Ac-EAZY! Towards GMP-Compliant Module Syntheses of 225Ac-Labeled Peptides for Clinical Application
Abstract
:1. Introduction
2. Results
2.1. Manual Evaluation of 225Ac from Two Different Sources for Radiolabeling of DOTA-Conjugated Peptides
- Buffer constitution;
- Buffer volume (1–4 mL);
- Buffer pH (5.2–6.8);
- Reaction pH (4.8–5.8);
- Reaction temperature (90–105 °C);
- Reaction time (25–40 min);
- Precursor concentration (10–50 µg/MBq);
- Activity amount (0.5–18 MBq);
- Activity matrix and volume (water, 0.04 M HCl, 0.1 M HCl);
- C18 cartridge purification;
- CM cartridge purification;
- Endotoxin level;
- Sterility;
- The influence of the time of quality control on the result (sampling time after EOS, time between removal of TLC plate from tank to analysis)
- Sodium ascorbate (0.1 M): Even though 2 mL of sodium ascorbate (0.1 M) buffer resulted in a high yield (>90% RCY) of 225Ac-labeled peptides, some drawbacks were observed: the buffer is not stable longer than 1 month at −20 °C, leading to a significant decrease of RCY with time. The volume of 2 mL of this buffer is only capable of buffering 0.1 mL HCl (0.04 M). When activity is delivered in a larger volume than 0.1 mL, the buffer volume has to be increased accordingly to keep control of the reaction pH. The increased volume may exceed the maximal volume capacity of the delivery vial when desired to use it as a reaction vial.
- Sodium acetate (0.9 M): The EZ-102 kit contains three vials: Vial 1: sodium acetate trihydrate (680 mg); Vial 2: H2O (3.6 mL); Vial 3 0.96 M acetic acid and 0.7% HCl. To prepare a 0.9 M solution, 680 mg of the sodium acetate trihydrate are dissolved completely in 3.6 mL of water from the kit. The pH is adjusted to pH between 5.0–5.5 by the addition of acetic acid. This buffer tolerates higher volumes of HCl while maintaining the pH between 5.0–5.5. The disadvantage to this buffer is that the higher molarity leads to a much lower complexation <10% RCY.
- Sodium acetate (0.1 M): In total, 0.15 mL of acetic acid was added to a 0.9 M sodium acetate solution, and the mixture was diluted with H2O by factor 9 to obtain 0.1 M sodium acetate/acetic acid buffer with a pH of 5.7–5.8. By adding different volumes (0.1 or 0.5 mL) of 0.04 M HCl, the resulting reaction pH is between 5.5–5.0, respectively. This buffer can also be stored at −20 °C for at least two months. The 0.1 M sodium acetate/acetic acid buffer was regarded as the best buffer, and the three tests resulted in RCYs 80–90%.
2.2. Transfer of the Manual Process to Modular-Lab EAZY
2.3. Validation of the Automated Syntheses with C18 or CM Purification
- RCP >80% prospective, >95% retrospective (if activity is >80% prospective, a retrospective measurement will be >99% for silica gel on aluminum with citrate)
- Endotoxin level <5.00 EU/mL
- RCY 80–90%
- Product pH 4.0–8.0
3. Discussion
4. Materials and Methods
4.1. Manual Synthesis of 225Ac–Peptides
- Peptide to buffer in a syringe, attach blue micropin (MP1000 B.Braun) to the syringe;
- Peptide–buffer mixture to 225Ac in KIMAX vial, shake gently;
- Reaction of 40 min at 90 °C heating block;
- 5 min cooling, venting, dilute with 2 mL saline into 5-mL-syringe.
4.2. C18 Purification Method
- The C18 cartridge was rinsed with by 1 mL EtOH, followed by 2 mL H2O;
- The diluted reaction solution onto C18 with the 5-mL-syringe into waste;
- Rinse reactor with 2 mL of saline, then rinse onto C18 into waste;
- Elute product with 1 mL 70% EtOH from C18 over a sterile filter into the product vial;
- Rinse C18 with 7 mL DTPA-containing saline over a sterile filter into the product vial.
4.3. CM Purification Method
- The CM cartridge was rinsed with 3 mL of H2O;
- The diluted reaction solution onto CM with a 5-mL-syringe over a sterile filter into the product vial;
- Rinse reactor with 2 mL of saline, then pour the CM into the product vial;
- Second rinsing of reactor with 2 mL of saline, then pour the CM into product vial.
4.4. Quality Control
- RCP was determined by TLC either by cutting the developed TLC in two pieces and measuring their activity by CoMo-170 or by TLC scanner using a beta-sensitive probe.
- For free 225Ac, TLC was performed on silica-gel–aluminum sheets in 0.1 M citrate buffer (pH 5.0).
