Radiopharmaceutical Formulation and Preclinical Testing of 68Ga-Labeled DOTA-MGS5 for the Regulatory Approval of a First Exploratory Clinical Trial
Abstract
:1. Introduction
2. Results and Discussion
2.1. Radiolabeling and Quality Control
2.2. Non-Clinical Pharmacology and Toxicological Data
2.2.1. Receptor Affinity Assay
2.2.2. Cell Uptake in CCK2R-Expressing Cell Lines
2.2.3. Interaction with Other Receptors
2.2.4. Biodistribution and Dosimetry Studies in BALB/c Mice
2.2.5. Extended Single-Dose Toxicity Study in Rats
3. Materials and Methods
3.1. Radiolabeling Procedure and Quality Control
3.1.1. Reagents for Radiolabeling
3.1.2. Labeling of DOTA-MGS5 with Gallium-68
3.1.3. Quality Control of 68Ga-DOTA-MGS5
3.2. Non-Clinical Pharmacology and Toxicology Data
3.2.1. Cell Lines with CCK2R Expression
3.2.2. Receptor Affinity Assay
3.2.3. Receptor-Specific Cell Uptake
3.2.4. Interaction with Other Receptors
3.2.5. Pharmacokinetics and Dosimetry in Animals
3.2.6. Extended Single-Dose Toxicity Study in Rats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fallahi, B.; Manafi-Farid, R.; Eftekhari, M.; Fard-Esfahani, A.; Emami-Ardekani, A.; Geramifar, P.; Akhlaghi, M.; Hashemi Taheri, A.P.; Beiki, D. Diagnostic efficiency of (68)Ga-DOTATATE PET/CT as compared to (99m)Tc-Octreotide SPECT/CT and conventional morphologic modalities in neuroendocrine tumors. Asia Ocean J. Nucl. Med. Biol. 2019, 7, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.; Decristoforo, C.; Kendler, D.; Dobrozemsky, G.; Heute, D.; Uprimny, C.; Kovacs, P.; Von Guggenberg, E.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: Comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2007, 48, 508–518. [Google Scholar] [CrossRef]
- Kwekkeboom, D.J.; Kam, B.L.; van Essen, M.; Teunissen, J.J.M.; van Eijck, C.H.J.; Valkema, R.; de Jong, M.; de Herder, W.W.; Krenning, E.P. Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr. Relat. Cancer 2010, 17, R53–R73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.R.; Pomper, M.G. Clinical applications of Gallium-68. Appl. Radiat. Isot. 2013, 76, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Decristoforo, C.; Knopp, R.; von Guggenberg, E.; Rupprich, M.; Dreger, T.; Hess, A.; Virgolini, I.; Haubner, R. A fully automated synthesis for the preparation of 68Ga-labelled peptides. Nucl. Med. Commun. 2007, 28, 870–875. [Google Scholar] [CrossRef]
- Peitl, P.K.; Rangger, C.; Garnuszek, P.; Mikolajczak, R.; Hubalewska-Dydejczyk, A.; Maina, T.; Erba, P.; Decristoforo, C. Clinical translation of theranostic radiopharmaceuticals: Current regulatory status and recent examples. J. Label. Compd. Radiopharm. 2019, 62, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Decristoforo, C.; Penuelas, I.; Patt, M.; Todde, S. European regulations for the introduction of novel radiopharmaceuticals in the clinical setting. Q. J. Nucl. Med. Mol. Imaging 2017, 61, 135–144. [Google Scholar] [CrossRef] [PubMed]
- ICH Guideline M3(R2) on Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorisation for Pharmaceuticals. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/2009/WC500002720.pdf (accessed on 5 May 2021).
