Less Polar Compounds and Targeted Antioxidant Potential (In Vitro and In Vivo) of Codium adhaerens C. Agardh 1822
Abstract
:1. Introduction
2. Results and Discussion
2.1. Headspace Composition
2.2. Volatile Oil Composition
2.3. Fatty Acid Composition
2.4. Less Polar Non-Volatile Compounds from F3 and F4 Fractions
2.5. Antioxidant Activity of F3 and F4 Fractions In Vitro
2.6. Developmental Toxicity of F3 and F4 Fractions in Zebrafish Embryo
2.7. Protective Effects of F3 and F4 Fractions against H2O2-Induced Oxidative Stress
3. Materials and Methods
3.1. Chemicals
3.2. Macroalga Sample
3.3. Headspace Solid-Phase Microextraction (HS-SPME)
3.4. Hydrodistillation (HD)
3.5. Gas Chromatography Mass Spectrometry Analysis of VOCs
3.6. Gas Chromatography Flame-Ionisation Detection Analysis of Fatty Acids
3.7. Fractionation by Solid-Phase Extraction (SPE)
3.8. Ultra High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry (UHPLC-ESI-HRMS) of F3 and F4
3.9. Antioxidant Activity of Tested Fractions by In Vitro Assays
3.10. Zebrafish Embryotoxicity Test (ZET)
3.11. Antioxidant Effect of Tested Fractions Using Zebrafish Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibñez, E.; Cifuentes, A. Benefits of using algae as natural sources of functional ingredients. J. Sci. Food Agric. 2013, 93, 703–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wang, X.; Wu, H.; Liu, R. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Mar. Drugs 2014, 12, 4984–5020. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, K.R.R.; Mahomoodally, M.F.; Aumeeruddy, M.Z.; Zengin, G.; Xiao, J.; Kim, D.H. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem. Toxicol. 2020, 135, 111013. [Google Scholar] [CrossRef]
- Vinayak, R.C.; Sudha, S.A.; Chatterji, A. Bio-screening of a few green seaweeds from India for their cytotoxic and antioxidant potential. J. Sci. Food Agric. 2011, 91, 2471–2476. [Google Scholar] [CrossRef]
- Gutiérrez-Rodríguez, A.G.; Juárez-Portilla, C.; Olivares-Bañuelos, T.; Zepeda, R.C. Anticancer activity of seaweeds. Drug Discov. Today 2018, 23, 434–447. [Google Scholar]
- Andrade, P.B.; Barbosa, M.; Matos, R.P.; Lopes, G.; Vinholes, J.; Mouga, T.; Valentão, P. Valuable compounds in macroalgae extracts. Food Chem. 2013, 138, 1819–1828. [Google Scholar] [CrossRef]
- Yokohama, Y.; Kageyama, A.; Ikawa, T.; Shimura, S. A carotenoid characteristic of chlorophycean seaweeds living in deep coastal waters. Bot. Mar. 1977, 20, 433–436. [Google Scholar] [CrossRef]
- Miyazawa, K.; Ito, K.; Matsumoto, F. Amino acids and peptide in seven species of marine green algae. J. Fac. Appl. Biol. Sci. Hiroshima Univ. 1976, 15, 161–169. [Google Scholar]
- Lopes, G.; Sousa, C.; Bernardo, J.; Andrade, P.B.; Valentão, P. Sterol profiles in 18 macroalgae of the portuguese coast. J. Phycol. 2011, 47, 1210–1218. [Google Scholar] [CrossRef]
- Lee, J.B.; Hayashi, K.; Maeda, M.; Hayashi, T. Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med. 2004, 70, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Cikoš, A.-M.; Babić, S.; Čižmek, L.; Bojanić, K.; Aladić, K.; Ul’yanovskii, N.V.; Kosyakov, D.S.; Lebedev, A.T.; Čož-Rakovac, R.; et al. Bioprospecting of less-polar constituents from endemic brown macroalga Fucus virsoides J. Agardh from the Adriatic Sea and targeted antioxidant effects in vitro and in vivo (Zebrafish Model). Mar. Drugs 2021, 19, 235. