Adenosine A1 Receptor Agonist (R-PIA) before Pilocarpine Modulates Pro- and Anti-Apoptotic Factors in an Animal Model of Epilepsy
Abstract
:1. Introduction
2. Results
2.1. Caspase-1
2.2. Caspase-3
2.3. AKT, HSP 70, and Cathepsin D Expression
3. Discussion
3.1. Caspases and Cathepsin D Activation Following Pilocarpine-Induced SE
3.2. Neuroprotection by R-PIA
4. Materials and Methods
4.1. Animals
4.2. Pilocarpine and R-PIA Protocols
4.3. Groups
4.4. Caspase Assay
4.5. Western Blot
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devinsky, O.; Vezzani, A.; O’Brien, T.J.; Jette, N.; Scheffer, I.E.; De Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Prim. 2018, 4, 18024. [Google Scholar] [CrossRef] [PubMed]
- Blümcke, I.; Thom, M.; Aronica, E.; Armstrong, D.D.; Bartolomei, F.; Bernasconi, A.; Bernasconi, N.; Bien, C.G.; Cendes, F.; Coras, R.; et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013, 54, 1315–1329. [Google Scholar] [CrossRef]
- Blumcke, I.; Pauli, E.; Clusmann, H.; Schramm, J.; Becker, A.; Elger, C.; Merschhemke, M.; Meencke, H.J.; Lehmann, T.; von Deimling, A.; et al. A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol. 2007, 113, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Houser, C.R. Brain Res. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res. 1990, 535, 195–204. [Google Scholar] [CrossRef]
- Costa Neves, R.S.; Tudesco, I.S.S.; Jardim, A.P.; Caboclo, L.O.S.F.; Lancellotti, C.; Ferraro-Marinho, T.; Hamad, A.P.; Marinho, M.; Centeno, R.S.; Cavalheiro, E.A.; et al. Ganule cell dispersion is associated with memory impairment in right mesial temporal lobe epilepsy. Seizure 2012, 21, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Turski, W.A.; Czuczwar, S.J.; Kleinrok, Z.; Turski, L. Cholinomimetics produce seizures and brain damage in rats. Experientia 1983, 39, 1408–1411. [Google Scholar] [CrossRef]
- Leite, J.P.; Cavalheiro, E.A. Effects of conventional antiepileptic drugs in a model of spontaneous recurrent seizures in rats. Epilepsy Res. 1995, 20, 93–104. [Google Scholar] [CrossRef]
- Curia, G.; Longo, D.; Biagini, G.; Jones, R.S.; Avoli, M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods 2008, 172, 143–157. [Google Scholar] [CrossRef]
- Cavalheiro, E.A. The pilocarpine model of epilepsy. Ital. J. Neurol. Sci. 1995, 6, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Blumcke, I.; Kistner, I.; Clusmann, H.; Schramm, J.; Becker, A.J.; Elger, C.E.; Bien, C.G.; Merschhemke, M.; Meencke, H.J.; Lehmann, T.; et al. Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathol. 2009, 117, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Henshall, D.C.; Bonislawski, D.P.; Skradski, S.L.; Lan, J.Q.; Meller, R.; Simon, R.P. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures. Neurobiol. Dis. 2001, 8, 568–580. [Google Scholar] [CrossRef]
- Weise, J.; Engelhorn, T.; Dörfler, A.; Aker, S.; Bähr, M.; Hufnagel, A. Expression time course and spatial distribution of activated caspase-3 after experimental status epilepticus: Contribution of delayed neuronal cell death to seizure-induced neuronal injury. Neurobiol. Dis. 2005, 18, 582–590. [Google Scholar] [CrossRef]
- Henshall, D.C.; Skradski, S.L.; Bonislawski, D.P.; Lan, J.Q.; Simon, R.P. Caspase-2 activation is redundant during seizure-induced neuronal death. J. Neurochem. 2001, 77, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Ravizza, T.; Lucas, S.M.; Balosso, S.; Bernardino, L.; Ku, G.; Noé, F.; Malva, J.; Randle, J.C.; Allan, S.; Vezzani, A. Inactivation of caspase-1 in rodent brain: A novel anticonvulsive strategy. Epilepsia 2006, 47, 1160–1168. [Google Scholar] [CrossRef]
- Li, T.; Lu, C.; Xia, Z.; Xiao, B.; Luo, Y. Inhibition of caspase-8 attenuates neuronal death induced by limbic seizures in a cytochrome c-dependent and Smac/DIABLO-independent way. Brain Res. 2006, 1098, 204–211. [Google Scholar] [CrossRef]
