Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases
Abstract
:1. Introduction
2. Nuclear GPCRs in Physiological Conditions
3. Nuclear GPCRs Activation: Endogenous and Exogenous Ligands
4. Nuclear GPCRs in Non-Communicable Diseases
4.1. Nuclear GPCRs in Cancer
Receptor | Nuclear Membrane | Plasma Membrane | Cell Type/Function | Ref. |
---|---|---|---|---|
mGlu5 | + | ++ | Striatal neurons | [98] |
growth/differentiation | ||||
mGlu5 | ++ | ++ | Striatal neurons | [98] |
synaptic plasticity and growth/differentiation | ||||
mGlu5 | + | ++ | spinal dorsal horn neurons | [94] |
without pain | ||||
mGlu5 | +++ | ++ | spinal dorsal horn neurons | [94] |
persistent pain | ||||
S1P1 | ++ | unstimulated T-cells | [99] | |
>cell migration | ||||
S1P1 | +++ | + | Stimulated T-cells | [99] |
<cell proliferation | ||||
F2rl1 | ++ | Vascular cells | [93] | |
>vessel maturation | ||||
F2rl1 | +++ | ++ | Vascular cells | [93] |
>angiogenesis | ||||
PTH1 | ++ | ++ | Osteoblasts | [36,100] |
Standard metabolism | ||||
PTH1 | +++ | ++ | Osteoblasts | [36,100] |
Metabolic deprivation |
4.2. Neurological and Neurodegenerative Diseases
4.3. Cardiovascular Diseases
5. GPCR-Based Drugs in the Treatment of Non-Communicable Diseases: Implication of Nuclear GPCRs as Targets
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sriram, K.; Insel, P.A. G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol. Pharmacol. 2018, 93, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Qiao, Y.; Li, Z. New Insights into Modes of GPCR Activation. Trends Pharmacol. Sci. 2018, 39, 367–386. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, Y.; Jiang, Z.; Qing, H. G protein-coupled receptors (GPCRs) in Alzheimer’s disease: A focus on BACE1 related GPCRs. Front. Aging Neurosci. 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, Y.Y.; Zurawski, Z.; Hamm, H. GPCR regulation of secretion. Pharmacol. Ther. 2018, 192, 124–140. [Google Scholar] [CrossRef] [PubMed]
- Di Pizio, A.; Behrens, M.; Krautwurst, D. Beyond the flavour: The potential druggability of chemosensory G protein-coupled receptors. Int. J. Mol. Sci. 2019, 20, 1402. [Google Scholar] [CrossRef] [Green Version]
- Cong, X.; Ren, W.; Pacalon, J.; de March, C.A.; Xu, L.; Matsunami, H.; Yu, Y.; Golebiowski, J. Functions of olfactory receptors are decoded from their sequence. bioRxiv 2020, 10–16. [Google Scholar] [CrossRef]
- Ahmad, R.; Dalziel, J.E. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front. Pharmacol. 2020, 11, 587664. [Google Scholar] [CrossRef]
- Birch, G.G. Modulation of sweet taste. BioFactors 1999, 9, 73–80. [Google Scholar] [CrossRef]
- Tyndall, J.; Sandilya, R. GPCR Agonists and Antagonists in the Clinic. Med. Chem. 2005, 1, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Weis, W.I.; Kobilka, B.K. The Molecular Basis of G Protein-Coupled Receptor Activation Keywords. Ann. Rev. Biochem. 2018, 87, 897–919. [Google Scholar] [CrossRef]
- Alexander, S.P.H.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Mathie, A.; Peters, J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; et al. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors. Br. J. Pharmacol. 2019, 176, S21–S141. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; et al. G protein-coupled receptors: Structure- and function-based drug discovery. Signal Transduct. Target. Ther. 2021, 6, 7. [Google Scholar] [CrossRef]
- Peralta-Yahya, P.; Mukherjee, K.; Bhattacharyya, S.; Sarria, S. G-Protein Coupled Receptor (gpcr)-Based Biosensors and Uses Thereof. US 2016/0122832 A1. Available online: http://hdl.handle.net/1853/59617 (accessed on 5 May 2016).
- Vavitsas, K. Turning G protein-coupled receptors into tunable biosensors. Synth. Biol. 2019, 4, ysz011. [Google Scholar] [CrossRef] [Green Version]
- Haider, R.S.; Godbole, A.; Hoffmann, C. To sense or not to sense—new insights from GPCR-based and arrestin-based biosensors. Curr. Opin. Cell Biol. 2019, 57, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Topiol, S. Current and Future Challenges in GPCR Drug Discovery. In Computational Methods for GPCR Drug Discovery; Heifetz, A., Ed.; Humana Press Inc.: New York, NY, USA, 2018; pp. 1–21. [Google Scholar]
- Clinical Trials.Gov. Available online: https://clinicaltrials.gov/ct2/results?cond=&term=gpcr&cntry=&state=&city=&dist= (accessed on 21 January 2021).