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Kranjac, M.; Marijanović, Z.; Šarkanj, B.; Cikoš, A.-M.; Aladić, K.; Pedisić, S.; Jokić, S. Chemical diversity of Codium bursa (Olivi) C. Agardh headspace compounds, volatiles, fatty acids and insight into its antifungal activity. Molecules 2019, 24, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerković, I.; Marijanović, Z.; Roje, M.; Kuś, P.M.; Jokić, S.; Čož-Rakovac, R. Phytochemical study of the headspace volatile organic compounds of fresh algae and seagrass from the Adriatic Sea (single point collection). PLoS ONE 2018, 13, e0196462. [Google Scholar]
- Malin, G.; Steinke, M. Dimethyl sulfide production: What is the contribution of the coccolithophores? In Coccolithophores; Thierstein, H.R., Young, J.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 127–164. [Google Scholar]
- Alcolombri, U.; Ben-Dor, S.; Feldmesser, E.; Levin, Y.; Tawfik, D.S.; Vardi, A. Identification of the algal dimethyl sulfide–releasing enzyme: A missing link in the marine sulfur cycle. Science 2015, 348, 1466–1469. [Google Scholar] [CrossRef]
- Estevez, J.M.; Fernández, P.V.; Kasulin, L.; Dupree, P.; Ciancia, M. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology 2009, 19, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Domozych, D.; Ciancia, M.; Fangel, J.U.; Mikkelsen, M.D.; Ulvskov, P.; Willats, W.G. The cell walls of green algae: A journey through evolution and diversity. Front. Plant Sci. 2012, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Rezanka, T.; Zahradník, J.; Podojil, M. Hydrocarbons in green and blue-green algae. Folia Microbiol. 1982, 27, 450–454. [Google Scholar] [CrossRef]
- Mironov, O.G.; Shchekaturina, T.L.; Tsimbal, I.M. Saturated hydrocarbons in marine organisms. Mar. Ecol. Prog. Ser. 1981, 5, 303–309. [Google Scholar] [CrossRef]
- Han, J.; Chan, H.W.-S.; Calvin, M. Biosynthesis of alkanes in Nostoc muscorum. J. Am. Chem. Soc. 1969, 91, 5156–5159. [Google Scholar] [CrossRef]
- Moore, R.E. Volatile compounds from marine algae. Acc. Chem. Res. 1977, 10, 40–47. [Google Scholar] [CrossRef]
- Palmer, C.J.; Anders, T.L.; Carpenter, L.J.; Küpper, F.C.; McFiggans, G.B. Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle production. Environ. Chem. 2006, 2, 282–290. [Google Scholar] [CrossRef]
- Bravo-Linares, C.M.; Mudge, S.M.; Loyola-Sepulveda, R.H. Production of volatile organic compounds (VOCs) by temperate macroalgae: The use of Solid Phase Microextraction (SPME) coupled to GC-MS as method of analysis. J. Chilean Chem. Soc. 2010, 55, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Franssen, M.C.R. Halogenation and oxidation reactions with haloperoxidases. Biocatalysis 1994, 10, 87–111. [Google Scholar] [CrossRef]
- Nozaki, H. Flagellated green algae. In Freshwater Algae of North America: Ecology and Classification, 1st ed.; Wehr, J.D., Sheath, R.G., Eds.; Academic Press: London, UK, 2003; pp. 225–252. [Google Scholar]
- Gutbrod, P.; Yang, W.; Grujicic, G.V.; Peisker, H.; Gutbrod, K.; Du, L.F.; Dörmann, P. Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal. J. Biol. Chem. 2021, 296, 100530. [Google Scholar] [CrossRef]
- Rodríguez-Bustamante, E.; Sánchez, S. Microbial production of C13-norisoprenoids and other aroma compounds via carotenoid cleavage. Crit. Rev. Microbiol. 2007, 33, 211–230. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef] [Green Version]