- McLaughlin, B. The kinder side of killer proteases: Caspase activation contributes to neuroprotection and CNS remodeling. Apoptosis 2004, 9, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Venero, J.L.; Burguillos, M.A.; Brundin, P.; Joseph, B. The executioners sing a new song: Killer caspases activate microglia. Cell Death Differ. 2011, 18, 1679–1691. [Google Scholar] [CrossRef] [Green Version]
- Julien, O.; Zhuang, M.; Wiita, A.P.; O’Donoghue, A.J.; Knudsen, G.M.; Craik, C.S.; Wells, J.A. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc. Natl. Acad. Sci. USA 2016, 113, E2001–E2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, R.J. The molecular chaperone concept. Semin. Cell Biol. 1990, 1, 1–9. [Google Scholar]
- Gabai, V.L.; Garrido, C.; Schmitt, E.; Cande, C.; Vahsen, N.; Parcellier, A.; Kroemer, G. Hsp27 and Hsp70 potentially oncogenic apoptosis inhibitors. Cell Cycle 2003, 2, 579–584. [Google Scholar]
- Kandratavicius, L.; Hallak, J.E.; Carlotti Jr, C.G.; Assirati Jr, J.A.; Leite, J.P. Hippocampal expression of heat shock proteins in mesial temporal lobe epilepsy with psychiatric comorbidities and their relation to seizure outcome. Epilepsia 2014, 55, 1834–1843. [Google Scholar] [CrossRef] [PubMed]
- Ammon-Treiber, S.; Grecksch, G.; Angelidis, C.; Vezyraki, P.; Hollt, V.; Becker, A. Pentylenetetrazol-kindling in mice overexpressing heat shock protein 70. Naunyn Schmiedebergs Arch Pharmacol. 2007, 375, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Hsu, C.; Liao, W.; Chuang, J.S. Heat shock protein 70 expression in epilepsy suggests stress rather than protection. Acta Neuropathol. 2008, 115, 219–230. [Google Scholar] [CrossRef]
- Noshita, N.; Sugawara, T.; Hayashi, T.; Lewén, A.; Omar, G.; Chan, P.H. Copper/Zinc Superoxide Dismutase Attenuates Neuronal Cell Death by Preventing Extracellular Signal-Regulated Kinase Activation after Transient Focal Cerebral Ischemia in Mice. J. Neurosci. 2002, 22, 7923–7930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinoda, S.; Schindler, C.K.; Meller, R.; So, N.K.; Araki, T.; Yamamoto, A.; Lan, J.Q.; Taki, W.; Simon, R.P.; Henshall, D.C. Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. J. Clin. Investig. 2004, 113, 1059–1068. [Google Scholar] [CrossRef] [Green Version]
- Zavala-Tecuapetla, C.; Cuellar-Herrera, M.; Hiram Luna-Munguia, H. Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int. J. Mol. Sci. 2020, 21, 8573. [Google Scholar] [CrossRef]
- Bernstein, H.G.; Keilhoff, G.; Kirschke, H.; Wiederanders, B.; Rinne, A.; Khudoerkov, R.; Dorn, A. Cathepsins B and D in rat brain glia during experimentally induced neuropathological defects. An immunocytochemical approach. Biomed. Biochim. Acta 1986, 45, 1461–1464. [Google Scholar]
- von Bernhardi, R.; Eugenín-von Bernhardi, L.; Eugenín, J. Microglial cell dysregulation in brain aging and neurodegeneration. Front. Aging Neurosci. 2015, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Snyder, D.S.; Whitaker, J.N. Postnatal changes in cathepsin D in rat neural tissue. J. Neurochem. 1983, 40, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Song, M.; Liu, X.; Kang, S.S.; Kwon, I.S.; Duong, D.M.; Seyfried, N.T.; Hu, W.T.; Liu, Z.; Wang, J.Z.; et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat. Med. 2014, 20, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Sapp, E.; Cuiffo, B.G.; Sobin, L.; Yoder, J.; Kegel, K.B.; Qin, Z.H.; Detloff, P.; Aronin, N.; DiFiglia, M. Lysosomal proteases are involved in generation of N-terminal huntingtin fragments. Neurobiol. Dis. 2006, 22, 346–356. [Google Scholar] [CrossRef]
- Bae, E.J.; Yang, N.Y.; Lee, C.; Kim, S.; Lee, H.J.; Lee, S.J. Haploinsufficiency of cathepsin D leads to lysosomal dysfunction and promotes cell-to-cell transmission of synuclein aggregates. Cell Death Dis. 2015, 6, e1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.; Lee, E.Y.; Lee, S.I. Age-related changes in ultrastructural features of cathepsin B- and D-containing neurons in rat cerebral cortex. Brain Res. 1999, 844, 43–54. [Google Scholar] [CrossRef]