- Todde, S.; Windhorst, A.D.; Behe, M.; Bormans, G.; Decristoforo, C.; Faivre-Chauvet, A.; Ferrari, V.; Gee, A.D.; Gulyas, B.; Halldin, C.; et al. EANM guideline for the preparation of an Investigational Medicinal Product Dossier (IMPD). Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2175–2185. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Schaer, J.C.; Waser, B. Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res. 1997, 57, 1377–1386. [Google Scholar]
- Reubi, J.C. Targeting CCK receptors in human cancers. Curr. Top. Med. Chem. 2007, 7, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Escrieut, C.; Clerc, P.; Gigoux, V.; Waser, B.; Reubi, J.C.; Fourmy, D. Characterization of a novel five-transmembrane domain cholecystokinin-2 receptor splice variant identified in human tumors. Mol. Cell. Endocrinol. 2012, 349, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev. 2003, 24, 389–427. [Google Scholar] [CrossRef] [Green Version]
- Klingler, M.; Summer, D.; Rangger, C.; Haubner, R.; Foster, J.; Sosabowski, J.; Decristoforo, C.; Virgolini, I.; von Guggenberg, E. DOTA-MGS5, a New Cholecystokinin-2 Receptor-Targeting Peptide Analog with an Optimized Targeting Profile for Theranostic Use. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2019, 60, 1010–1016. [Google Scholar] [CrossRef] [Green Version]
- Roosenburg, S.; Laverman, P.; Joosten, L.; Eek, A.; Rutjes, F.P.J.T.; van Delft, F.L.; Boerman, O.C. In Vitro and In Vivo Characterization of Three 68Ga- and 111In-Labeled Peptides for Cholecystokinin Receptor Imaging. Mol. Imaging 2012, 11, 401–407. [Google Scholar] [CrossRef]
- Klingler, M.; Hormann, A.A.; Guggenberg, E.V. Cholecystokinin-2 receptor targeting with radiolabeled peptides: Current status and future directions. Curr. Med. Chem. 2021, 27, 7112–7132. [Google Scholar] [CrossRef]
- Sauter, A.W.; Mansi, R.; Hassiepen, U.; Muller, L.; Panigada, T.; Wiehr, S.; Wild, A.M.; Geistlich, S.; Behe, M.; Rottenburger, C.; et al. Targeting of the Cholecystokinin-2 Receptor with the Minigastrin Analog (177)Lu-DOTA-PP-F11N: Does the Use of Protease Inhibitors Further Improve In Vivo Distribution? J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2019, 60, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Klingler, M.; Decristoforo, C.; Rangger, C.; Summer, D.; Foster, J.; Sosabowski, J.K.; von Guggenberg, E. Site-specific stabilization of minigastrin analogs against enzymatic degradation for enhanced cholecystokinin-2 receptor targeting. Theranostics 2018, 8, 2896–2908. [Google Scholar] [CrossRef] [PubMed]
- Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Mäcke, H.; Aloj, L.; Von Guggenber, E.; Sosabowski, J.K.; et al. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1410–1416. [Google Scholar] [CrossRef] [Green Version]
- Rottenburger, C.; Nicolas, G.P.; McDougall, L.; Kaul, F.; Cachovan, M.; Vija, A.H.; Schibli, R.; Geistlich, S.; Schumann, A.; Rau, T.; et al. Cholecystokinin 2 Receptor Agonist 177Lu-PP-F11N for Radionuclide Therapy of Medullary Thyroid Carcinoma: Results of the Lumed Phase 0a Study. J. Nucl. Med. 2020, 61, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Hubalewska-Dydejczyk, A.; Mikolajczak, R.; Decristoforo, C.; Kolenc-Peitl, P.; Erba, P.A.; Zaletel, K.; Maecke, H.; Maina, T.; Konijnenberg, M.; Garnuszek, P.; et al. Phase I clinical trial using a novel CCK2 receptor-localizing radiolabelled peptide probe for personalized diagnosis and therapy of patients with progressive or metastatic medullary thyroid carcinoma—final results. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, S339. [Google Scholar]
