Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice
Abstract
:1. Introduction
2. Results
2.1. Optimization of LC-MS/MS Conditions for SH045 and Internal Standard (IS)
2.2. Plasma Sample Preparation
2.3. Method Validation
2.3.1. Selectivity, LOD, LLOQ, Carry-Over and Linearity
2.3.2. Accuracy and Precision
2.3.3. Extraction Recovery and Matrix Effect
2.3.4. Stability
2.3.5. Dilution Integrity
2.4. Plasma Protein Binding (PPB)
2.5. Concentration-Time Profile of SH045 in Plasma
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. HPLC and Tandem Mass Spectrometric Method (LC-MS/MS)
4.2.1. Chromatographic Conditions
4.2.2. Mass Spectrometric Conditions
4.3. Preparation of Standard Stock Solutions, Calibration and QC Samples
4.4. Method Validation
4.4.1. Selectivity, LOD, LLOQ, Carry Over and Linearity
4.4.2. Intra- and Inter-Day Accuracy and Precision
4.4.3. Extraction Recovery and Matrix Effects
4.4.4. Stability Experiments
4.4.5. Dilution Integrity
4.5. Plasma Protein Binding (PPB)
4.6. Animals, Drug Administration and Plasma Sample Preparation
4.7. Plasma Kinetics of SH045
4.8. Calculations and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Cheng, X.; Tian, J.; Xiao, Y.; Tian, T.; Xu, F.; Hong, X.; Zhu, M.X. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 2020, 209, 107497. [Google Scholar] [CrossRef]
- Hofmann, T.; Obukhov, A.G.; Schaefer, M.; Harteneck, C.; Gudermann, T.; Schultz, G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999, 397, 259–263. [Google Scholar] [CrossRef]
- Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 2001, 70, 281–312. [Google Scholar] [CrossRef]
- Riccio, A.; Medhurst, A.D.; Mattei, C.; Kelsell, R.E.; Calver, A.R.; Randall, A.D.; Benham, C.D.; Pangalos, M.N. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res. Mol. Brain Res. 2002, 109, 95–104. [Google Scholar] [CrossRef]
- Winn, M.P.; Conlon, P.J.; Lynn, K.L.; Farrington, M.K.; Creazzo, T.; Hawkins, A.F.; Daskalakis, N.; Kwan, S.Y.; Ebersviller, S.; Burchette, J.L.; et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005, 308, 1801–1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riehle, M.; Büscher, A.K.; Gohlke, B.-O.; Kaßmann, M.; Kolatsi-Joannou, M.; Bräsen, J.H.; Nagel, M.; Becker, J.U.; Winyard, P.; Hoyer, P.F.; et al. TRPC6 G757D Loss-of-Function Mutation Associates with FSGS. J. Am. Soc. Nephrol. 2016, 27, 2771–2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, G.; Wang, L.; Spurney, R.F. TRPC Channels in Proteinuric Kidney Diseases. Cells 2019, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, A. Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals 2019, 12, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Perrot, M.; Liu, M.; Waddell, T.K.; Keshavjee, S. Ischemia-reperfusion-induced lung injury. Am. J. Respir. Crit. Care Med. 2003, 167, 490–511. [Google Scholar] [CrossRef]
- Urban, N.; Hill, K.; Wang, L.; Kuebler, W.M.; Schaefer, M. Novel pharmacological TRPC inhibitors block hypoxia-induced vasoconstriction. Cell Calcium 2012, 51, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Frija, L.M.; Frade, R.F.; Afonso, C.A. Isolation, chemical, and biotransformation routes of labdane-type diterpenes. Chem. Rev. 2011, 111, 4418–4452. [Google Scholar] [CrossRef]
- Urban, N.; Wang, L.; Kwiek, S.; Rademann, J.; Kuebler, W.M.; Schaefer, M. Identification and Validation of Larixyl Acetate as a Potent TRPC6 Inhibitor. Mol. Pharmacol. 2016, 89, 197–213. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, S.; Bon, R.S.; Kumar, K.; Waldmann, H. Biology-oriented synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 10800–10826. [Google Scholar] [CrossRef]
- Häfner, S.; Burg, F.; Kannler, M.; Urban, N.; Mayer, P.; Dietrich, A.; Trauner, D.; Broichhagen, J.; Schaefer, M. A (+)-Larixol Congener with High Affinity and Subtype Selectivity toward TRPC6. ChemMedChem 2018, 13, 1028–1035. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Guideline on Bioanalytical Method Validation. 2011. Available online: https://www.ema.europa.eu/en/bioanalytical-method-validation (accessed on 28 December 2020).