- For colloidal 225Ac-hydroxide, TLC was performed in 1 M NH4Ac:MeOH 1:1 on silica-gel–aluminum sheets for 225Ac-PSMA-I&T and on ITLC-SG for 225Ac-TATE.
- Radionulidic purity and the exact volume activity were determined by an HPGe detector.
- In total, 10 µL of the product solution was diluted with 990 µL of sterile water and used for the determination of the endotoxin level with EndoSafe.
- The pH was determined with the pH meter Quantofix.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Vincentis, G.; Gerritsen, W.; Gschwend, J.; Hacker, M.; Lewington, V.; O’Sullivan, J.; Oya, M.; Pacilio, M.; Parker, C.; Shore, N.; et al. Advances in targeted alpha therapy for prostate cancer. Ann. Oncol. 2019, 30, 1728–1739. [Google Scholar] [CrossRef]
- Asti, M.; Tegoni, M.; Farioli, D.; Iori, M.; Guidotti, C.; Cutler, C.S.; Mayer, P.; Versari, A.; Salvo, D. Influence of cations on the complexation yield of DOTATATE with yttrium and lutetium: A perspective study for enhancing the 90Y and 177Lu labeling conditions. Nucl. Med. Biol. 2012, 39, 509–517. [Google Scholar] [CrossRef]
- Oehlke, E.; Le, V.S.; Lengkeek, N.; Pellegrini, P.; Jackson, T.; Greguric, I.; Weiner, R. Influence of metal ions on the 68Ga-labeling of DOTATATE. Appl. Radiat. Isot. 2013, 82, 232–238. [Google Scholar] [CrossRef]
- Pandya, D.N.; Hantgan, R.; Budzevich, M.M.; Kock, N.D.; Morse, D.L.; Batista, I.; Mintz, A.; Li, K.C.; Wadas, T.J. Preliminary Therapy Evaluation of 225Ac-DOTA-c(RGDyK) Demonstrates that Cerenkov Radiation Derived from 225Ac Daughter Decay Can Be Detected by Optical Imaging for In Vivo Tumor Visualization. Theranostics 2016, 6, 698–709. [Google Scholar] [CrossRef] [Green Version]
- McDevitt, M.R.; Scheinberg, D.A. Ac-225 and her daughters: The many faces of Shiva. Cell Death Differ. 2002, 9, 593–594. [Google Scholar] [CrossRef]
- Kelly, J.M.; Amor-Coarasa, A.; Sweeney, E.; Babich, J.W. A consensus time for performing quality control of 225Ac-labeled radiopharmaceuticals. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Usmani, S.; Rasheed, R.; Al Kandari, F.; Marafi, F.; Naqvi, S.A.R. 225Ac Prostate-Specific Membrane Antigen Posttherapy α Imaging. Clin. Nucl. Med. 2019, 44, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Beattie, B.J.; Thorek, D.L.J.; Schmidtlein, C.R.; Pentlow, K.S.; Humm, J.L.; Hielscher, A.H. Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides. PLoS ONE 2012, 7, e31402. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.M.; Amor-Coarasa, A.; Ponnala, S.; Nikolopoulou, A.; Williams, C., Jr.; Thiele, N.A.; Schlyer, D.; Wilson, J.J.; DiMagno, S.G.; Babich, J.W. A Single Dose of 225Ac-RPS-074 Induces a Complete Tumor Response in an LNCaP Xenograft Model. J. Nucl. Med. 2019, 60, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakes, A.L.; An, D.D.; Gauny, S.S.; Ansoborlo, C.; Liang, B.H.; Rees, J.A.; McKnight, K.D.; Karsunky, H.; Abergel, R.J. Evaluating 225Ac and 177Lu Radioimmunoconjugates against Antibody–Drug Conjugates for Small-Cell Lung Cancer. Mol. Pharm. 2020, 17, 4270–4279. [Google Scholar] [CrossRef]
- McDevitt, M.R.; Ma, D.; Lai, L.T.; Simon, J.; Borchardt, P.; Frank, R.K.; Wu, K.; Pellegrini, V.; Curcio, M.J.; Miederer, M.; et al. Tumor Therapy with Targeted Atomic Nanogenerators. Science 2001, 294, 1537–1540. [Google Scholar] [CrossRef]
- Bruchertseifer, F.; Kellerbauer, A.; Malmbeck, R.; Morgenstern, A. Targeted alpha therapy with bismuth-213 and actinium-225: Meeting future demand. J. Label. Compd. Radiopharm. 2019, 62, 794–802. [Google Scholar] [CrossRef]