- Erba, P.A.; Maecke, H.; Mikolajczak, R.; Decristoforo, C.; Zaletel, K.; Maina-Nock, T.; Peitl, P.K.; Garnuszek, P.; Froberg, A.; Goebel, G.; et al. A novel CCK2/gastrin receptor-localizing radiolabeled peptide probe for personalized diagnosis and therapy of patients with progressive or metastatic medullary thyroid carcinoma: A multicenter phase I GRAN-T-MTC study. Pol. Arch. Intern. Med. Pol. Arch. Med. Wewn. 2018, 128, 791–795. [Google Scholar] [CrossRef]
- Grzmil, M.; Qin, Y.; Schleuniger, C.; Frank, S.; Imobersteg, S.; Blanc, A.; Spillmann, M.; Berger, P.; Schibli, R.; Behe, M. Pharmacological inhibition of mTORC1 increases CCKBR-specific tumor uptake of radiolabeled minigastrin analogue [Lu-177]Lu-PP-F11N. Theranostics 2020, 10, 10861–10873. [Google Scholar] [CrossRef] [PubMed]
- Kolenc Peitl, P.; Tamma, M.; Kroselj, M.; Braun, F.; Waser, B.; Reubi, J.C.; Sollner Dolenc, M.; Maecke, H.R.; Mansi, R. Stereochemistry of Amino Acid Spacers Determines the Pharmacokinetics of 111In-DOTA-Minigastrin Analogues for Targeting the CCK2/Gastrin Receptor. Bioconjug. Chem. 2015, 26, 1113–1119. [Google Scholar] [CrossRef]
- Maina, T.; Nock, B.A.; Zhang, H.; Nikolopoulou, A.; Waser, B.; Reubi, J.C.; Maecke, H.R. Species differences of bombesin analog interactions with GRP-R define the choice of animal models in the development of GRP-R-targeting drugs. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2005, 46, 823–830. [Google Scholar]
- Hofsli, E.; Thommesen, L.; Norsett, K.; Falkmer, S.; Syversen, U.; Sandvik, A.; Laegreid, A. Expression of chromogranin A and somatostatin receptors in pancreatic AR42J cells. Mol. Cell. Endocrinol. 2002, 194, 165–173. [Google Scholar] [CrossRef]
- Caplin, M.E.; Clarke, P.; Grimes, S.; Dhillon, A.P.; Khan, K.; Savage, K.; Lewin, J.; Michaeli, D.; Pounder, R.E.; Watson, S.A. Demonstration of new sites of expression of the CCK-B/gastrin receptor in pancreatic acinar AR42J cells using immunoelectron microscopy. Regul. Pept. 1999, 84, 81–89. [Google Scholar] [CrossRef]
- Smith, T.; Petoussi-Henss, N.; Zankl, M. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a “family” of phantoms. Eur. J. Nucl. Med. 2000, 27, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Optimizing Oncologic FDG-PET/CT Scans to Decrease Radiation Exposure. Available online: https://www.imagewisely.org/Imaging-Modalities/Nuclear-Medicine/Optimizing-Oncologic-FDG-PETCT-Scans (accessed on 10 June 2021).
- Radiological Protection in Biomedical Research. Available online: https://www.icrp.org/publication.asp?id=ICRP%20Publication%2062 (accessed on 10 June 2021).
- Virgolini, I.; Ambrosini, V.; Bomanji, J.B.; Baum, R.P.; Fanti, S.; Gabriel, M.; Papathanasiou, N.D.; Pepe, G.; Oyen, W.; De Cristoforo, C.; et al. Procedure guidelines for PET/CT tumour imaging with Ga-68-DOTA-conjugated peptides: Ga-68-DOTA-TOC, Ga-68-DOTA-NOC, Ga-68-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 2004–2010. [Google Scholar] [CrossRef] [PubMed]
- Sandstrom, M.; Velikyan, I.; Garske-Roman, U.; Sorensen, J.; Eriksson, B.; Granberg, D.; Lundqvist, H.; Sundin, A.; Lubberink, M. Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2013, 54, 1755–1759. [Google Scholar] [CrossRef] [Green Version]