- U.S. Food and Drug Administration. Guidance for Industry: Bioanalytical Method Validation. 2018. Available online: https://www.fda.gov/media/70858/download (accessed on 28 December 2020).
- Al Shoyaib, A.; Archie, S.R.; Karamyan, V.T. Intraperitoneal Route of Drug Administration: Should it Be Used in Experimental Animal Studies? Pharm. Res. 2019, 37, 12. [Google Scholar] [CrossRef]
- Kong, W.; Haschler, T.N.; Nürnberg, B.; Krämer, S.; Gollasch, M.; Markó, L. Renal Fibrosis, Immune Cell Infiltration and Changes of TRPC Channel Expression after Unilateral Ureteral Obstruction in Trpc6-/- Mice. Cell Physiol. Biochem. 2019, 52, 1484–1502. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, M.; Jia, P.; Liu, F.-F.; Chen, K.; Meng, F.-Y.; Hong, J.-H.; Zhang, T.; Jin, X.-H.; Shi, J. The analgesic action of larixyl acetate, a potent TRPC6 inhibitor, in rat neuropathic pain model induced by spared nerve injury. J. Neuroinflammation 2020, 17, 118. [Google Scholar] [CrossRef] [PubMed]
- Prikhodko, V.; Chernyuk, D.; Sysoev, Y.; Zernov, N.; Okovityi, S.; Popugaeva, E. Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in the Pathophysiology of Alzheimer’s Disease and Brain Ischemia. Cells 2020, 9, 2351. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sooch, G.; Demaree, I.S.; White, F.A.; Obukhov, A.G. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020, 9, 1983. [Google Scholar] [CrossRef] [PubMed]
- Paterson, I.; Anderson, E.A. Chemistry. The renaissance of natural products as drug candidates. Science 2005, 310, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Meotti, F.C.; Lemos de Andrade, E.; Calixto, J.B. TRP modulation by natural compounds. Handb. Exp. Pharmacol. 2014, 223, 1177–1238. [Google Scholar] [CrossRef]
- Vetter, I.; Lewis, R.J. Natural product ligands of TRP channels. Adv. Exp. Med. Biol. 2011, 704, 41–85. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
Analyte | Parent ion (m/z) | Production (m/z) | Collision Energy * | Collision Gas | Entrance Potential * | De-Clustering Potential * | Collision Cell Exit Potential * | Scan Time (ms) |
---|---|---|---|---|---|---|---|---|
SH045 | 364.3 | 289.3 | 9 | Medium | 10 | 50 | 14 | 100 |
IS | 307.2 | 151.2 | 21 | Medium | 10 | 66 | 10 | 100 |
QC Level | Nominal Conc. (ng/mL) | Intra-Day | Inter-Day | ||||
---|---|---|---|---|---|---|---|
Mean ± SEM (ng/mL) | Accuracy (%) | Precision (%) | Mean ± SEM (ng/mL) | Accuracy (%) | Precision (%) | ||
LLOQ | 2 | 1.8 ± 0.1 | 91.0 | 5.2 | 1.9 ± 0.1 | 95.4 | 4.6 |
LQC | 5 | 5.1 ± 0.1 | 101.6 | 7.6 | 5.2 ± 0.2 | 104.2 | 8.3 |
MQC | 800 | 801 ± 12 | 100.2 | 6.6 | 796 ± 23 | 99.4 | 7.2 |
HQC | 1200 | 1264 ± 13 | 105.3 | 4.3 | 1264 ± 26 | 105.3 | 5.1 |