- Lappano, R.; Maggiolini, M. Pharmacotherapeutic Targeting of G Protein-Coupled Receptors in Oncology: Examples of Approved Therapies and Emerging Concepts. Drugs 2017, 77, 951–965. [Google Scholar] [CrossRef] [PubMed]
- Audet, N.; Dabouz, R.; Allen, B.G.; Hébert, T.E. Nucleoligands-repurposing G Protein–coupled Receptor Ligands to Modulate Nuclear-localized G Protein–coupled Receptors in the Cardiovascular System. J. Cardiovasc. Pharmacol. 2018, 71, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Wacker, D.; Stevens, R.C.; Roth, B.L. How Ligands Illuminate GPCR Molecular Pharmacology. Cell 2017, 170, 414–427. [Google Scholar] [CrossRef] [Green Version]
- Syrovatkina, V.; Alegre, K.O.; Dey, R.; Huang, X.Y. Regulation, Signaling, and Physiological Functions of G-Proteins. J. Mol. Biol. 2016, 428, 3850–3868. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.D.; Bouazza, C.A.; Hébert, T.E. Organellar Gβγ signaling—GPCR signaling beyond the cell surface. In GPCRs; Jastrzebska, B., Park, P.S.-H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 257–267. [Google Scholar]
- Ranjan, R.; Dwivedi, H.; Baidya, M.; Kumar, M.; Shukla, A.K. Novel Structural Insights into GPCR–β-Arrestin Interaction and Signaling. Trends Cell Biol. 2017, 27, 851–862. [Google Scholar] [CrossRef]
- Robertson, A.L.; Khairallah, P.A. Angiotensin II: Rapid Localization in Nuclei of Smooth and Cardiac Muscle. Science 1971, 172, 1138–1139. [Google Scholar] [CrossRef] [PubMed]
- Suofu, Y.; Li, W.; Jean-Alphonse, F.G.; Jia, J.; Khattar, N.K.; Li, J.; Baranov, S.V.; Leronni, D.; Mihalik, A.C.; He, Y.; et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA 2017, 114, E7997–E8006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, N.J.; Mouat, M.A.; Coleman, J.L.J. GPCRs in context: Sexual dimorphism in the cardiovascular system. Br. J. Pharmacol. 2018, 175, 4047. [Google Scholar]
- Ribeiro-Oliveira, R.; Vojtek, M.; Gonçalves-Monteiro, S.; Vieira-Rocha, M.S.; Sousa, J.B.; Gonçalves, J.; Diniz, C. Nuclear G-protein-coupled receptors as putative novel pharmacological targets. Drug Discov. Today 2019, 24, 2192–2201. [Google Scholar] [CrossRef]
- Eichel, K.; von Zastrow, M. Subcellular Organization of GPCR Signaling. Trends Pharmacol. Sci. 2018, 39, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Bkaily, G.; Al-Khoury, J.; Jacques, D. Nuclear membranes GPCRs: Implication in cardiovascular health and diseases. Curr. Vasc. Pharmacol. 2014, 12, 215–222. [Google Scholar] [CrossRef]
- Tadevosyan, A.; Vaniotis, G.; Allen, B.G.; Hébert, T.E.; Nattel, S. G protein-coupled receptor signalling in the cardiac nuclear membrane: Evidence and possible roles in physiological and pathophysiological function. J. Physiol. 2012, 590, 1313–1330. [Google Scholar] [CrossRef]
- Tadevosyan, A.; Xiao, J.; Surinkaew, S.; Naud, P.; Merlen, C.; Harada, M.; Qi, X.; Chatenet, D.; Fournier, A.; Allen, B.G.; et al. Intracellular Angiotensin-II Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis, Cell Proliferation, and Collagen Secretion. J. Am. Heart Assoc. 2017, 6, e004965. [Google Scholar] [CrossRef]
- Sergin, I.; Jong, Y.J.I.; Harmon, S.K.; Kumar, V.; O’Malley, K.L. Sequences within the C terminus of the metabotropic glutamate receptor 5 (mGluR5) are responsible for inner nuclear membrane localization. J. Biol. Chem. 2017, 292, 3637–3655. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.R.; Bräuner-Osborne, H. Investigating internalization and intracellular trafficking of GPCRs: New techniques and real-time experimental approaches. In Handbook of Experimental Pharmacology; Springer: New York, NY, USA, 2018; Volume 245, pp. 41–61. [Google Scholar]
- Bhosle, V.K.; Rivera, J.C.; Chemtob, S. New insights into mechanisms of nuclear translocation of G-protein coupled receptors. Small GTPases 2019, 10, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, F.; Parisi, M.; Fioretti, T.; Sarnataro, D.; Esposio, G.; Ammendola, R. Nuclear localization of Formyl-Peptide Receptor 2 in human cancer cells. Arch. Biochem. Biophys. 2016, 603, 10–19. [Google Scholar] [CrossRef]