- Goecke, F.; Hernández, V.; Bittner, M.; González, M.; Becerra, J.; Silva, M. Fatty acid composition of three species of Codium (Bryopsidales, Chlorophyta) in Chile. Rev. Biol. Mar. Oceanogr. 2010, 45, 325–330. [Google Scholar] [CrossRef] [Green Version]
- van Ginneken, V.J.T.; Helsper, J.P.F.G.; de Visser, W.; van Keulen, H.; Brandenburg, W.A. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids Health Dis. 2011, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Kuczynska, P.; Jemiola-Rzeminska, M.; Strzalka, K. Photosynthetic pigments in diatoms. Mar. Drugs 2015, 13, 5847–5881. [Google Scholar] [CrossRef] [PubMed]
- Okai, Y.; Higashi-Okai, K. Potent anti-inflammatory activity of pheophytin a derived from edible green alga, enteromorpha prolifera (sujiao-nori). Int. J. Immunopharmacol. 1997, 19, 355–358. [Google Scholar] [CrossRef]
- Okai, Y.; Ishizaka, S.; Higashi-Okai, K.; Yamashita, U. Detection of immunomodulating activities in an extract of Japanese edible seaweed Laminaria japonica (Makonbu). J. Sci. Food Agric. 1996, 72, 455–460. [Google Scholar] [CrossRef]
- Cahyana, A.H.; Shuto, Y.; Kinoshita, Y. Pyropheophytin a as an antioxidative substance from the marine alga Arame (Eisenis bicyclis). Biosci. Biotech. Biochem. 1992, 56, 1533–1535. [Google Scholar] [CrossRef]
- Nishibori, S.; Namiki, K. Antioxidative substances in the green fractions of the lipid of Aonori (Enteromorpha sp.). J. Home Econ. 1998, 39, 1173–1178. [Google Scholar]
- Saide, A.; Lauritano, C.; Ianora, A. Pheophorbide a: State of the Art. Mar. Drugs 2020, 18, 257. [Google Scholar] [CrossRef] [PubMed]
- Ochi, M.; Watanabe, M.; Miura, I.; Taniguchi, M.; Tokoroyama, T. Amijiol, isoamijiol, and 14-deoxyamijiol, three new diterpenoids from the brown seaweed Dictyota linearis. Chem. Lett. 1980, 9, 1229–1232. [Google Scholar] [CrossRef]
- Matsuno, T. Aquatic animal carotenoids. Fish. Sci. 2001, 67, 771–783. [Google Scholar] [CrossRef]
- Maeda, H.; Fukuda, S.; Izumi, H.; Saga, N. Anti-oxidant and fucoxanthin contents of brown alga ishimozuku (Sphaerotrichia divaricata) from the west coast of Aomori, Japan. Mar. Drugs 2018, 16, 255. [Google Scholar] [CrossRef] [Green Version]
- Méresse, S.; Fodil, M.; Fleury, F.; Chénais, B. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: A promising bioactive compound for cancer therapy. Int. J. Mol. Sci. 2020, 21, 9273. [Google Scholar] [CrossRef]
- Cikoš, A.-M.; Flanjak, I.; Bojanić, K.; Babić, S.; Čižmek, L.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Bioprospecting of coralline red alga Amphiroa rigida J.V. Lamouroux: Volatiles, fatty acids and pigments. Molecules 2021, 26, 520. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.-K. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods 2011, 3, 255–266. [Google Scholar] [CrossRef]
- Sudha, K.; Mohana Priya, K.; Nancy Veena, K.; Palanichamy, V. Screening of antioxidant potential of green alga Codium adhaerens. Int. J. Drug Dev. Res. 2014, 6, 103–111. [Google Scholar]
- Foo, S.C.; Yusoff, F.M.; Ismail, M.; Basri, M.; Yau, S.K.; Khong, N.M.H.; Chan, K.W.; Ebrahimi, M. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J. Biotechnol. 2017, 241, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Pinteus, S.; Silva, J.; Alves, C.; Horta, A.; Fino, N.; Rodrigues, A.I.; Mendes, S.; Pedrosa, R. Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem. 2017, 1, 591–599. [Google Scholar] [CrossRef]
