Population Pharmacokinetics of Palbociclib in a Real-World Situation
Abstract
:1. Introduction
2. Results
3. Discussion
4. Method
4.1. Patients and Sampling
4.2. Analytical Methods
4.3. Population Pharmacokinetic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.-A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Drug Approval Package: IBRANCE. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212436Orig1s000TOC.cfm (accessed on 7 January 2021).
- Groenland, S.L.; Martínez-Chávez, A.; van Dongen, M.G.; Beijnen, J.H.; Schinkel, A.H.; Huitema, A.D.; Steeghs, N. Clinical Pharmacokinetics and Pharmacodynamics of the Cyclin-Dependent Kinase 4 and 6 Inhibitors Palbociclib, Ribociclib, and Abemaciclib. Clin. Pharmacokinet. 2020, 59, 1501–1520. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; O’Dwyer, P.J.; Finn, R.S.; Ruiz-Garcia, A.; Shapiro, G.I.; Schwartz, G.K.; DeMichele, A.; Wang, D. Characterization of Neutropenia in Advanced Cancer Patients Following Palbociclib Treatment Using a Population Pharmacokinetic-Pharmacodynamic Modeling and Simulation Approach. J. Clin. Pharmacol. 2017, 57, 1159–1173. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hoffman, J.; Plotka, A.; O’Gorman, M.; Shi, H.; Wang, D. Palbociclib (PD-0332991) Pharmacokinetics in Subjects with Impaired Renal Function. Cancer Chemother. Pharmacol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Loi, C.-M.; Hoffman, J.; Wang, D. Physiologically Based Pharmacokinetic Modeling of Palbociclib. J. Clin. Pharmacol. 2017, 57, 173–184. [Google Scholar] [CrossRef]
- Sun, W.; Wang, D. A Population Pharmacokinetic Analysis of Palbociclib (PD-0332991) in Patients With Advanced Cancer. Ann. Oncol. 2014, 25, iv154. [Google Scholar] [CrossRef]
- Mould, D.R.; Upton, R.N. Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development-Part 2: Introduction to Pharmacokinetic Modeling Methods. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e38. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Yu, Y.; Hoffman, J.; Turner, N.C.; Cristofanilli, M.; Wang, D.D. Palbociclib Exposure-Response Analyses in Second-Line Treatment of Hormone-Receptor Positive Advanced Breast Cancer (ABC). J. Clin. Oncol. 2017, 35, 1053. [Google Scholar] [CrossRef]
- Jolibois, J.; Schmitt, A.; Royer, B. A Simple and Fast LC-MS/MS Method for the Routine Measurement of Cabozantinib, Olaparib, Palbociclib, Pazopanib, Sorafenib, Sunitinib and Its Main Active Metabolite in Human Plasma. J. Chromatogr. B 2019, 1132, 121844. [Google Scholar] [CrossRef] [PubMed]
- Beal, S.; Sheiner, L.B.; Boeckmann, A.; Bauer, R.J. NONMEM User’s Guides. (1989–2009); Icon Development Solutions: Ellicott City, MD, USA, 2009. [Google Scholar]
- Keizer, R.J.; van Benten, M.; Beijnen, J.H.; Schellens, J.H.M.; Huitema, A.D.R. Piraña and PCluster: A Modeling Environment and Cluster Infrastructure for NONMEM. Comput. Methods Programs Biomed. 2011, 101, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Green, B.; Duffull, S.B. Prospective Evaluation of a D-Optimal Designed Population Pharmacokinetic Study. J. Pharmacokinet. Pharmacodyn. 2003, 30, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Bergstrand, M.; Hooker, A.C.; Wallin, J.E.; Karlsson, M.O. Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models. AAPS J. 2011, 13, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comets, E.; Brendel, K.; Mentré, F. Computing Normalised Prediction Distribution Errors to Evaluate Nonlinear Mixed-Effect Models: The Npde Add-on Package for R. Comput. Methods Programs Biomed. 2008, 90, 154–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindbom, L.; Pihlgren, P.; Jonsson, N. PsN-Toolkit—A Collection of Computer Intensive Statistical Methods for Non-Linear M0069xed Effect Modeling Using NONMEM. Comput. Methods Programs Biomed. 2005, 79, 241–257. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Mean | Median | Min-Max |
---|---|---|---|
Age (years) | 67.4 | 70.4 | 40.7–92.2 |
Total Body Weight (WT—kg) | 69.7 | 98.0 | 37.0–140.0 |
Serum Creatinine (µmol/L) | 74.6 | 68.0 | 31.0–301.8 |
Creatinine Clearance—Cockroft & Gault (CRCL—ml/min) | 78.9 | 72.1 | 23.4–282.3 |
Alanine aminotransferase (UI/L) | 30.7 | 21.5 | 13.0–205.0 |
Aspartate aminotransferase (UI/L) | 26.5 | 16.0 | 16.0–270.0 |
γ-glutamyl transferase (UI/L) | 74.2 | 28.5 | 10.0–1113.0 |
Alkaline phosphatase (UI/L) | 110.9 | 78.0 | 11.0–644.0 |
Lactate dehydrogenase (UI/L) | 239.6 | 223.5 | 85.0–675.0 |
Total bilirubinemia (µmol/L) | 8.5 | 7.9 | 2.7–27.2 |
Serum albumin (g/L) | 39.9 | 40.0 | 27.0–47.7 |
Total protein (g/L) | 70.0 | 70.0 | 53.0–98.0 |
Model Parameters | Bootstrap (n = 500) | |||
---|---|---|---|---|
Estimates | RSE | Shrinkage (%) | 2.5th–97.5th Percentiles | |
CL/F (L/h) | 58.3 | 3.3% | 54.2–62.8 | |
CRCL on CL/F | 0.419 | 13.9% | 0.287–0.560 | |
V/F (L) | 1580 | 16.2% | 930–2568 | |
Ka (h−1) | 0.187 | 19.3% | 0.107–0.370 | |
Tlag (L) | 0.658 | - | ||
IIV CL/F | 31.3% | 36.2% | 14.9% | 23.5%–36.7% |
IIV Ka | 126.1% | 36.2% | 63.5% | 21.2%–259.4% |
Correlation between CL/F and Ka | −34.2% | 50.5% | −56.6%–13.8% | |
Additional Error (µG/L) | 8.14 | 17.6% | 58.9% | 4.33–14.80 |
Proportional Error | 0.0689 | 31.3% | 58.9% | 0.0136–0.135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Royer, B.; Kaderbhaï, C.; Fumet, J.-D.; Hennequin, A.; Desmoulins, I.; Ladoire, S.; Ayati, S.; Mayeur, D.; Ilie, S.; Schmitt, A. Population Pharmacokinetics of Palbociclib in a Real-World Situation. Pharmaceuticals 2021, 14, 181. https://doi.org/10.3390/ph14030181
Royer B, Kaderbhaï C, Fumet J-D, Hennequin A, Desmoulins I, Ladoire S, Ayati S, Mayeur D, Ilie S, Schmitt A. Population Pharmacokinetics of Palbociclib in a Real-World Situation. Pharmaceuticals. 2021; 14(3):181. https://doi.org/10.3390/ph14030181
Chicago/Turabian StyleRoyer, Bernard, Courèche Kaderbhaï, Jean-David Fumet, Audrey Hennequin, Isabelle Desmoulins, Sylvain Ladoire, Siavoshe Ayati, Didier Mayeur, Sivia Ilie, and Antonin Schmitt. 2021. "Population Pharmacokinetics of Palbociclib in a Real-World Situation" Pharmaceuticals 14, no. 3: 181. https://doi.org/10.3390/ph14030181
APA StyleRoyer, B., Kaderbhaï, C., Fumet, J. -D., Hennequin, A., Desmoulins, I., Ladoire, S., Ayati, S., Mayeur, D., Ilie, S., & Schmitt, A. (2021). Population Pharmacokinetics of Palbociclib in a Real-World Situation. Pharmaceuticals, 14(3), 181. https://doi.org/10.3390/ph14030181