- Pickard, B.W.; Hodsman, A.B.; Fraher, L.J.; Watson, P.H. Type 1 parathyroid hormone receptor (PTH1R) nuclear trafficking: Regulation of PTH1R nuclear-cytoplasmic shuttling by importin-α/β and chromosomal region maintenance 1/exportin 1. Endocrinology 2007, 148, 2282–2289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jong, Y.-J.I.; Harmon, S.K.; O’Malley, K.L. GPCR signalling from within the cell. Br. J. Pharmacol. 2018, 175, 4026–4035. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, C.K.; Campbell, J.I.A.; Ohd, J.F.; Morgelin, M.; Riesbeck, K.; Landberg, G.; Sjolander, A. A Novel Localization of the G-Protein-Coupled CysLT 1 Receptor in the Nucleus of Colorectal Adenocarcinoma Cells. Cancer Res. 2005, 65, 732–742. [Google Scholar] [PubMed]
- Cattaneo, F.; Parisi, M.; Fioretti, T.; Esposito, G.; Ammendola, R. Intranuclear Signaling Cascades Triggered by Nuclear GPCRs. J. Cell Signal 2016, 1, 1000128-1. [Google Scholar] [CrossRef] [Green Version]
- Lucero, H.A.; Kintsurashvili, E.; Marketou, M.E.; Gavras, H. Cell signaling, internalization, and nuclear localization of the angiotensin converting enzyme in smooth muscle and endothelial cells. J. Biol. Chem. 2010, 285, 5555–5568. [Google Scholar] [CrossRef] [Green Version]
- Mir, F.; Le Breton, G.C. A Novel Nuclear Signaling Pathway for Thromboxane A2 Receptors in Oligodendrocytes: Evidence for Signaling Compartmentalization during Differentiation. Mol. Cell. Biol. 2008, 28, 6329–6341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, T.; Gobeil, F.; Vazquez-Tello, G.; Leduc, M.; Rihakova, L.; Bossolasco, M.; Bkaily, G.; Peri, K.; Varma, D.R.; Orvoine, R.; et al. Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: A paradigm based on PGE2, PAF, and LPA1 receptors. Can. J. Physiol. Pharmacol. 2006, 84, 377–391. [Google Scholar] [CrossRef]
- Jafri, F.; Ergul, A. Nuclear Localization of Endothelin-Converting Enzyme-1: Subisoform Specificity. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 2192–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doan, N.D.; Nguyen, T.T.M.; Létourneau, M.; Turcotte, K.; Fournier, A.; Chatenet, D. Biochemical and pharmacological characterization of nuclear urotensin-II binding sites in rat heart. Br. J. Pharmacol. 2012, 166, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Villar-Cheda, B.; Costa-Besada, M.A.; Valenzuela, R.; Perez-Costas, E.; Melendez-Ferro, M.; Labandeira-Garcia, J.L. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system. Cell Death Dis. 2017, 8, e3044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendergrass, K.D.; Gwathmey, T.Y.M.; Michalek, R.D.; Grayson, J.M.; Chappell, M.C. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus. Biochem. Biophys. Res. Commun. 2009, 384, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.L.; Zhang, Z.; Re, R.N. In vitro evidence for an intracellular site of angiotensin action. Circ. Res. 2001, 89, 1138–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boivin, B.; Lavoie, C.; Vaniotis, G.; Baragli, A.; Villeneuve, L.R.; Ethier, N.; Trieu, P.; Allen, B.G.; Hébert, T.E. Functional β-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc. Res. 2006, 71, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.M.; Létourneau, M.; Chatenet, D.; Fournier, A. Presence of urotensin-II receptors at the cell nucleus: Specific tissue distribution and hypoxia-induced modulation. Int. J. Biochem. Cell Biol. 2012, 44, 639–647. [Google Scholar] [CrossRef]
- Savard, M.; Barbaz, D.; Bélanger, S.; Müller-Esterl, W.; Bkaily, G.; D’Orléans-Juste, P.; Coté, J.; Bovenzi, V.; Gobeil, F. Expression of endogenous nuclear bradykinin B2 receptors mediating signaling in immediate early gene activation. J. Cell. Physiol. 2008, 216, 234–244. [Google Scholar] [CrossRef]
- Tadevosyan, A.; Villeneuve, L.R.; Fournier, A.; Chatenet, D.; Nattel, S.; Allen, B.G. Caged ligands to study the role of intracellular GPCRs. Methods 2016, 92, 72–77. [Google Scholar] [CrossRef]