- Fitzsimmons, J.; Abraham, A.; Catalano, D.; Younes, A.; Cutler, C.S.; Medvedev, D. The application of poorly crystalline silicotitanate in production of 225Ac. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Apostolidis, C.; Molinet, R.; McGinley, J.; Abbas, K.; Möllenbeck, J.; Morgenstern, A. Cyclotron production of Ac-225 for targeted alpha therapy11Dedicated to Prof. Dr. Franz Baumgärtner on the occasion of his 75th birthday. Appl. Radiat. Isot. 2005, 62, 383–387. [Google Scholar] [CrossRef]
- Iori, M.; Capponi, P.C.; Rubagotti, S.; Esposizione, L.R.; Seemann, J.; Pitzschler, R.; Dreger, T.; Formisano, D.; Grassi, E.; Fioroni, F.; et al. Labelling of 90Y- and 177Lu-DOTA-Bioconjugates for Targeted Radionuclide Therapy: A Comparison among Manual, Semiautomated, and Fully Automated Synthesis. Contrast Media Mol. Imaging 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Aslani, A.; Snowdon, G.M.; Bailey, D.L.; Schembri, G.; Bailey, E.A.; Pavlakis, N.; Roach, P.J. Lutetium-177 DOTATATE Production with an Automated Radiopharmaceutical Synthesis System. Asia Ocean. J. Nucl. Med. Biol. 2015, 3, 107–115. [Google Scholar]
- Derlin, T.; Sohns, J.S.; Schmuck, S.; Henkenberens, C.; Von Klot, C.A.J.; Ross, T.L.; Bengel, F.M. Influence of short-term dexamethasone on the efficacy of 177 Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Prostate 2020, 80, 619–631. [Google Scholar] [CrossRef] [Green Version]
- De Decker, M.; Turner, J.H. Automated Module Radiolabeling of Peptides and Antibodies with Gallium-68, Lutetium-177 and Iodine-131. Cancer Biother. Radiopharm. 2012, 27, 72–76. [Google Scholar] [CrossRef]
- Wichmann, C.W.; Ackermann, U.; Poniger, S.; Young, K.; Nguyen, B.; Chan, G.; Sachinidis, J.; Scott, A.M. Automated radiosynthesis of [68 Ga]Ga-PSMA-11 and [177 Lu]Lu-PSMA-617 on the iPHASE MultiSyn module for clinical applications. J. Label. Compd. Radiopharm. 2021, 64, 140–146. [Google Scholar] [CrossRef]
- Lindner, S.; Simmet, M.; Gildehaus, F.J.; Jurkschat, K.; Wängler, C.; Wängler, B.; Bartenstein, P.; Schirrmacher, R.; Ilhan, H. Automated production of [18F]SiTATE on a Scintomics GRP™ platform for PET/CT imaging of neuroendocrine tumors. Nucl. Med. Biol. 2020, 88–89, 86–95. [Google Scholar] [CrossRef]
- Acar, E.; Özdoğan, Ö.; Aksu, A.; Derebek, E.; Bekiş, R.; Kaya, G.Ç. The use of molecular volumetric parameters for the evaluation of Lu-177 PSMA I&T therapy response and survival. Ann. Nucl. Med. 2019, 33, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.A.; Andersen, V.L.; Hendel, H.W.; Vriamont, C.; Warnier, C.; Masset, J.; Huynh, T.H.V. Automated synthesis of 68 Ga/177 Lu-PSMA on the Trasis miniAllinOne. J. Label. Compd. Radiopharm. 2020, 63, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Eryilmaz, K.; Kilbas, B. Fully-automated synthesis of 177Lu labelled FAPI derivatives on the module modular lab-Eazy. EJNMMI Radiopharm. Chem. 2021, 6, 1–9. [Google Scholar] [CrossRef]
- Pretze, M.; Franck, D.; Kunkel, F.; Foßhag, E.; Wängler, C.; Wängler, B. Evaluation of two nucleophilic syntheses routes for the automated synthesis of 6-[18F]fluoro-l-DOPA. Nucl. Med. Biol. 2017, 45, 35–42. [Google Scholar] [CrossRef]
- Gali, H.; Cisar, A.J. 212Bi or 213Bi generator from supported parent isotope. U.S. Patent Application No 11/178,741, 11 January 2007. [Google Scholar]
- Aluicio-Sarduy, E.; Thiele, N.A.; Martin, K.E.; Vaughn, B.A.; Devaraj, J.; Olson, A.P.; Barnhart, T.E.; Wilson, J.J.; Boros, E.; Engle, J.W. Establishing Radiolanthanum Chemistry for Targeted Nuclear Medicine Applications. Chem. Eur. J. 2019, 26, 1238–1242. [Google Scholar] [CrossRef]