- Horzmann, K.A.; Freeman, J.L. Making waves: New developments in toxicology with the zebrafish. Toxicol. Sci. 2018, 163, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.C.; Lee, S.H.; Lee, W.W.; Kang, N.; Kim, E.A.; Kim, S.Y.; Lee, D.H.; Kim, D.; Jeon, Y.-J. Protective effect of fucoxanthin isolated from Ishige okamurae against high-glucose inducedoxidative stress in human umbilical veinendothelial cells and zebrafish model. J. Funct. Foods 2014, 11, 304–312. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chao, P.Y.; Hu, S.P.; Yang, C.M. The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food Sci. Nutr. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Park, H.Y.; Jeong, T.S. Pheophorbide a derivatives exert antiwrinkle effects on UVB-induced skin aging in human fibroblasts. Life 2021, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Yang, C.M.; Chen, C.M.; Chao, P.Y.; Hu, S.P. Effects of chlorophyll-related compounds on hydrogen peroxide induced DNA damage within human lymphocytes. J. Agric. Food Chem. 2005, 53, 2746–2750. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Babić, S.; Čižmek, L.; Maršavelski, A.; Malev, O.; Pflieger, M.; Strunjak-Perović, I.; Topić Popović, N.; Čož-Rakovac, R.; Trebše, P. Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
No. | Compound | RI | Area (%) ± SD | |||
---|---|---|---|---|---|---|
I | II | III | IV | |||
1 | Dimethyl sulfide | <900 | 54.25 ± 2.13 | 0.42 ± 0.03 | 37.83 ± 1.19 | 0.62 ± 0.03 |
2 | Iodomethane | <900 | − | 2.0 ± 0.07 | − | 2.48 ± 0.09 |
3 | 2-Ethylfuran | <900 | 4.52 ± 0.18 | − | − | − |
4 | Pentanal | <900 | − | 0.20 ± 0.07 | − | 0.11 ± 0.04 |
5 | Hexanal | <900 | 0.65 ± 0.03 | 1.67 ± 0.09 | 2.46 ± 0.93 | 2.59 ± 0.36 |
6 | Dimethylsulfoxide | <900 | − | 19.50 ± 0.49 | − | 12.38 ± 0.62 |
7 | Heptanal | 902 | − | 0.95 ± 0.16 | 0.90 ± 0.35 | 2.29 ± 0.37 |
8 | Diodomethane | 923 | − | 0.26± 0.01 | − | 0.40 ± 0.10 |
9 | 1-Iodopentane | 927 | − | 0.31 ± 0.04 | − | 0.902 ± 0.21 |
10 | α-Pinene | 941 | − | 0.25 ± 0.05 | − | 0.73 ± 0.21 |
11 | (2E)-Hept-2-enal | 964 | − | − | − | 0.86 ± 0.30 |
12 | Benzaldehyde | 966 | 12.84 ± 0.50 | 3.64 ± 0.04 | 12.22 ± 5.62 | 2.06 ± 0.13 |
13 | Oct-1-en-3-ol | 985 | 2.45 ± 0.10 | 1.95 ± 0.01 | 2.40 ± 0.68 | 1.27 ± 0.11 |
14 | Phenol | 987 | − | − | 0.64 ± 0.08 | 1.20 ± 0.17 |
15 | 6-Methylhept-5-en-2-one | 989 | 0.63 ± 0.02 | 0.64 ± 0.01 | 0.43 ± 0.16 | 0.63 ± 0.01 |
16 | 2-Pentylfuran | 996 | 1.07 ± 0.04 | 0.90 ± 0.00 | 0.58 ± 0.22 | 1.80 ± 0.20 |
17 | Octanal | 1004 | − | 0.75 ± 0.05 | 0.73 ± 0.28 | 1.15 ± 0.13 |
18 | (2E,4E)-Hepta-2,4-dienal | 1015 | − | 0.37 ± 0.03 | 1.02 ± 0.42 | 0.80 ± 0.10 |
19 | 2-Ethylhexan-1-ol | 1033 | − | − | − | 0.89 ± 0.24 |
20 | p-Cymene | 1034 | − | 0.35 ± 0.17 | − | − |
21 | Limonene | 1037 | 0.60 ± 0.02 | 0.75 ± 0.25 | − | 0.68 ± 0.26 |
22 | Benzyl alcohol | 1042 | 2.22 ± 0.09 | 6.71 ± 0.12 | 1.60 ± 0.44 | 12.35 ± 0.88 |
23 | (2E)-Oct-2-enal | 1063 | − | 0.77 ± 0.01 | 1.29 ± 0.66 | 1.25 ± 0.17 |
24 | (3E,5E)-Octa-3,5-dien-2-one | 1097 | − | 1.20 ± 0.04 | 0.93 ± 0.03 | |
25 | Linalool | 1102 | − | 0.22 ± 0.02 | 0.41 ± 0.15 | 0.53 ± 0.21 |
26 | Nonanal | 1107 | − | 0.89 ± 0.10 | 1.41 ± 0.55 | 2.20 ± 0.28 |
27 | (2E,4E)-Octa-2,4-dienal | 1114 | − | 1.36 ± 0.19 | ||
28 | 2,6-Dimethylcyclohexanol | 1115 | − | 0.61 ± 0.02 | 0.61 ± 0.14 | |