- Chan, H.C.S.; Li, Y.; Dahoun, T.; Vogel, H.; Yuan, S. New Binding Sites, New Opportunities for GPCR Drug Discovery. Trends Biochem. Sci. 2019, 44, 312–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, O.; Granek, R. Nucleus-targeted drug delivery: Theoretical optimization of nanoparticles decoration for enhanced intracellular active transport. Nano Lett. 2014, 14, 2515–2521. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Zhang, X.; Zhang, W.; Guo, S.; Jin, F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release 2014, 174, 126–136. [Google Scholar] [CrossRef]
- Davenport, A.P.; Scully, C.C.G.; de Graaf, C.; Brown, A.J.H.; Maguire, J.J. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov. 2020, 19, 389–413. [Google Scholar] [CrossRef]
- Woodman, S.; Trousdale, C.; Conover, J.; Kim, K. Yeast membrane lipid imbalance leads to trafficking defects toward the Golgi. Cell Biol. Int. 2018, 42, 890–902. [Google Scholar] [CrossRef] [PubMed]
- Casares, D.; Escribá, P.V.; Rosselló, C.A. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 2019, 20, 2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzarini, A.; Macchiarulo, A.; Floridi, A.; Coletti, A.; Cataldi, S.; Codini, M.; Lazzarini, R.; Bartoccini, E.; Cascianelli, G.; Ambesi-Impiombato, F.S.; et al. Very long chain fatty acid sphingomyelin in nuclear lipid microdomains of hepatocytes and hepatoma cells: Can the exchange from C24:0 to C16:0 affect signal proteins and vitamin D receptor? Mol. Biol. Cell 2015, 26, 2418–2425. [Google Scholar] [CrossRef]
- Bruzzese, A.; Gil, C.; Dalton, J.A.R.; Giraldo, J. Structural insights into positive and negative allosteric regulation of a G protein-coupled receptor through protein-lipid interactions. Sci. Rep. 2018, 8, 4456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemany, R.; Perona, J.S.; Sánchez-Dominguez, J.M.; Montero, E.; Cañizares, J.; Bressani, R.; Escribá, P.V.; Ruiz-Gutierrez, V. G protein-coupled receptor systems and their lipid environment in health disorders during aging. Biochim. Biophys. Acta-Biomembr. 2007, 1768, 964–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuno, H.; Kihara, Y. Druggable Lipid GPCRs: Past, Present, and Prospects. In Druggable Lipid Signaling Pathways; Kihara, Y., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 223–258. [Google Scholar]
- Tao, Y.X. Constitutive activation of G protein-coupled receptors and diseases: Insights into mechanisms of activation and therapeutics. Pharmacol. Ther. 2008, 120, 129–148. [Google Scholar] [CrossRef] [Green Version]
- Schöneberg, T.; Liebscher, I. Mutations in G Protein–Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol. Rev. 2021, 73, 89–119. [Google Scholar] [CrossRef]
- Insel, P.A.; Sriram, K.; Wiley, S.Z.; Wilderman, A.; Katakia, T.; McCann, T.; Yokouchi, H.; Zhang, L.; Corriden, R.; Liu, D.; et al. GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets. Front. Pharmacol. 2018, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Wald, O. CXCR4 Based Therapeutics for Non-Small Cell Lung Cancer (NSCLC). J. Clin. Med. 2018, 7, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spano, J.P.; Andre, F.; Morat, L.; Sabatier, L.; Besse, B.; Combadiere, C.; Deterre, P.; Martin, A.; Azorin, J.; Valeyre, D.; et al. Chemokine receptor CXCR4 and early-stage non-small cell lung cancer: Pattern of expression and correlation with outcome. Ann. Oncol. 2004, 15, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Na, I.K.; Scheibenbogen, C.; Adam, C.; Stroux, A.; Ghadjar, P.; Thiel, E.; Keilholz, U.; Coupland, S.E. Nuclear expression of CXCR4 in tumor cells of non-small cell lung cancer is correlated with lymph node metastasis. Hum. Pathol. 2008, 39, 1751–1755. [Google Scholar] [CrossRef]
- Shibuta, K.; Mori, M.; Shimoda, K.; Inoue, H.; Mitra, P.; Barnard, G.F. Regional Expression of CXCL12/CXCR4 in Liver and Hepatocellular Carcinoma and Cell-cycle Variation during in vitro Differentiation. Jpn. J. Cancer Res. 2002, 93, 789–797. [Google Scholar] [CrossRef]