- Stoka, V.; Turka, V.; Turka, B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 2016, 32, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Sasse, V.A.; Wang, Y.; Maulik, M.; Kar, S. Increased levels and activity of cathepsins B and D in kainite-induced toxicity. Neuroscience 2015, 284, 360–373. [Google Scholar] [CrossRef]
- Hetman, M.; Filipowski, R.K.; Domagala, W.; Kaczmarek, L. Elevated cathepsin D expression in kainite evoked rat brain neurodegeneration. Exp. Neurol. 1995, 136, 53–63. [Google Scholar] [CrossRef]
- Meldrum, B.S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr. 2000, 130 (Suppl. 4), 1007S–1015S. [Google Scholar] [CrossRef] [Green Version]
- Berman, R.F.; Fredholm, B.B.; Aden, U.; O’Connor, W.T. Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats. Brain Res. 2000, 872, 44–53. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Dunwiddie, T.V.; Bergman, B.; Lindström, K. Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res. 1984, 295, 127–136. [Google Scholar] [CrossRef]
- Olsson, T.; Cronberg, T.; Rytter, A.; Asztély, F.; Fredholm, B.B.; Smith, M.L.; Wieloch, T. Deletion of the adenosine A1 receptor gene does not alter neuronal damage following ischaemia in vivo or in vitro. Eur. J. Neurosci. 2004, 20, 1197–1204. [Google Scholar] [CrossRef]
- Tescarollo, F.C.; Rombo, D.M.; DeLiberto, L.K.; Fedele, D.E.; Alharfoush, E.; Tomé, A.E.; Cunha, R.A.; Sebastião, A.M.; Boison, D. Role of Adenosine in Epilepsy and Seizures. J. Caffeine Adenosine Res. 2020, 10, 45–60. [Google Scholar] [CrossRef]
- Vianna, E.P.; Ferreira, A.T.; Doná, F.; Cavalheiro, E.A.; da Silva Fernandes, M.J. Modulation of seizures and synaptic plasticity by adenosinergic receptors in an experimental model of temporal lobe epilepsy induced by pilocarpine in rats. Epilepsia 2005, 46 (Suppl. 5), 166–173. [Google Scholar] [CrossRef] [PubMed]
- Rosim, F.E.; Persike, D.S.; Neghlig, A.; Amorim, R.P.; Oliveira, D.M.; Fernandes, M.J. Differential neuroprotection by A1 receptor activation and A2A receptor inhibition following pilocarpine-induced status epilepticus. Epilepsy Behav. 2011, 22, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, I.R.; Nehlig, A.; Rosim, F.E.; Vignoli, T.; Persike, D.S.; Ferrandon, A.; Sinigaglia-Coimbra, R.; Fernandes, M.J.S. The A1 receptor agonist R-Pia reduces the imbalance between cerebral glucose metabolism and blood flow during status epilepticus: Could this mechanism be involved with neuroprotection? Neurobiol. Dis. 2011, 41, 169–176. [Google Scholar] [CrossRef]
- Wardas, J. Neuroprotective role of adenosine in the CNS. Pol. J. Pharmacol. 2002, 54, 313–326. [Google Scholar]
- de Mendonça, A.; Ribeiro, J.A. Long-term potentiation observed upon blockade of adenosine A1 receptors in rat hippocampus is N-methyl-D-aspartate receptor-dependent. Neurosci. Lett. 2000, 291, 81–84. [Google Scholar] [CrossRef]
- Cunha, R.A. Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade. Purinerg. Signal 2005, 1, 111–134. [Google Scholar] [CrossRef] [Green Version]
- Zuchora, B.; Wielosz, M.; Urbańska, E.M. Adenosine A1 receptors and the anticonvulsant potential of drugs effective in the model of 3-nitropropionic acid-induced seizures in mice. Eur. Neuropsychopharmacol. 2005, 15, 85–93. [Google Scholar] [CrossRef]
- Thornberry, N.A.; Lazebnik, Y. Caspases: Enemies within. Science 1998, 281, 1312–1316. [Google Scholar] [CrossRef]
- Persike, D.S.; Cunha, R.L.O.R.; Juliano, L.; Silva, I.R.; Rosim, F.E.; Vignoli, T.; Doná, F.; Cavalheiro, E.A.; Fernandes, M.J.S. Protective effect of the organotelluroxetane RF-07 in pilocarpine-induced status epilepticus. Neurobiol. Dis. 2008, 31, 120–126. [Google Scholar] [CrossRef]
- Eriksson, C.; Van Dam, A.M.; Lucassen, P.J.; Bol, J.G.; Winblad, B.; Schultzberg, M. Immunohistochemical localization of interleukin-1 beta, interleukin-1 receptor antagonist and interleukin-1 beta converting enzyme/caspase-1 in rat brain after peripheral administration of kainic acid. Neuroscience 1999, 93, 915–930. [Google Scholar] [CrossRef]
- Becker, A.J.; Gillardon, F.; Blümcke, I.; Langendörfer, D.; Beck, H.; Wiestler, O.D. Differential regulation of apoptosis-related genes in resistant and vulnerable subfields of the rat epileptic hippocampus. Brain Res. Mol. Brain Res. 1999, 67, 172–176. [Google Scholar] [CrossRef]