29 | 6-[(Z)-1-Butenyl]-1,4-cycloheptadiene (Dictyopterene D) | 1159 | − | − | 0.72 ± 0.28 | − |
30 | (2Z)-Non-2-enal | 1165 | − | 0.61 ± 0.11 | − | 2.47 ± 0.44 |
31 | Indole | 1297 | − | 0.27 ± 0.05 | 0.86 ± 0.34 | 0.37 ± 0.15 |
32 | Tridecane | 1300 | 0.93 ± 0.04 | 2.96 ± 0.39 | 0.71 ± 0.13 | 1.81 ± 0.06 |
33 | α-Ionone | 1433 | 2.63 ± 0.10 | 1.18 ± 0.01 | 2.52 ± 0.78 | 1.19 ± 0.29 |
34 | Dimethyl phthalate | 1461 | − | 0.44 ± 0.01 | − | 0.59 ± 0.04 |
35 | (E)-β-Farnesene | 1463 | − | − | 0.89 ± 0.19 | 0.31 ± 0.03 |
36 | β-Ionone | 1487 | 1.21 ± 0.05 | 0.61 ± 0.04 | − | − |
37 | α-Curcumene | 1488 | − | − | 0.58 ± 0.22 | 0.29 ± 0.03 |
38 | Pentadec-1-ene | 1495 | − | 0.51 ± 0.04 | − | 0.42 ± 0.08 |
39 | Pentadecane | 1500 | 0.48 ± 0.02 | 4.36 ± 0.01 | 0.47 ± 0.18 | 2.30 ± 0.48 |
40 | 5,6,7,7a-Tetrahydro-4,4,7a-trimethyl-2(4H)-benzofuranone | 1534 | 0.39 ± 0.02 | 0.40 ± 0.07 | − | − |
41 | Dihydroactinolide | 1534 | − | − | − | 0.33 ± 0.13 |
42 | Heptadecane | 1700 | 6.65 ± 0.26 | 26.61 ± 0.90 | 11.22 ± 3.01 | 23.12 ± 1.86 |
No. | Compound | RI | Area (%) ± SD | |
---|---|---|---|---|
VI | VII | |||
1 | Furan-2-carbaldehyde | <900 | 0.06 ± 0.01 | 0.11 ± 0.04 |
2 | (2E)-Hex-2-enal | <900 | 0.36 ± 0.11 | 0.13 ± 0.05 |
3 | 4-Methyloctane | <900 | 0.15 ± 0.04 | 0.36 ± 0.19 |
4 | Hexan-1-ol | <900 | 0.21 ± 0.06 | − |
5 | Heptan-3-one | <900 | 0.07 ± 0.02 | 0.08 ± 0.00 |
6 | 5-Methylhexan-2-one | <900 | − | 0.31 ± 0.08 |
7 | Non-1-ene | <900 | 0.05 ± 0.01 | − |
8 | (2E,4E)-Hexa-2,4-diene | <900 | − | 0.04 ± 0.01 |
9 | Heptanal | 902 | 0.18 ± 0.04 | 0.51 ± 0.11 |
10 | Hepta-2,4-dien-1-al * | 907 | − | 0.07 ± 0.02 |
11 | Diodomethane | 923 | − | 0.16 ± 0.00 |
12 | 1-Iodopentane | 927 | − | 0.08 ± 0.03 |
13 | α-Pinene | 941 | − | 0.03 ± 0.01 |
14 | Benzaldehyde | 966 | 0.40 ± 0.10 | 0.77 ± 0.14 |
15 | Sabinene | 979 | − | 0.03 ± 0.01 |
16 | Oct-1-en-3-ol | 985 | 0.10 ± 0.02 | 0.24 ± 0.02 |
17 | Octan-2,3-dione | 986 | − | 0.44 ± 0.16 |
18 | Phenol | 987 | 0.13 ± 0.04 | 0.08 ± 0.03 |
19 | 6-Methylhept-5-en-2-one | 989 | − | 0.13 ± 0.04 |
20 | 2-Pentylfuran | 996 | 0.21 ± 0.06 | 0.90 ± 0.04 |
21 | 2,4,6-Trimethylpyridine (α-Collidine) | 997 | 0.09 ± 0.03 | 0.19 ± 0.09 |
22 | Octanal | 1004 | 0.10 ± 0.05 | 0.28 ± 0.06 |
23 | (2E,4E)-Hepta-2,4-dienal | 1015 | 0.08 ± 0.00 | 0.13 ± 0.05 |
24 | 2-Ethylhexan-1-ol | 1033 | 0.11 ± 0.03 | 0.25 ± 0.09 |
25 | Benzyl alcohol | 1042 | 0.65 ± 0.14 | 0.67 ± 0.04 |
26 | 2,4,4-Trimethylcyclohex-2-en-1-ol | 1059 | 0.15 ± 0.03 | 0.35 ± 0.01 |
27 | (2E)-Oct-2-enal | 1063 | 0.27 ± 0.06 | 0.33 ± 0.02 |
28 | Acetophenone | 1072 | 0.11 ± 0.03 | 0.17 ± 0.01 |
29 | Octylcyclopropane | 1074 | 0.19 ± 0.08 | 0.17 ± 0.06 |
30 | Nonan-2-one | 1095 | − | 0.07 ± 0.03 |
31 | (3E,5E)-Octa-3,5-dien-2-one | 1097 | − | 0.26 ± 0.01 |
32 | Linalool | 1102 | 0.13 ± 0.03 | 0.07 ± 0.02 |
33 | Nonanal | 1107 | 0.17 ± 0.02 | 0.25 ± 0.02 |
34 | 2,6-Dimethylcyclohexanol | 1115 | 0.13 ± 0.03 | 0.28 ± 0.05 |
35 | α-Cyclocitral | 1122 | − | 0.03 ± 0.01 |
36 | 2-Hydroxy-3,5,5-trimethylcyclohex-2-en-1-one (2-Hydroxyisophorone) | 1126 | − | 0.03 ± 0.01 |
37 | 4-Ketoisophorone | 1150 | 0.18 ± 0.03 | 0.13 ± 0.02 |
38 | (2Z)-Non-2-enal | 1165 | 0.16 ± 0.03 | 0.22 ± 0.04 |
39 | Benzylmethylsulfide | 1171 | − | 0.20 ± 0.01 |
40 | 2,4-Dimethylbenzaldehyde | 1180 | − | 0.09 ± 0.03 |
41 | Decan-2-one | 1196 | − | 0.48 ± 0.11 |
42 | Safranal | 1204 | − | 0.36 ± 0.06 |
43 | Decanal | 1209 | 0.14 ± 0.02 | 0.08 ± 0.04 |