- Gobeil, F.; Bernier, S.G.; Vazquez-Tello, A.; Brault, S.; Beauchamp, M.H.; Quiniou, C.; Marrache, A.M.; Checchin, D.; Sennlaub, F.; Hou, X.; et al. Modulation of pro-inflammatory gene expression by nuclear lysophosphatidic acid receptor type-1. J. Biol. Chem. 2003, 278, 38875–38883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Don-Salu-Hewage, A.S.; Chan, S.Y.; McAndrews, K.M.; Chetram, M.A.; Dawson, M.R.; Bethea, D.A.; Hinton, C.V. Cysteine (C)-X-C Receptor 4 Undergoes Transportin 1-Dependent Nuclear Localization and Remains Functional at the Nucleus of Metastatic Prostate Cancer Cells. PLoS ONE 2013, 8, e57194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, N.; Itakura, T.; Jeong, S.; Liao, C.P.; Roy-Burman, P.; Zandi, E.; Groshen, S.; Pinski, J.; Coetzee, G.A.; Gross, M.E.; et al. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression. PLoS ONE 2015, 10, e0117758. [Google Scholar] [CrossRef]
- Wang, N.; Wu, Q.L.; Fang, Y.; Mai, H.Q.; Zeng, S.; Shen, G.P.; Hou, J.H.; Zeng, Y.X. Expression of chemokine receptor CXCR4 in nasopharyngeal carcinoma: Pattern of expression and correlation with clinical outcome. J. Transl. Med. 2005, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Speetjens, F.M.; Liefers, G.J.; Korbee, C.J.; Mesker, W.E.; Van De Velde, C.J.H.; Van Vlierberghe, R.L.; Morreau, H.; Tollenaar, R.A.; Kuppen, P.J.K. Nuclear localization of CXCR4 determines prognosis for colorectal cancer patients. Cancer Microenviron. 2009, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshitake, N.; Fukui, H.; Yamagishi, H.; Sekikawa, A.; Fujii, S.; Tomita, S.; Ichikawa, K.; Imura, J.; Hiraishi, H.; Fujimori, T. Expression of SDF-1α and nuclear CXCR4 predicts lymph node metastasis in colorectal cancer. Br. J. Cancer 2008, 98, 1682–1689. [Google Scholar] [CrossRef] [Green Version]
- Lanoix, D.; Ouellette, R.; Vaillancourt, C. Expression of melatoninergic receptors in human placental choriocarcinoma cell lines. Hum. Reprod. 2006, 21, 1981–1989. [Google Scholar] [CrossRef] [Green Version]
- Kinsey, C.G.; Bussolati, G.; Bosco, M.; Kimura, T.; Pizzorno, M.C.; Chernin, M.I.; Cassoni, P.; Novak, J.F. Constitutive and ligand-induced nuclear localization of oxytocin receptor. J. Cell. Mol. Med. 2007, 11, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Valdehita, A.; Bajo, A.M.; Fernández-Martínez, A.B.; Arenas, M.I.; Vacas, E.; Valenzuela, P.; Ruíz-Villaespesa, A.; Prieto, J.C.; Carmena, M.J. Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer. Peptides 2010, 31, 2035–2045. [Google Scholar] [CrossRef]
- Xu, Z.; Li, P.; Wei, D.; Wang, Z.; Bao, Y.; Sun, J.; Qu, L.; Wang, L. NMMHC-IIA-dependent nuclear location of CXCR4 promotes migration and invasion in renal cell carcinoma. Oncol. Rep. 2016, 36, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Dubuc, C.; Savard, M.; Bovenzi, V.; Lessard, A.; Côté, J.; Neugebauer, W.; Geha, S.; Chemtob, S.; Gobeil, F. Antitumor activity of cell-penetrant kinin B1 receptor antagonists in human triple-negative breast cancer cells. J. Cell. Physiol. 2019, 234, 2851–2865. [Google Scholar] [CrossRef] [PubMed]
- Dubuc, C.; Savard, M.; Bovenzi, V.; Lessard, A.; Fortier, A.; Côté, J.; Neugebauer, W.; Rizzolio, F.; Geha, S.; Giordano, A.; et al. Targeting intracellular B2 receptors using novel cell-penetrating antagonists to arrest growth and induce apoptosis in human triple-negative breast cancer. Oncotarget 2018, 9, 9885–9906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, C.B.; Ehtesham, M.; McMillan, K.M.; Valadez, J.G.; Edgeworth, M.L.; Price, R.R.; Abel, T.W.; Mapara, K.Y.; Thompson, R.C. CXCR4 expression is elevated in glioblastoma multiforme and correlates with an increase in intensity and extent of peritumoral T2-weighted magnetic resonance imaging signal abnormalities. Neurosurgery 2008, 63, 560–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbarin, A.; Séité, P.; Godet, J.; Bensalma, S.; Muller, J.M.; Chadéneau, C. Atypical nuclear localization of VIP receptors in glioma cell lines and patients. Biochem. Biophys. Res. Commun. 2014, 454, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Nikkhoo, B.; Jalili, A.; Fakhari, S.; Sheikhesmaili, F.; Fathi, F.; Rooshani, D.; Hoseinpour Feizi, M.A.; Nikzaban, M. Nuclear pattern of CXCR4 expression is associated with a better overall survival in patients with gastric cancer. J. Oncol. 2014, 1, 808012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, T.; Nakashima, Y.; Ando, K.; Yoshinaga, K. Nuclear Expression of Chemokine Receptor CXCR4 Indicates Poorer Prognosis in Gastric Cancer. Anticancer Res. 2014, 6404, 6397–6403. [Google Scholar]