- Pfob, C.H.; Ziegler, S.; Graner, F.P.; Kohner, M.; Schachoff, S.; Blechert, B.; Wester, H.J.; Scheidhauer, K.; Schwaiger, M.; Maurer, T.; et al. Biodistribution and radiation dosimetry of (68)Ga-PSMA HBED CC-a PSMA specific probe for PET imaging of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1962–1970. [Google Scholar] [CrossRef] [PubMed]
- Konijnenberg, M.W.; Breeman, W.A.P.; de Blois, E.; Chan, H.S.; Boerman, O.C.; Laverman, P.; Kolenc-Peitl, P.; Melis, M.; de Jong, M. Therapeutic application of CCK2R-targeting PP-F11: Influence of particle range, activity and peptide amount. EJNMMI Res. 2014, 4, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberdiac, P.; Mineur, L. Normal tissue tolerance to external beam radiation therapy: The stomach. Cancer Radiother. 2010, 14, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Aloj, L.; Caraco, C.; Panico, M.; Zannetti, A.; Del Vecchio, S.; Tesauro, D.; De Luca, S.; Arra, C.; Pedone, C.; Morelli, G.; et al. In vitro and in vivo evaluation of In-111-DTPAGlu-G-CCK8 for cholecystokinin-B receptor imaging. J. Nucl. Med. 2004, 45, 485–494. [Google Scholar]
- Hormann, A.A.; Klingler, M.; Rezaeianpour, M.; Hormann, N.; Gust, R.; Shahhosseini, S.; Guggenberg, E.V. Initial In Vitro and In Vivo Evaluation of a Novel CCK2R Targeting Peptide Analog Labeled with Lutetium-177. Molecules 2020, 25, 4585. [Google Scholar] [CrossRef]
- Ellis, R.E. The distribution of active bone marrow in the adult. Phys. Med. Biol. 1961, 5, 255–258. [Google Scholar] [CrossRef]
- Kolenc-Peitl, P.; Mansi, R.; Tamma, M.; Gmeiner-Stopar, T.; Sollner-Dolenc, M.; Waser, B.; Baum, R.P.; Reubi, J.C.; Maecke, H.R. Highly improved metabolic stability and pharmacokinetics of indium-111-DOTA-gastrin conjugates for targeting of the gastrin receptor. J. Med. Chem. 2011, 54, 2602–2609. [Google Scholar] [CrossRef] [PubMed]
- Kunikowska, J.; Ziemnicka, K.; Pawlak, D.; Ruchala, M.; Kolasa, A.; Janicka-Jedynska, M.; Wozniak, A.; Mikolajczak, R.; Krolicki, L. Medullary thyroid carcinoma—PET/CT imaging with 68Ga-labelled gastrin and somatostatin analogues. Endokrynol. Pol. 2016, 67, 68–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Method | Acceptance Criteria | Results (n = 4) |
---|---|---|---|
Appearance | Visual inspection | Clear, colorless solution, free of visible particles | conforms |
pH | Indicator strip | 4.0–8.0 | 6.0 |
Volume | Graduated vial | 8.5 (range 7–12 mL) | 8.5 mL |
Radioactivity concentration | MBq/mL | 9–185 MBq/mL | 112 ± 20 MBq/mL |
Radionuclide identity | Gamma-ray spectrometry | 511 keV; 1022 keV | conforms |
Radionuclide identity | Half-life | 62–74 min | 68.3 ± 0.3 min |
Identity of 68Ga-DOTA-MGS5 (comparison with reference) | HPLC | RRT 0.9–1.1 | conforms |
Proportion of 68Ga-DOTA-MGS5 | HPLC (T) | not specified | 0.949 ± 0.012 |
Radiochemical impurities with RRT 0.6–0.9 and 1.1–1.4 | HPLC | ≤6% | 4.3 ± 0.8% |
Free or colloidal gallium-68 (retardation factor <0.2) | iTLC (A) | ≤3% | 0.9 ± 0.5% |
Radiochemical purity | RCP = (100 – A) × T | ≥91% | 94.1 ± 1.3% |
DOTA-MGS5, 68Ga-DOTA-MGS5 and related substances (RRT 0.8–1.2) | HPLC | ≤50 µg/V | <40 µg |
Ethanol content | Gas chromatography | ≤10 % (v/v) | 6.2 ± 0.5% |
Radionuclide purity | Gamma-ray spectrometry | Ge-68: ≤0.001% (after ≥48 h) | conforms |
Bacterial Endotoxins | LAL test | ≤175 IU/V | <3 IU/V |
Sterility | Ph. Eur. | sterile | conforms |
Stability Testing | Acceptance Criteria | 1 h | 2 h | 3 h |
---|---|---|---|---|
Free or colloidal gallium-68 (retardation factor <0.2) | ≤3% | 0.5 ± 0.3 | 0.5 ± 0.4 | 0.6 ± 0.2 |
Radiochemical purity | ≥91% | 94.3 ± 1.2 | 92.9 ± 1.0 | 92.9 ± 1.5 |