44 | β-Cyclocitral | 1226 | − | 0.15 ± 0.05 |
45 | Benzothiazole | 1229 | − | 0.07 ± 0.02 |
46 | β-Cyclohomocitral | 1263 | 0.11 ± 0.04 | 0.11 ± 0.00 |
47 | δ-Octalactone | 1264 | 0.18 ± 0.03 | − |
48 | (3Z)-Tridec-3-ene | 1295 | 0.12± 0.03 | − |
49 | 1H-Indole | 1297 | 0.30 ± 0.07 | 1.37 ± 0.19 |
50 | Tridecane | 1300 | 2.38 ± 0.52 | 1.04 ± 0.21 |
51 | Undecanal | 1311 | 0.14 ± 0.05 | − |
52 | (2E,4E)-Deca-2,4-dienal | 1321 | 0.15 ± 0.00 | 0.12 ± 0.03 |
53 | 1,1,6-Trimethyl-2H-naphthalene (3,4-Dehydroionene) | 1358 | 0.09 ± 0.02 | 0.05 ± 0.02 |
54 | Hexahydropseudoionone | 1409 | 0.16 ± 0.03 | 0.08 ± 0.03 |
55 | α-Ionone | 1433 | 0.61 ± 0.12 | 5.84 ± 0.72 |
56 | 2-Methoxynaphthalene | 1453 | 0.09 ± 0.03 | 0.05 ± 0.02 |
57 | (Z)-Geranylacetone | 1459 | − | 0.48 ± 0.06 |
58 | (5E)-Dodec-5-en-1-ol | 1467 | 0.23 ± 0.04 | − |
59 | β-Ionone | 1487 | − | 1.22 ± 0.45 |
60 | β-Ionene | 1490 | 0.85 ± 0.14 | 1.81 ± 0.33 |
61 | Pentadec-1-ene | 1495 | 2.12 ± 0.36 | 0.67 ± 0.12 |
62 | Pentadecane | 1500 | 3.25 ± 0.67 | 1.84 ± 0.27 |
63 | (7E)-Pentadec-7-ene | 1509 | 0.26 ± 0.04 | − |
64 | Tridecanal | 1515 | 0.21 ± 0.01 | 0.09 ± 0.03 |
65 | Dihydroactinolide | 1534 | − | 0.45 ± 0.08 |
66 | Tetradecan-2-one | 1566 | 0.21 ± 0.06 | 0.16 ± 0.01 |
67 | Dodecanoic acid | 1573 | 0.52 ± 0.06 | 0.19 ± 0.07 |
68 | Tridecan-1-ol | 1580 | 0.52 ± 0.02 | 0.37 ± 0.06 |
69 | Diethyl phthalate | 1599 | − | 0.32 ± 0.12 |
70 | Hexadecane | 1600 | 0.40 ± 0.15 | 0.14 ± 0.05 |
71 | Tetradecanal | 1617 | 0.54 ± 0.00 | 0.14 ± 0.03 |
72 | Benzophenone | 1630 | − | 0.23 ± 0.08 |
73 | (6Z)-Dodec-6-en-4-olide ((Z)-6-γ-Dodecenolactone) | 1661 | 2.46 ± 0.17 | 0.85 ± 0.09 |
74 | Tetradecan-1-ol | 1683 | 3.55 ± 0.38 | 2.16 ± 0.26 |
75 | (8E)-Heptadec-8-ene | 1690 | 0.44 ± 0.06 | 0.30 ± 0.11 |
76 | Heptadec-1-ene | 1697 | 2.80 ± 0.42 | 1.61 ± 0.13 |
77 | Heptadecane | 1700 | 29.32 ± 6.86 | 12.29 ± 0.25 |
78 | (3Z)-Heptadec-3-ene | 1709 | 0.32 ± 0.05 | 0.11 ± 0.04 |
79 | Pentadecanal | 1720 | 0.56 ± 0.03 | 0.17 ± 0.06 |
80 | 7-Methylheptadecane | 1750 | 0.31 ± 0.00 | 0.70 ± 0.02 |
81 | Tetradecanoic acid | 1772 | 2.43 ± 0.39 | 0.24 ± 0.04 |
82 | Octadec-1-ene | 1790 | 0.19 ± 0.07 | − |
83 | Octadecane | 1800 | 0.29 ± 0.03 | 0.09 ± 0.03 |
84 | Hexadecanal | 1822 | 1.32 ± 0.08 | 0.19 ± 0.02 |
85 | Neophytadiene | 1845 | 0.16 ± 0.06 | 0.10 ± 0.04 |
86 | Hexahydrofarnesyl acetone (Phytone) | 1852 | 2.03 ± 0.10 | 5.81 ± 0.48 |
87 | p-Cumylphenol | 1857 | 0.27 ± 0.04 | − |
88 | (9Z)-Hexadeca-1,9-diene | 1866 | 0.49 ± 0.13 | 6.53 ± 0.48 |
89 | (11Z)-Hexadec-11-enal | 1870 | 0.21 ± 0.03 | 0.25 ± 0.04 |
90 | Diisobutyl phthalate | 1874 | 0.42 ± 0.02 | 1.10 ± 0.05 |
91 | (9E)-Nonadec-9-ene | 1879 | 0.49 ± 0.01 | 0.22 ± 0.03 |
92 | Hexadecan-1-ol | 1886 | 1.63 ± 0.25 | 1.57 ± 0.50 |
93 | Nonadec-1-ene | 1898 | 0.25 ± 0.04 | 0.10 ± 0.04 |
94 | Nonadecane | 1900 | 0.70 ± 0.08 | 0.33 ± 0.00 |
95 | Hexadecanoic acid | 1981 | 8.62 ± 1.61 | 10.55 ± 1.40 |
96 | Cyclooctasulfur | 2018 | 0.57 ± 0.05 | 0.42 ± 0.16 |
97 | Octadecanal | 2025 | 0.71 ± 0.08 | 0.22 ± 0.03 |
98 | Methyl octadecyl ether | 2034 | 2.06 ± 0.24 | 1.22 ± 0.08 |
99 | Octadecan-1-ol | 2086 | 0.51 ± 0.13 | 1.75 ± 0.90 |
100 | (E)-Phytol | 2119 | 5.00 ± 1.14 | 16.99 ± 2.69 |
101 | (9Z)-octadec-9-enoic acid (Oleic acid) | 2146 | 0.49 ± 0.27 | 2.53 ± 0.37 |
102 | (5E)-Icos-5-ene | 2293 | 0.65 ± 0.17 | 2.68 ± 1.32 |