- Wang, L.; Wang, Z.; Yang, B.; Yang, Q.; Wang, L.; Sun, Y. CXCR4 nuclear localization follows binding of its ligand SDF-1 and occurs in metastatic but not primary renal cell carcinoma. Oncol. Rep. 2009, 22, 1333–1339. [Google Scholar] [PubMed]
- Bao, Y.; Wang, Z.; Liu, B.; Lu, X.; Xiong, Y.; Shi, J.; Li, P.; Chen, J.; Zhang, Z.; Chen, M.; et al. A feed-forward loop between nuclear translocation of CXCR4 and HIF-1α promotes renal cell carcinoma metastasis. Oncogene 2019, 38, 881–895. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, W.; Gao, L.; Yang, Q.; Liu, B.; Wu, Z.; Wang, Y.; Sun, Y. High expression of CXCR4, CXCR7 and SDF-1 predicts poor survival in renal cell carcinoma. World J. Surg. Oncol. 2012, 10, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaniotis, G.; Del Duca, D.; Trieu, P.; Rohlicek, C.V.; Hébert, T.E.; Allen, B.G. Nuclear β-adrenergic receptors modulate gene expression in adult rat heart. Cell. Signal. 2011, 23, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendergrass, K.D.; Averill, D.B.; Ferrario, C.M.; Diz, D.I.; Chappell, M.C. Differential expression of nuclear AT 1 receptors and angiotensin II within the kidney of the male congenic mRen2.Lewis rat. Am. J. Physiol Ren. Physiol. 2006, 290, 1497–1506. [Google Scholar] [CrossRef] [Green Version]
- Gwathmey, T.M.; Shaltout, H.A.; Rose, J.C.; Diz, D.I.; Chappell, M.C. Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidney. Hypertension 2011, 57, 620–626. [Google Scholar] [CrossRef] [Green Version]
- Estrada, R.; Wang, L.; Jala, V.R.; Lee, J.F.; Lin, C.Y.; Gray, R.D.; Haribabu, B.; Lee, M.J. Ligand-induced nuclear translocation of S1P1 receptors mediates Cyr61 and CTGF transcription in endothelial cells. Histochem. Cell Biol. 2009, 131, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Yang, Y.; Takeda, A.; Yoshimura, T.; Oshima, Y.; Sonoda, K.H.; Ishibashi, T. A Novel Platelet-Activating Factor Receptor Antagonist Inhibits Choroidal Neovascularization and Subretinal Fibrosis. PLoS ONE 2013, 8, e68173. [Google Scholar] [CrossRef] [Green Version]
- Joyal, J.-S.; Nim, S.; Zhu, T.; Sitaras, N.; Rivera, J.C.; Shao, Z.; Sapieha, P.; Hamel, D.; Sanchez, M.; Zaniolo, K.; et al. Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis. Nat. Med. 2014, 20, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Vincent, K.; Cornea, V.M.; Jong, Y.J.I.; Laferriere, A.; Kumar, N.; Mickeviciute, A.; Fung, J.S.T.; Bandegi, P.; Ribeiro-Da-Silva, A.; O’Malley, K.L.; et al. Intracellular mGluR5 plays a critical role in neuropathic pain. Nat. Commun. 2016, 7, 10604. [Google Scholar] [CrossRef] [Green Version]
- Vincent, K.; Wang, F.S.; Laferrière, A.; Kumar, N.; Coderre, T.J. Spinal intracellular metabotropic glutamate receptor 5 (mGluR5) contributes to pain and c-fos expression in a rat model of inflammatory pain. Pain 2017, 158, 705–716. [Google Scholar] [CrossRef]
- Argañaraz, G.A.; Silva, J.A.; Perosa, S.R.; Pessoa, L.G.; Carvalho, F.F.; Bascands, J.L.; Bader, M.; Trindade, E.D.S.; Amado, D.; Cavalheiro, E.A.; et al. The synthesis and distribution of the kinin B1 and B2 receptors are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Brain Res. 2004, 1006, 114–125. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, H.; Chen, H.; Yao, Q. CXCR4 in breast cancer: Oncogenic role and therapeutic targeting. Drug Des. Devel. Ther. 2015, 9, 4953–4964. [Google Scholar]