DOTA-MGS5, 68Ga-DOTA-MGS5 and related substances (RRT 0.8–1.2) | ≤50 µg/V | <40 | <40 | <40 |
68Ga-DOTA-MGS5 % IA/g 5 min p.i. | 68Ga-DOTA-MGS5 % IA/g 20 min p.i. | 68Ga-DOTA-MGS5 % IA/g 60 min p.i. | 68Ga-DOTA-MGS5 % IA/g 90 min p.i. | |
---|---|---|---|---|
organ | mean ± sd | mean ± sd | mean ± sd | mean ± sd |
blood | 17.58 ± 3.01 | 6.76 ± 1.17 | 1.99 ± 0.22 | 0.94 ± 0.08 |
lung | 8.51 ± 2.33 | 3.78 ± 0.53 | 1.10 ± 0.11 | 0.59 ± 0.10 |
heart | 5.11 ± 0.07 | 2.24 ± 0.57 | 0.70 ± 0.16 | 0.35 ± 0.02 |
muscle | 2.89 ± 0.18 | 1.03 ± 0.21 | 0.49 ± 0.19 | 0.18 ± 0.04 |
spleen | 3.53 ± 0.43 | 1.70 ± 0.38 | 0.71 ± 0.05 | 0.69 ± 0.09 |
intestine | 2.42 ± 0.21 | 1.22 ± 0.25 | 0.75 ± 0.17 | 0.62 ± 0.08 |
liver | 5.02 ± 0.06 | 2.28 ± 0.31 | 1.21 ± 0.12 | 1.00 ± 0.06 |
kidneys | 17.60 ± 2.79 | 8.41 ± 1.33 | 5.11 ± 0.33 | 4.60 ± 0.32 |
pancreas | 4.03 ± 0.19 | 2.17 ± 0.16 | 1.50 ± 0.38 | 1.42 ± 0.30 |
stomach | 6.63 ± 0.23 | 4.09 ± 0.98 | 4.63 ± 0.65 | 4.12 ± 0.30 |
femur | 2.77 ± 0.34 | 1.75 ± 0.93 | 0.62 ± 0.09 | 0.55 ± 0.09 |
Target Organ | Male mGy/MBq | Female mGy/MBq |
---|---|---|
adrenals | 8.69 × 10−3 | 1.15 × 10−2 |
brain | 7.67 × 10−3 | 9.93 × 10−3 |
breasts | 7.15 × 10−3 | 9.40 × 10−3 |
gallbladder wall | 8.93 × 10−3 | 1.11 × 10−2 |
LLI wall | 8.72 × 10−3 | 1.14 × 10−2 |
small intestine | 9.05 × 10−3 | 1.09 × 10−2 |
stomach wall | 1.13 × 10−2 | 1.47 × 10−2 |
ULI wall | 8.90 × 10−3 | 1.16 × 10−2 |
heart wall | 1.12 × 10−2 | 1.43 × 10−2 |
kidneys | 2.96 × 10−2 | 3.79 × 10−2 |
liver | 1.08 × 10−2 | 1.37 × 10−2 |
lungs | 1.57 × 10−2 | 1.99 × 10−2 |
muscle | 7.00 × 10−3 | 8.86 × 10−3 |
ovaries | - | 1.13 × 10−2 |
pancreas | 9.86 × 10−3 | 1.24 × 10−2 |
red marrow | 8.56 × 10−3 | 1.05 × 10−2 |
osteogenic cells | 1.22 × 10−2 | 1.74 × 10−2 |
skin | 6.67 × 10−3 | 8.76 × 10−3 |
spleen | 8.29 × 10−3 | 1.05 × 10−2 |
testes | 7.66 × 10−3 | - |
thymus | 7.97 × 10−3 | 1.06 × 10−2 |
thyroid | 7.88 × 10−3 | 9.91 × 10−3 |
urinary bladder wall | 1.47 × 10−2 | 1.79 × 10−2 |
uterus | - | 1.13 × 10−2 |
total body | 9.78 × 10−3 | 1.25 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hörmann, A.A.; Klingler, M.; Rangger, C.; Mair, C.; Decristoforo, C.; Uprimny, C.; Virgolini, I.J.; von Guggenberg, E. Radiopharmaceutical Formulation and Preclinical Testing of 68Ga-Labeled DOTA-MGS5 for the Regulatory Approval of a First Exploratory Clinical Trial. Pharmaceuticals 2021, 14, 575. https://doi.org/10.3390/ph14060575
Hörmann AA, Klingler M, Rangger C, Mair C, Decristoforo C, Uprimny C, Virgolini IJ, von Guggenberg E. Radiopharmaceutical Formulation and Preclinical Testing of 68Ga-Labeled DOTA-MGS5 for the Regulatory Approval of a First Exploratory Clinical Trial. Pharmaceuticals. 2021; 14(6):575. https://doi.org/10.3390/ph14060575
Chicago/Turabian StyleHörmann, Anton A., Maximilian Klingler, Christine Rangger, Christian Mair, Clemens Decristoforo, Christian Uprimny, Irene J. Virgolini, and Elisabeth von Guggenberg. 2021. "Radiopharmaceutical Formulation and Preclinical Testing of 68Ga-Labeled DOTA-MGS5 for the Regulatory Approval of a First Exploratory Clinical Trial" Pharmaceuticals 14, no. 6: 575. https://doi.org/10.3390/ph14060575
APA StyleHörmann, A. A., Klingler, M., Rangger, C., Mair, C., Decristoforo, C., Uprimny, C., Virgolini, I. J., & von Guggenberg, E. (2021). Radiopharmaceutical Formulation and Preclinical Testing of 68Ga-Labeled DOTA-MGS5 for the Regulatory Approval of a First Exploratory Clinical Trial. Pharmaceuticals, 14(6), 575. https://doi.org/10.3390/ph14060575