103 | 4,8,12,16-Tetramethylheptadecan-4-olide | 2383 | − | 0.33 ± 0.11 |
No. | Fatty Acid | Av ± SD (%) |
---|---|---|
1 | Dodecanoic acid (Lauric acid) (C12:0) | 4.02 ± 1.16 |
2 | Tetradecanoic acid (Myristic acid) (C14:0) | 4.10 ± 0.28 |
3 | Hexadecanoic acid (Palmitic acid) (C16:0) | 25.50 ± 0.13 |
4 | Octadecanoic acid (Stearic acid) (C18:0) | 7.12 ± 0.26 |
5 | Eicosanoic acid (Arachidic acid) (C20:0) | 22.48 ± 0.49 |
6 | Docosanoic acid (Behenic acid) (C22:0) | 1.72 ± 0.19 |
Total saturated fatty acids (SFA) | 64.94 | |
7 | (9Z)-Hexadec-9-enoic acid (Palmitoleic acid) (C16:1) | 5.79 ± 0.65 |
8 | (10Z)-Heptadec-10-enoic acid (cis-Heptadecenoic acid) (C17:1) | 1.96 ± 0.24 |
9 | (9Z)-Octadec-9-enoic acid+(9E)-Octadec-9-enoic acid (cis-Oleic acid+trans-Oleic acid) (C18:1n9c+t) | 16.91 ± 1.46 |
Total monounsaturated fatty acids (MUFA) | 24.66 | |
10 | (9Z,12Z)-Octadeca-9,12-dienoic acid (cis-Linoleic acid) (C18:2n6c) | 4.67 ± 0.33 |
11 | (9Z,12Z,15Z)-Octadeca-9,12,15-trienoic acid (α-Linolenic acid) (C18:3n3) | 2.77 ± 0.41 |
12 | (5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoic acid (Arachidonic acid) (C20:4n6) | 1.78 ± 0.32 |
13 | (13Z,16Z)-Docosa-13,16-dienoic acid (Docosadienoic acid) (C22:2n6) | 1.63 ± 0.49 |
Total polyunsaturated fatty acids (PUFA) | 10.85 | |
Total ω3 fatty acids | 2.77 | |
Total ω6 fatty acids | 8.08 |
No. | Compound | Rt (min) | Elemental Composition | m/z (Error, ppm) | Peak Area (Arbitrary Units) | |
---|---|---|---|---|---|---|
F3 | F4 | |||||
1 | Gingerglycolipid A | 11.194 | C33H56O14 | 677.37267 (2.379) | 276,841.59 | 1288.25 |
2 | 2-Hydroxy-3-(β-L-talopyranosyloxy)propyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate | 11.976 | C27H46O9 | 515.32020 (2.445) | 469,972.09 | 3546.75 |
3 | 1,3-Dihydroxy-2-propanyl icosa-5,8,11,14-tetraenoate | 13.971 | C23H38O4 | 379.28354 (1.972) | 54,160.86 | 28,397.43 |
4 | 2,3-Dihydroxypropyl palmitate | 14.222 | C19H38O4 | 331.28296 (4.030) | 377,335.75 | 495,766.09 |
5 | 2,3-Dihydroxypropyl octadec-9-enoate | 14.561 | C21H40O4 | 357.30074 (−2.247) | 40,879.4 | - |
6 | Isoamijiol oxidation product * | 14.939 | C20H30O2 | 303.23271 (−2.803) | 994,098.63 | 18,848.2 |
7 | 2,3-Dihydroxypropyl stearate | 15.254 | C21H42O4 | 359.31454 (2.932) | 505,462.75 | 659,353.94 |
8 | 2-Hydroxypropyl palmitate | 15.379 | C19H38O3 | 315.29087 (−4.761) | 52,074.77 | 141,670.42 |
9 | Pheophorbide a | 15.537 | C35H36N4O5 | 593.27486 (1.663) | 1,478,183.5 | 175,460.75 |
10 | Isoamijiol | 15.569 | C20H32O2 | 305.24830 (−2.598) | 552,684.31 | 66,746.24 |
11 | Fucoxanthin | 15.6 | C42H58O6 | 659.42919 (2.169) | 23,608.59 | 20,924.63 |
12 | (2E)-3-[21-(Methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-9,14-divinyl-3,4-didehydro-3--24,25-dihydrophorbinyl]acrylic acid | 15.632 | C35H30N4O5 | 587.22619 (4.618) | 16,648.76 | 94,242.22 |
13 | 3-[21-(Methoxycarbonyl)-4,8,13,18-tetramethyl-20-oxo-9,14-divinyl-3,4-didehydro-3--24,25-dihydrophorbinyl]propanoic acid | 15.632 | C35H32N4O5 | 589.24226 (3.887) | 18,364.77 | 62,398.75 |
14 | 4-{[6-{[5-({[3-Carboxy-3-(dodecylamino)propanoyl]oxy}methyl)-3,4-dihydroxy-2-(hydroxymethyl)tetrahydro-2-furanyl]oxy}-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl]methoxy}-2-(dodecylamino)-4-oxobutanoic acid | 15.632 | C44H80N2O17 | 909.55133 (1.815) | 387,109.44 | 3907.02 |
15 | 13-Docosenamide | 16.103 | C22H43NO | 338.34153 (0.637) | 3958,621 | 859,522.19 |