- Kumar, V.; Fahey, P.G.; Jong, Y.J.I.; Ramanan, N.; O’Malley, K.L. Activation of intracellular metabotropic glutamate receptor 5 in striatal neurons leads to up-regulation of genes associated with sustained synaptic transmission including Arc/Arg3.1 protein. J. Biol. Chem. 2012, 287, 5412–5425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.J.; Huang, M.C.; Graler, M.; Huang, Y.; Qiu, H.; Goetzl, E.J. Distinctive T cell-suppressive signals from nuclearized type 1 sphingosine 1-phosphate G protein-coupled receptors. J. Biol. Chem. 2007, 282, 1964–1972. [Google Scholar] [CrossRef] [Green Version]
- Bassett, J.H.D.; Nordström, K.; Boyde, A.; Howell, P.G.T.; Kelly, S.; Vennström, B.; Williams, G.R. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol. Endocrinol. 2007, 21, 1893–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abiodun, O.A.; Ola, M.S. Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J. Biol. Sci. 2020, 27, 905–912. [Google Scholar] [CrossRef]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ. Res. 2020, 126, 1456–1474. [Google Scholar] [CrossRef] [PubMed]
- Mosca, T.J.; Schwarz, T.L. The nuclear import of Frizzled2-C by Importins-β 211 and Î ±2 promotes postsynaptic development. Nat. Neurosci. 2010, 13, 935–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlen, C.; Farhat, N.; Luo, X.; Chatenet, D.; Tadevosyan, A.; Villeneuve, L.R.; Gillis, M.A.; Nattel, S.; Thorin, E.; Fournier, A.; et al. Intracrine endothelin signaling evokes IP3-dependent increases in nucleoplasmic Ca2+ in adult cardiac myocytes. J. Mol. Cell. Cardiol. 2013, 62, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Marino, K.A.; Prada-Gracia, D.; Provasi, D.; Filizola, M. Impact of Lipid Composition and Receptor Conformation on the Spatio-temporal Organization of μ-Opioid Receptors in a Multi-component Plasma Membrane Model. PLoS Comput. Biol. 2016, 12, e1005240. [Google Scholar] [CrossRef]
- Mahmood, M.; Liu, X.; Neya, S.; Hoshino, T. Influence of Lipid Composition on the Structural Stability of G-Protein Coupled Receptor. Chem. Pharm. Bull. 2013, 61, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.D.; Sembongi, H.; Su, W.M.; Abreu, S.; Reggiori, F.; Carman, G.M.; Siniossoglou, S. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol. Biol. Cell 2015, 26, 3641–3657. [Google Scholar] [CrossRef]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Cascianelli, G.; Villani, M.; Tosti, M.; Marini, F.; Bartoccini, E.; Magni, M.V.; Albi, E. Lipid Microdomains in Cell Nucleus. Mol. Biol. Cell 2008, 19, 5289–5295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albi, E.; Villani, M. Nuclear lipid microdomains regulate cell function. Commun. Integr. Biol. 2009, 2, 23–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pathology | Type/Sample | Model | Nuclear GPCR | Effectors/Mediators and/or Effects | Ref |
---|---|---|---|---|---|
Cancer | Lung | Human non-small-cell lung cancer | CXCR4 | [65] | |
Human non-small-cell lung cancer tissue | ↑CXCR4 | associated with a better outcome | [66] | ||
Human primary non-small cell lung cancer tissue | CXCR4 | aberrant nuclear CXCR4 expression ↔ lymph node metastasis | [67] | ||
Human lung carcinoma cell line | FPR2 | Gαi—ERK2, c-Jun and c-Myc phosphorylation | [35] | ||
Liver | Human hepatoma cancer cells | CXCR4 | ─ | [68] | |
Transfected HTC4 rat hepatoma cells | LPA1 | ─ | [69] | ||
Prostate | Human prostate cancer cell lines | ↑CXCR4 | Gαi—↑Ca2+; ↑ nuclear CXCR4 with tumor grade | [70] | |
Human prostate cancer cell lines | GPR158 | promotes cell proliferation | [71] | ||
Oral | Nasopharyngeal carcinoma | CXCR4 | associated with the cancer progression | [72] | |
Colon | Human colon adenocarcinoma cell line | VPAC | [30] | ||
Colorectal | Human colorectal cancer tissue | ↑CXCR4 | associated with poor overall survival | [73] | |
↑CXCR4 | nuclear CXCR4—more frequent lymph node metastasis | [74] | |||
↑CysLT1 | proliferative ERK1/2 signaling | [38] | |||
Placenta | Human placental choriocarcinoma cell lines | MT2 | ─ | [75] | |
Bone | Human osteosarcoma (U2OS, MG63, OS15 and SaOS2) | OT | ─ | [76] | |
