(2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. MMP Inhibition Assays
3.2. Chemical Methods
3.2.1. General Procedure for the Preparation of Tetraethyl Bisphosphonates (1a–4a)
3.2.2. General Procedure for N-Acylation of Compound 5b
3.2.3. General Procedure for the Preparation of 1,1-Bisphosphonic Acids (1–12)
3.3. Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winer, A.; Adams, S.; Mignatti, P. Matrix Metalloproteinase Inhibitors in Cancer Therapy: Turning Past Failures into Future Successes. Mol. Cancer Ther. 2018, 17, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conlon, G.A.; Murray, G.I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 2019, 247, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Tay, F.R.; Yiu, C.K.Y. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol. Ther. 2020, 207, 107465. [Google Scholar] [CrossRef]
- Lynch, C.C. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 2011, 48, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Guise, T.A.; Chirgwin, J. Transforming Growth Factor-Beta in Osteolytic Breast Cancer Bone Metastases. Clin. Orthop. Relat. Res. 2003, 415, S32–S38. [Google Scholar] [CrossRef]
- Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix Metalloproteinase Inhibitors and Cancer--Trials and Tribulations. Science 2002, 295, 2387–2392. [Google Scholar] [CrossRef]
- Von Moos, R.; Costa, L.; Gonzalez-Suarez, E.; Terpos, E.; Niepel, D.; Body, J. Management of bone health in solid tumours: From bisphosphonates to a monoclonal antibody. Cancer Treat. Rev. 2019, 76, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Tauro, M.; Shay, G.; Sansil, S.S.; Laghezza, A.; Tortorella, P.; Neuger, A.M.; Soliman, H.; Lynch, C.C. Bone-Seeking Matrix Metalloproteinase-2 Inhibitors Prevent Bone Metastatic Breast Cancer Growth. Mol. Cancer Ther. 2017, 16, 494–505. [Google Scholar] [CrossRef] [Green Version]
- Jakob, T.; Tesfamariam, Y.M.; Macherey, S.; Kuhr, K.; Adams, A.; Monsef, I.; Heidenreich, A.; Skoetz, N. Bisphosphonates or RANK-ligand-inhibitors for men with prostate cancer and bone metastases: A network meta-analysis. Cochrane Database Syst. Rev. 2020, 12. [Google Scholar] [CrossRef]
- Wang, L.; Fang, D.; Xu, J.; Luo, R. Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis: A brief review. BMC Cancer 2020, 20, 1059. [Google Scholar] [CrossRef]
- Leuci, R.; Brunetti, L.; Laghezza, A.; Loiodice, F.; Tortorella, P.; Piemontese, L. Importance of Biometals as Targets in Medicinal Chemistry: An Overview about the Role of Zinc (II) Chelating Agents. Appl. Sci. 2020, 10, 4118. [Google Scholar] [CrossRef]
- Tauro, M.; Laghezza, A.; Campestre, C.; Tortorella, P.; Loiodice, F.; Piemontese, L.; CaraDonna, A.; Capelli, D.; Montanari, R.; Pochetti, G.; et al. Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity. J. Enzyme Inhib. Med. Chem. 2016, 31, 25–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauro, M.; Loiodice, F.; Ceruso, M.; Supuran, C.T.; Tortorella, P. Arylamino bisphosphonates: Potent and selective inhibitors of the tumor-associated carbonic anhydrase XII. Bioorg. Med. Chem. Lett. 2014, 24, 1941–1943. [Google Scholar] [CrossRef] [PubMed]
- Tauro, M.; Loiodice, F.; Ceruso, M.; Supuran, C.T.; Tortorella, P. Dual carbonic anhydrase/matrix metalloproteinase inhibitors incorporating bisphosphonic acid moieties targeting bone tumors. Bioorg. Med. Chem. Lett. 2014, 24, 2617–2620. [Google Scholar] [CrossRef]