- Kondratyev, A.; Gale, K. Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus. Brain Res. Mol. Brain Res. 2000, 75, 216–224. [Google Scholar] [CrossRef]
- Tan, Z.; Sankar, R.; Tu, W.; Shin, D.; Liu, H.; Wasterlain, C.G.; Schreiber, S.S. Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus. Brain Res. 2002, 929, 129–138. [Google Scholar] [CrossRef]
- Vezzani, A.; Conti, M.; De Luigi, A.; Ravizza, T.; Moneta, D.; Marchesi, F.; De Simoni, M.G. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: Functional evidence for enhancement of electrographic seizures. J. Neurosci. 1999, 19, 5054–5065. [Google Scholar] [CrossRef] [Green Version]
- Vezzani, A.; Moneta, D.; Conti, M.; Richichi, C.; Ravizza, T.; De Luigi, A.; De Simoni, M.G.; Sperk, G.; Andell-Jonsson, S.; Lundkvist, J.; et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc. Natl. Acad. Sci. USA 2000, 97, 11534–11539. [Google Scholar] [CrossRef] [Green Version]
- Zhai, W.; Chen, D.; Shen, H.; Chen, Z.; Li, H.; Yu, Z.; Chen, G. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol. Brain 2016, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdou, A.G.; Maraee, A.H.; Shoeib, M.A.; Elsammie, A.A.; Elnaidany, N.F. Cathepsin D expression in chronic plaque psoriasis: An immunohistochemical study. Acta Dermatovenerol. Croat. 2011, 19, 143–149. [Google Scholar]
- Tofighi, R.; Johansson, C.; Goldoni, M.; Ibrahim, W.N.; Gogvadze, V.; Mutti, A.; Ceccatelli, S. Hippocampal neurons exposed to the environmental contaminants methylmercury and polychlorinated biphenyls undergo cell death via parallel activation of calpains and lysosomal proteases. Neurotox. Res. 2011, 19, 183–194. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Koike, M.; Shibata, M.; Sasaki, M. Autophagic neuron death. Methods Enzymol. 2009, 453, 33–51. [Google Scholar] [CrossRef]
- Gervitz, L.M.; Nalbant, D.; Williams, S.C.; Fowler, J.C. Adenosine-mediated activation of Akt/protein kinase B in the rat hippocampus in vitro and in vivo. Neurosci. Lett. 2002, 328, 175–179. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Irenius, E.; Kull, B.; Schulte, G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem. Pharmacol. 2001, 61, 443–448. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Chen, J.F.; Cunha, R.A.; Svenningsson, P.; Vaugeois, J.M. Adenosine and brain function. Int. Rev. Neurobiol. 2005, 63, 191–270. [Google Scholar]
- Fedele, D.E.; Li, T.; Lan, J.Q.; Fredholm, B.B.; Boison, D. Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp. Neurol. 2006, 200, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Belizário, J.E.; Lorite, M.J.; Tisdale, M.J. Cleavage of caspases-1, -3, -6, -8 and -9 substrates by proteases in skeletal muscles from mice undergoing cancer cachexia. Br. J. Cancer 2001, 84, 1135–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Persike, D.S.; Puccinelli, R.P.A.; Fernandes, M.J.d.S. Adenosine A1 Receptor Agonist (R-PIA) before Pilocarpine Modulates Pro- and Anti-Apoptotic Factors in an Animal Model of Epilepsy. Pharmaceuticals 2021, 14, 376. https://doi.org/10.3390/ph14040376
Persike DS, Puccinelli RPA, Fernandes MJdS. Adenosine A1 Receptor Agonist (R-PIA) before Pilocarpine Modulates Pro- and Anti-Apoptotic Factors in an Animal Model of Epilepsy. Pharmaceuticals. 2021; 14(4):376. https://doi.org/10.3390/ph14040376
Chicago/Turabian StylePersike, Daniele Suzete, Rebeca Padrão Amorim Puccinelli, and Maria José da Silva Fernandes. 2021. "Adenosine A1 Receptor Agonist (R-PIA) before Pilocarpine Modulates Pro- and Anti-Apoptotic Factors in an Animal Model of Epilepsy" Pharmaceuticals 14, no. 4: 376. https://doi.org/10.3390/ph14040376
APA StylePersike, D. S., Puccinelli, R. P. A., & Fernandes, M. J. d. S. (2021). Adenosine A1 Receptor Agonist (R-PIA) before Pilocarpine Modulates Pro- and Anti-Apoptotic Factors in an Animal Model of Epilepsy. Pharmaceuticals, 14(4), 376. https://doi.org/10.3390/ph14040376