Breast | Human breast carcinoma cell lines (T47D, MDAMB-468) | ↑VPAC1 | Gαs- ↑ cAMP | [77] | |
Human breast cancer (MCF7) | OT | ─ | [76] | ||
Human ductal carcinoma tissue | CXCR4 | ─ | [78] | ||
Human triple-negative breast cancer | ↑B1 | cell-permeable antagonists have superior antineoplastic activity | [79] | ||
↑B2 | cell-permeable antagonists have superior antineoplastic activity; anti-proliferative effects through p38kinase/p27Kip1 | [80] | |||
Brain | Human glioblastoma-astrocytoma U87-MG and human neuroblastoma SH-SY5Y cell lines | UT | transcription initiation | [49] | |
Glioblastoma multiforme cell lines | CXCR4 | ─ | [81] | ||
Glioblastoma multiforme cell lines | ↑VPAC1VPAC2 | ↑nuclear VPAC1 with glioma grade | [82] | ||
Gastric | Human gastric adenocarcinoma tissue and cell line | CXCR4 | nuclear CXCR4 expression ↔ better overall survival | [83] | |
Primary gastric cancer tissue | CXCR4 | nuclear CXCR4 expression ↔ reduced survival rate | [84] | ||
Human gastric adenocarcinoma cell line | FPR2 | Gαi—ERK2, c-Jun and c-Myc phosphorylation | [35] | ||
Renal | Human renal carcinoma cell lines | CXCR4 | in the nucleus only in metastatic lesions | [85] | |
CXCR4 | interaction and nuclear accumulation of HIF-1α—metastasis promotion | [86] | |||
CXCR4 | interaction with myosin heavy chain-IIA—CXCR4 nuclear translocation—↑tumor metastatic capacity | [78] | |||
Human renal cancer tissue | CXCR4 | associated with metastasis and poor survival | [87] | ||
Cardiovascular Diseases | Inflammation | Rat cardiomyocytes | β | Gαi—PI3K—PKB—ERK1/2 -↓NF-κB transcription—↓ATF-2, IL1r1 and Tnfrsf1b + ↑Ripk2 transcription → suppression of inflammatory response | [88] |
Hypertension | Hypertension model—rat kidney | ↓AT1 | ─ | [89] | |
Fetal programming model—sheep kidney | ↑AT1, ↓AT2 | ↑ROS, ↓NO | [90] | ||
Heart failure | Heart failure model—canine cardiac fibroblasts | ↑AT1 | AT1—IP3—↑Ca2+—regulate fibroblast proliferation, collagen gene expression and collagen secretion | [31] | |
Angiogenesis | Human umbilical vein endothelial cells | S1P1 | Cyr61 and CTGF expression | [91] | |
Model of oxygen-induced retinopathy—rat ocular tissue | PAF | VEGF-dependent neovascularization in oxygen-induced retinopathy | [92] | ||
Mouse retinal ganglion cells | F2rl1 | Sp1 recruitment—↑VEGFα expression → neovascularization | [93] | ||
Neurological and neurodegenerative diseases | Neuropathic pain | Rat spinal dorsal horn neurons | ↑mGlu5 | Nerve injury—↑nuclear mGlu5—↑[Ca2+]n + ERK1/2 and Arc/Arg3.1 activation + ↑ c-fos expression | [94] |
Nociceptive | Rat spinal dorsal horn neurons | ↑mGlu5 | Inflammation—↑nuclear mGlu5—↑ c-fos expression | [95] | |
Oxidative stress | Rat and dopaminergic neurons cell line | AT1, AT2 | AT1—IP3—↑Ca2+ → ↑AT2 + Ang + PGC-1α + IGF-1 transcription → cellular protection; AT1—NOX4—↑superoxide/H2O2 → antioxidant response; AT2—NOS—↑NO | [45] | |
Epilepsy | Epilepsy model—rat hippocampus | B1, B2 | changes in receptors’ distribution during acute, silent and/or chronic periods | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves-Monteiro, S.; Ribeiro-Oliveira, R.; Vieira-Rocha, M.S.; Vojtek, M.; Sousa, J.B.; Diniz, C. Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases. Pharmaceuticals 2021, 14, 439. https://doi.org/10.3390/ph14050439
Gonçalves-Monteiro S, Ribeiro-Oliveira R, Vieira-Rocha MS, Vojtek M, Sousa JB, Diniz C. Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases. Pharmaceuticals. 2021; 14(5):439. https://doi.org/10.3390/ph14050439
Chicago/Turabian StyleGonçalves-Monteiro, Salomé, Rita Ribeiro-Oliveira, Maria Sofia Vieira-Rocha, Martin Vojtek, Joana B. Sousa, and Carmen Diniz. 2021. "Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases" Pharmaceuticals 14, no. 5: 439. https://doi.org/10.3390/ph14050439
APA StyleGonçalves-Monteiro, S., Ribeiro-Oliveira, R., Vieira-Rocha, M. S., Vojtek, M., Sousa, J. B., & Diniz, C. (2021). Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases. Pharmaceuticals, 14(5), 439. https://doi.org/10.3390/ph14050439