- Li, L.; Rousseau, J.; Jaraquemada-Peláez, M.D.G.; Wang, X.; Robertson, A.; Radchenko, V.; Schaffer, P.; Lin, K.-S.; Bénard, F.; Orvig, C. 225Ac-H4py4pa for Targeted Alpha Therapy. Bioconjugate Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Thiele, N.A.; Brown, V.; Kelly, J.M.; Amor-Coarasa, A.; Jermilova, U.; MacMillan, S.N.; Nikolopoulou, A.; Ponnala, S.; Ramogida, C.; Robertson, A.K.H.; et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem. Int. Ed. 2017, 56, 14712–14717. [Google Scholar] [CrossRef]
- Thiele, N.A.; Wilson, J.J. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother. Radiopharm. 2018, 33, 336–348. [Google Scholar] [CrossRef]
- Thiele, N.A.; Woods, J.J.; Wilson, J.J. Implementing f-Block Metal Ions in Medicine: Tuning the Size Selectivity of Expanded Macrocycles. Inorg. Chem. 2019, 58, 10483–10500. [Google Scholar] [CrossRef]
- Reissig, F.; Bauer, D.; Zarschler, K.; Novy, Z.; Bendova, K.; Ludik, M.-C.; Kopka, K.; Pietzsch, H.-J.; Petrik, M.; Mamat, C. Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA—A Proof of Concept Study. Cancers 2021, 13, 1974. [Google Scholar] [CrossRef]
- Hartmann, H.; Wunderlich, G.; Schottelius, M.; Wester, H.-J.; Kotzerke, J.; Brogsitter, C. Twins in spirit part IV–[177 Lu] high affinity DOTATATE. Nuklearmedizin 2017, 56, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Essler, M.; Gärtner, F.C.; Neff, F.; Blechert, B.; Senekowitsch-Schmidtke, R.; Bruchertseifer, F.; Morgenstern, A.; Seidl, C. Therapeutic efficacy and toxicity of 225Ac-labelled vs. 213Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 602–612. [Google Scholar] [CrossRef]
- De Kruijff, R.M.; Raavé, R.; Kip, A.; Molkenboer-Kuenen, J.; Morgenstern, A.; Bruchertseifer, F.; Heskamp, S.; Denkova, A.G. The in vivo fate of 225Ac daughter nuclides using polymersomes as a model carrier. Sci. Rep. 2019, 9, 11671. [Google Scholar] [CrossRef] [Green Version]
- Roscher, M.; Bakos, G.; Benešová, M. Atomic Nanogenerators in Targeted Alpha Therapies: Curie’s Legacy in Modern Cancer Management. Pharmaceuticals 2020, 13, 76. [Google Scholar] [CrossRef]
Measuring Time after Elution | 1 min | 40 min | 60 min | 16 h |
---|---|---|---|---|
activity cartridge (MBq) | 1.5 | 1.7 | 2.1 | 2.0 |
%RCP of the correct activity | 75 | 85 | 95 | >99 |
activity eluent (MBq) | 2.8 | 2.3 | 2.2 | 2.0 |
%RCP of the correct activity | 133 | 115 | 105 | >99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pretze, M.; Kunkel, F.; Runge, R.; Freudenberg, R.; Braune, A.; Hartmann, H.; Schwarz, U.; Brogsitter, C.; Kotzerke, J. Ac-EAZY! Towards GMP-Compliant Module Syntheses of 225Ac-Labeled Peptides for Clinical Application. Pharmaceuticals 2021, 14, 652. https://doi.org/10.3390/ph14070652
Pretze M, Kunkel F, Runge R, Freudenberg R, Braune A, Hartmann H, Schwarz U, Brogsitter C, Kotzerke J. Ac-EAZY! Towards GMP-Compliant Module Syntheses of 225Ac-Labeled Peptides for Clinical Application. Pharmaceuticals. 2021; 14(7):652. https://doi.org/10.3390/ph14070652
Chicago/Turabian StylePretze, Marc, Falk Kunkel, Roswitha Runge, Robert Freudenberg, Anja Braune, Holger Hartmann, Uwe Schwarz, Claudia Brogsitter, and Jörg Kotzerke. 2021. "Ac-EAZY! Towards GMP-Compliant Module Syntheses of 225Ac-Labeled Peptides for Clinical Application" Pharmaceuticals 14, no. 7: 652. https://doi.org/10.3390/ph14070652
APA StylePretze, M., Kunkel, F., Runge, R., Freudenberg, R., Braune, A., Hartmann, H., Schwarz, U., Brogsitter, C., & Kotzerke, J. (2021). Ac-EAZY! Towards GMP-Compliant Module Syntheses of 225Ac-Labeled Peptides for Clinical Application. Pharmaceuticals, 14(7), 652. https://doi.org/10.3390/ph14070652