- Tauro, M.; Laghezza, A.; Loiodice, F.; Agamennone, M.; Campestre, C.; Tortorella, P. Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorg. Med. Chem. 2013, 21, 6456–6465. [Google Scholar] [CrossRef]
- Savino, S.; Toscano, A.; Purgatorio, R.; Profilo, E.; Laghezza, A.; Tortorella, P.; Angelelli, M.; Cellamare, S.; Scala, R.; Tricarico, D.; et al. Novel bisphosphonates with antiresorptive effect in bone mineralization and osteoclastogenesis. Eur. J. Med. Chem. 2018, 158, 184–200. [Google Scholar] [CrossRef]
- Shay, G.; Tauro, M.; Loiodice, F.; Tortorella, P.; Sullivan, D.M.; Hazlehurst, L.A.; Lynch, C.C. Selective inhibition of matrix metalloproteinase-2 in the multiple myeloma-bone microenvironment. Oncotarget 2017, 8, 41827–41840. [Google Scholar] [CrossRef] [Green Version]
- Laghezza, A.; Piemontese, L.; Loiodice, F.; Tortorella, P.; Brunetti, L.; CaraDonna, A.; Agamennone, M.; Di Pizio, A.; Pochetti, G.; Montanari, R.; et al. Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy. Pharmaceuticals 2020, 13, 113. [Google Scholar] [CrossRef]
- Rubino, M.T.; Agamennone, M.; Campestre, C.; Campiglia, P.; Cremasco, V.; Faccio, R.; Laghezza, A.; Loiodice, F.; Maggi, D.; Panza, E.; et al. Biphenyl Sulfonylamino Methyl Bisphosphonic Acids as Inhibitors of Matrix Metalloproteinases and Bone Resorption. ChemMedChem 2011, 6, 1258–1268. [Google Scholar] [CrossRef]
- Aureli, L.; Gioia, M.; Cerbara, I.; Monaco, S.; Fasciglione, G.F.; Marini, S.; Ascenzi, P.; Topai, A.; Coletta, M. Structural Bases for Substrate and Inhibitor Recognition by Matrix Metalloproteinases. Curr. Med. Chem. 2008, 15, 2192–2222. [Google Scholar] [CrossRef] [Green Version]
- Cawston, T.E.; Wilson, A.J. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pr. Res. Clin. Rheumatol. 2006, 20, 983–1002. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.H.; Huang, D.; Blick, T.; Connor, A.; Reiter, L.A.; Hardink, J.R.; Lynch, C.C.; Waltham, M.; Thompson, E.W. An MMP13-Selective Inhibitor Delays Primary Tumor Growth and the Onset of Tumor-Associated Osteolytic Lesions in Experimental Models of Breast Cancer. PLoS ONE 2012, 7, e29615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nannuru, K.C.; Futakuchi, M.; Varney, M.L.; Vincent, T.M.; Marcusson, E.G.; Singh, R.K. Matrix Metalloproteinase (MMP)-13 Regulates Mammary Tumor–Induced Osteolysis by Activating MMP9 and Transforming Growth Factor-β Signaling at the Tumor-Bone Interface. Cancer Res. 2010, 70, 3494–3504. [Google Scholar] [CrossRef] [Green Version]
- Ohshiba, T.; Miyaura, C.; Inada, M.; Ito, A. Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br. J. Cancer 2003, 88, 1318–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.-W.; Wan, R.-Z.; Liu, Z.-P. Recent Research Advances in Selective Matrix Metalloproteinase-13 Inhibitors as Anti-Osteoarthritis Agents. ChemMedChem 2017, 12, 1157–1168. [Google Scholar] [CrossRef]
- Fischer, T.; Riedl, R. Molecular Recognition of the Catalytic Zinc (II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies. Int. J. Mol. Sci. 2016, 17, 314. [Google Scholar] [CrossRef]
- Cheng, X.-C.; Wang, Q.; Fang, H.; Xu, W.-F. Role of sulfonamide group in matrix metalloproteinase inhibitors. Curr. Med. Chem. 2008, 15, 368–373. [Google Scholar] [CrossRef]