QC Level | Nominal Concentration (ng/mL) | Recovery (%) | Matrix Effect (%) | ||
---|---|---|---|---|---|
Mean (%) | RSD (%) | Mean (%) | RSD (%) | ||
LLOQ | 2 | 111.8 | 4.4 | 91.6 | 12.9 |
LQC | 5 | 109.1 | 7.3 | 102.1 | 4.1 |
MQC | 800 | 96.0 | 3.8 | 96.9 | 3.6 |
HQC | 1200 | 96.0 | 3.6 | 97.0 | 3.7 |
IS | 50,000 | 102.4 | 5.6 | 103.8 | 4.1 |
Assessment | Conditions | Nominal Concen-Tration (ng/mL) | Mean ± SEM (ng/mL) | Accuracy (%) | |
---|---|---|---|---|---|
Stock solution | SH045 | −20 °C, 28 days | 1000 | 1066 ± 9 | 106.6 |
IS | 50,000 | 49,610 ± 419 | 99.2 | ||
Working solution | SH045 | 4 °C, 12 h | 1000 | 1037 ± 10 | 103.7 |
IS | 50,000 | 49,818 ± 944 | 99.6 | ||
QC samples | Short-term stability | 25 °C, 4 h | 5 | 5.4 ± 0.1 | 107.6 |
800 | 816 ± 2 | 101.9 | |||
1200 | 1186 ± 36 | 98.8 | |||
Stability in autosampler | 6 °C, 12 h | 5 | 5.0 ± 0.2 | 99.0 | |
800 | 807 ± 28 | 100.8 | |||
1200 | 1256 ± 50 | 104.7 | |||
Freeze and thaw stability | −20 °C, 12 h, 3 cycles | 5 | 4.9 ± 0.2 | 97.2 | |
800 | 721 ± 8 | 90.1 | |||
1200 | 1083 ± 41 | 90.2 | |||
Long-term stability | −20 °C, 30 days | 5 | 5.4 ± 0.3 | 107.3 | |
800 | 763 ± 9 | 95.4 | |||
1200 | 1199 ± 29 | 99.9 |
Analyte | Concentration Spiked (ng/mL) | Dilution Fold | Mean ± SEM (ng/mL) | Accuracy (%) | Precision (%) |
---|---|---|---|---|---|
SH045 | 1800 | 1:2 | 854 ± 15 | 94.9 | 4.4 |
1:4 | 396 ± 4 | 88.1 | 2.3 |
Parameter | T1/2 (h) | Tmax (h) | Cmax (ng/mL) | AUC(0–6) (ng/mL × h) | AUC0–∞ (ng/mL × h) | AUCextra (ng/mL × h) | % AUC | MRT (h) | Vss (L) | Clearance (CL)Plasma (mL/min) |
---|---|---|---|---|---|---|---|---|---|---|
Value | 1.31 | 0.5 | 756 | 1410 | 1473 | 63.7 | 4.3 | 1.9 | 25 | 226 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, X.-N.; Ludwig, F.-A.; Müglitz, A.; Schaefer, M.; Yin, H.-Y.; Brust, P.; Regenthal, R.; Krügel, U. Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice. Pharmaceuticals 2021, 14, 259. https://doi.org/10.3390/ph14030259
Chai X-N, Ludwig F-A, Müglitz A, Schaefer M, Yin H-Y, Brust P, Regenthal R, Krügel U. Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice. Pharmaceuticals. 2021; 14(3):259. https://doi.org/10.3390/ph14030259
Chicago/Turabian StyleChai, Xiao-Ning, Friedrich-Alexander Ludwig, Anne Müglitz, Michael Schaefer, Hai-Yan Yin, Peter Brust, Ralf Regenthal, and Ute Krügel. 2021. "Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice" Pharmaceuticals 14, no. 3: 259. https://doi.org/10.3390/ph14030259
APA StyleChai, X. -N., Ludwig, F. -A., Müglitz, A., Schaefer, M., Yin, H. -Y., Brust, P., Regenthal, R., & Krügel, U. (2021). Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice. Pharmaceuticals, 14(3), 259. https://doi.org/10.3390/ph14030259