M.; Al-Batran, S.-E.; Thuss-Patience, P.C. RAP: A phase II trial with ramucirumab, avelumab, and paclitaxel as second line treatment in gastro-esophageal adenocarcinoma of the arbeitsgemeinschaft internistische onkologie (AIO). JCO 2019, 37, TPS4148. [Google Scholar] [CrossRef]
- Chau, I.; Bendell, J.C.; Calvo, E.; Santana-Davila, R.; Rodon Ahnert, J.; Penel, N.; Arkenau, H.-T.; Yang, J.; Rege, J.; Mi, G.; et al. Interim safety and clinical activity in patients (pts) with advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma from a multicohort phase 1 study of ramucirumab (R) plus pembrolizumab (P). JCO 2017, 35, 102. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.-P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Boku, N.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Varadan, V.; Gilmore, H.; Miskimen, K.L.S.; Tuck, D.; Parsai, S.; Awadallah, A.; Krop, I.E.; Winer, E.P.; Bossuyt, V.; Somlo, G.; et al. Immune Signatures Following Single Dose Trastuzumab Predict Pathologic Response to PreoperativeTrastuzumab and Chemotherapy in HER2-Positive Early Breast Cancer. Clin. Cancer Res. 2016, 22, 3249–3259. [Google Scholar] [CrossRef] [Green Version]
- Janjigian, Y.Y.; Maron, S.B.; Chatila, W.K.; Millang, B.; Chavan, S.S.; Alterman, C.; Chou, J.F.; Segal, M.F.; Simmons, M.Z.; Momtaz, P.; et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: An open-label, single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 821–831. [Google Scholar] [CrossRef]
- Chaganty, B.K.R.; Qiu, S.; Gest, A.; Lu, Y.; Ivan, C.; Calin, G.A.; Weiner, L.M.; Fan, Z. Trastuzumab upregulates PD-L1 as a potential mechanism of trastuzumab resistance through engagement of immune effector cells and stimulation of IFNγ secretion. Cancer Lett. 2018, 430, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Melero, I.; Berman, D.M.; Aznar, M.A.; Korman, A.J.; Gracia, J.L.P.; Haanen, J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 2015, 15, 457–472. [Google Scholar] [CrossRef]
- Tintelnot, J.; Goekkurt, E.; Binder, M.; Thuss-Patience, P.; Lorenzen, S.; Knorrenschild, J.R.; Kretzschmar, A.; Ettrich, T.; Lindig, U.; Jacobasch, L.; et al. Ipilimumab or FOLFOX with Nivolumab and Trastuzumab in previously untreated HER2-positive locally advanced or metastatic EsophagoGastric Adenocarcinoma—the randomized phase 2 INTEGA trial (AIO STO 0217). BMC Cancer 2020, 20, 503. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [CrossRef] [Green Version]
- Schildhaus, H.-U. Predictive value of PD-L1 diagnostics. Pathologe 2018, 39, 498–519. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, Z.A.; Fuchs, C.S.; Tabernero, J.; Shitara, K.; Muro, K.; Van Cutsem, E.; Chao, J. Efficacy of Pembrolizumab Monotherapy for Advanced Gastric/Gastroesophageal Junction Cancer with Programmed Death Ligand 1 Combined Positive Score ≥10. Clin. Cancer Res. 2021, in press. [Google Scholar] [CrossRef]
- Tang, W.; Morgan, D.R.; Meyers, M.O.; Dominguez, R.L.; Martinez, E.; Kakudo, K.; Kuan, P.F.; Banet, N.; Muallem, H.; Woodward, K.; et al. Epstein-barr virus infected gastric adenocarcinoma expresses latent and lytic viral transcripts and has a distinct human gene expression profile. Infect. Agents Cancer 2012, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Rodriquenz, M.G.; Roviello, G.; D’Angelo, A.; Lavacchi, D.; Roviello, F.; Polom, K. MSI and EBV Positive Gastric Cancer’s Subgroups and Their Link With Novel Immunotherapy. J. Clin. Med. 2020, 9, 1427. [Google Scholar] [CrossRef]
- Murphy, G.; Pfeiffer, R.; Camargo, M.C.; Rabkin, C.S. Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology 2009, 137, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.; Mehnert, J.M.; Hirshfield, K.M.; Riedlinger, G.; Damare, S.; Saunders, T.; Kane, M.; Sokol, L.; Stein, M.N.; Poplin, E.; et al. Immune Activation and Benefit From Avelumab in EBV-Positive Gastric Cancer. J. Natl. Cancer Inst. 2017, 110, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J. Clin. Oncol. 2018, 36, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Högner, A.; Thuss-Patience, P. Immune Checkpoint Inhibition in Oesophago-Gastric Carcinoma. Pharmaceuticals 2021, 14, 151. https://doi.org/10.3390/ph14020151
Högner A, Thuss-Patience P. Immune Checkpoint Inhibition in Oesophago-Gastric Carcinoma. Pharmaceuticals. 2021; 14(2):151. https://doi.org/10.3390/ph14020151
Chicago/Turabian StyleHögner, Anica, and Peter Thuss-Patience. 2021. "Immune Checkpoint Inhibition in Oesophago-Gastric Carcinoma" Pharmaceuticals 14, no. 2: 151. https://doi.org/10.3390/ph14020151
APA StyleHögner, A., & Thuss-Patience, P. (2021). Immune Checkpoint Inhibition in Oesophago-Gastric Carcinoma. Pharmaceuticals, 14(2), 151. https://doi.org/10.3390/ph14020151