16 | 2-Hydroxypropyl stearate | 16.29 | C21H42O3 | 343.32107 (−1.159) | 114,486.16 | 343,931.75 |
17 | 3-(β-D-Galactopyranosyloxy)-2-[(7Z,10Z,13Z)-7,10,13-hexadecatrienoyloxy]propyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate | 16.605 | C43H70O10 | 747.50298 (1.590) | 755,057.44 | 17,590.1 |
18 | (3β,6α)-14-Methylergosta-8,24(28)-diene-3,6-diol | 17.512 | C29H48O2 | 429.37200 (1.646) | 1,082,618.75 | 58,710.11 |
19 | β-Stigmasterol | 17.701 | C29H46 | 395.36791 ** (−1.717) | 58,667.22 | 514,958.41 |
20 | 1-Hydroxy-3-(tetradecanoyloxy)-2-propanyl (9Z)-9-octadecenoate | 17.985 | C35H66O5 | 567.49797 (0.580) | 28,771.63 | 419,526.25 |
21 | (3β)-3-Hydroxystigmast-5-en-7-one | 18.364 | C29H48O2 | 429.37170 (2.352) | 440,882 | 287,291.56 |
22 | 3-Hydroxy-1,2-propanediyl bis(9-octadecenoate) | 19.631 | C39H72O5 | 621.54313 (3.412) | 76,716.06 | 96,810.66 |
23 | 3-Hydroxy-2-(palmitoyloxy)propyl stearate | 19.663 | C37H72O5 | 597.54727 (−3.374) | 134,634.83 | 139,876.53 |
24 | Methyl 14-ethyl-4,8,13,18-tetramethyl-20-oxo-3-(3-oxo-3-{[(2E)-3,7,11,15-tetramethyl-2-hexadecen-1-yl]oxy}propyl)-9-vinyl-3,4-didehydro-24,25-dihydrophorbine-21-carboxylate | 19.982 | C55H72N4O5 | 869.55660 (1.098) | - | 281,383.5 |
25 | Methyl 9-acetyl-14-ethylidene-4,8,13,18-tetramethyl-20-oxo-3-{3-oxo-3-[(3,7,11,15-tetramethyl-2-hexadecen-1-yl)oxy]propyl}-13,14-dihydro-21-phorbinecarboxylate | 20.011 | C55H74N4O6 | 887.57206 (−4.454) | 33,461.45 | 18,710,810 |
26 | Methyl (10Z,14Z,20Z)-12-ethyl-3-hydroxy-13,18,22,27-tetramethyl-5-oxo-23-(3-oxo-3-{[(2E)-3,7,11,15-tetramethyl-2-hexadecen-1-yl]oxy}propyl)-17-vinyl-4-oxa-8,24,25,26-tetraazahexacyclo[19.2.1.16,9.111,14.116,19.02,7]hep-tacosa-1(24),2(7),6(27),8,10,12,14,16,18,20-decaene-3-carboxylate | 20.013 | C55H74N4O7 | 903.56436 (−1.473) | - | 4582,960 |
27 | Pheophytin a | 20.168 | C55H74N4O5 | 871.57287 (0.375) | - | 45,562,208 |
Sample | IC50 Value, mg/mL | Confidence Interval | Slope | R2 |
---|---|---|---|---|
F3 | 2.44 | 1.94–3.64 | 1.36 | 0.997 |
F4 | 2.49 | 1.92–3.86 | 1.26 | 0.997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radman, S.; Cikoš, A.-M.; Flanjak, I.; Babić, S.; Čižmek, L.; Šubarić, D.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Less Polar Compounds and Targeted Antioxidant Potential (In Vitro and In Vivo) of Codium adhaerens C. Agardh 1822. Pharmaceuticals 2021, 14, 944. https://doi.org/10.3390/ph14090944
Radman S, Cikoš A-M, Flanjak I, Babić S, Čižmek L, Šubarić D, Čož-Rakovac R, Jokić S, Jerković I. Less Polar Compounds and Targeted Antioxidant Potential (In Vitro and In Vivo) of Codium adhaerens C. Agardh 1822. Pharmaceuticals. 2021; 14(9):944. https://doi.org/10.3390/ph14090944
Chicago/Turabian StyleRadman, Sanja, Ana-Marija Cikoš, Ivana Flanjak, Sanja Babić, Lara Čižmek, Drago Šubarić, Rozelindra Čož-Rakovac, Stela Jokić, and Igor Jerković. 2021. "Less Polar Compounds and Targeted Antioxidant Potential (In Vitro and In Vivo) of Codium adhaerens C. Agardh 1822" Pharmaceuticals 14, no. 9: 944. https://doi.org/10.3390/ph14090944
APA StyleRadman, S., Cikoš, A. -M., Flanjak, I., Babić, S., Čižmek, L., Šubarić, D., Čož-Rakovac, R., Jokić, S., & Jerković, I. (2021). Less Polar Compounds and Targeted Antioxidant Potential (In Vitro and In Vivo) of Codium adhaerens C. Agardh 1822. Pharmaceuticals, 14(9), 944. https://doi.org/10.3390/ph14090944