- Gimeno, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. Understanding the variability of the S1′ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov. Today 2020, 25, 38–57. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger LLC. Schrödinger Suite 2019-3: MacroModel, Glide, SiteMap, Maestro; Schrödinger: New York, NY, USA, 2019. [Google Scholar]
ML115 | 1: R = H 2: R = F 3: R = Cl 4: R = NO2 |
5: R = H 6: R = Br 7: R = NO2 | 8 |
9 | 10 |
11 | 12 |
Compound | R | n | MMP-2 | MMP-8 | MMP-9 | MMP-13 |
---|---|---|---|---|---|---|
ML 115 | 0.14 ± 0.04 a | 0.40 ± 0.03 a | >100 a | 0.6 ± 0.3 | ||
1 | H | 0 | 12.7 ± 0.8 | 84.3 ± 2.1 | >100 | 6.5 ± 1.2 |
2 | F | 0 | 9.0 ± 0.9 | 32.1 ± 1.9 | 26.5 ± 2.7 | 4.25 ± 0.35 |
3 | Cl | 0 | 2.64 ± 0.04 | 14.6 ± 0.2 | 18.7 ± 2.9 | 1.23 ± 0.12 |
4 | NO2 | 0 | 4.5 ± 0.5 | 9.0 ± 0.4 | 7.7 ± 1.1 | 2.25 ± 0.15 |
5 | NHCOPh | 0 | 1.16 ± 0.18 | 9.0 ± 0.3 | 6.3 ± 0.9 | 0.670 ± 0.025 |
6 | NHCOPh-4-Br | 0 | 13.8 ± 0.9 | 60 ± 2.6 | >100 | 6.7 ± 0.5 |
7 | NHCOPh-4-NO2 | 0 | 0.98 ± 0.16 | 6.7 ± 0.8 | 5.4 ± 1.1 | 0.50 ± 0.01 |
8 | NHCOCH2Ph | 0 | 2.4 ± 0.5 | 10.8 ± 3.1 | 22 ± 8 | 9.3 ± 0.7 |
9 | NHCONHPh | 0 | 3.0 ± 0.4 | 15 ± 5 | 13.6 ± 1.4 | 11.5 ± 1.9 |
10 | N(CO)2Ph | 0 | 1.69 ± 0.08 | 12.0 ± 0.4 | 5.4 ± 1.6 | 10.9 ± 2.4 |
11 | (S)-NHCOCH(CH3)NH2 | 0 | 9.4 ± 2.0 | 54 ± 6 | >100 | 61.9 ± 1.3 |
12 | Cl | 1 | 4.7 ± 1.1 | 21.3 ± 1.7 | 36.6 ± 1.8 | 0.82 ± 0.06 |
Compound | Selectivity | Ligand Efficiency | |||||
---|---|---|---|---|---|---|---|
MMP-2/13 | MMP-8/13 | MMP-9/13 | MMP-2 | MMP-8 | MMP-9 | MMP-13 | |
ML115 | 0.23 | 0.67 | >166.67 | 0.38 | 0.35 | - | 0.34 |
1 | 1.95 | 12.97 | >15.4 | 0.36 | 0.30 | - | 0.38 |
2 | 2.12 | 7.55 | 6.24 | 0.35 | 0.31 | 0.31 | 0.37 |
3 | 2.15 | 11.87 | 15.20 | 0.38 | 0.33 | 0.32 | 0.41 |
4 | 2.00 | 4.00 | 3.42 | 0.33 | 0.31 | 0.32 | 0.35 |
5 | 1.73 | 13.43 | 9.40 | 0.29 | 0.25 | 0.25 | 0.30 |
6 | 2.06 | 8.96 | >14.92 | 0.22 | 0.19 | - | 0.24 |
7 | 1.96 | 13.40 | 10.80 | 0.27 | 0.23 | 0.23 | 0.28 |
8 | 0.26 | 1.16 | 2.37 | 0.27 | 0.23 | 0.22 | 0.24 |
9 | 0.26 | 1.30 | 1.18 | 0.26 | 0.23 | 0.23 | 0.23 |
10 | 0.16 | 1.10 | 0.50 | 0.26 | 0.23 | 0.24 | 0.23 |
11 | 0.15 | 0.87 | >1.62 | 0.28 | 0.23 | - | 0.23 |
12 | 5.73 | 25.98 | 44.63 | 0.35 | 0.31 | 0.29 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laghezza, A.; Piemontese, L.; Brunetti, L.; Caradonna, A.; Agamennone, M.; Loiodice, F.; Tortorella, P. (2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone. Pharmaceuticals 2021, 14, 85. https://doi.org/10.3390/ph14020085
Laghezza A, Piemontese L, Brunetti L, Caradonna A, Agamennone M, Loiodice F, Tortorella P. (2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone. Pharmaceuticals. 2021; 14(2):85. https://doi.org/10.3390/ph14020085
Chicago/Turabian StyleLaghezza, Antonio, Luca Piemontese, Leonardo Brunetti, Alessia Caradonna, Mariangela Agamennone, Fulvio Loiodice, and Paolo Tortorella. 2021. "(2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone" Pharmaceuticals 14, no. 2: 85. https://doi.org/10.3390/ph14020085
APA StyleLaghezza, A., Piemontese, L., Brunetti, L., Caradonna, A., Agamennone, M., Loiodice, F., & Tortorella, P. (2021). (2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone. Pharmaceuticals, 14(2), 85. https://doi.org/10.3390/ph14020085