Anti-Alzheimer and Antioxidant Effects of Nelumbo nucifera L. Alkaloids, Nuciferine and Norcoclaurine in Alloxan-Induced Diabetic Albino Rats
Abstract
:1. Introduction
2. Results
2.1. Effect of Compounds and Crude on Blood Glucose and Body Weight
2.2. Antioxidant Enzymes Activity in Blood
2.3. AChE Activity in Brain and Blood
2.4. In Vitro α -Glucosidase and α-Amylase Inhibitory Effect
2.5. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Extraction and Isolation of Compounds
4.3. Chemicals
4.4. Animals
4.5. Experimental Induction of Diabetes
4.6. Experimental Design
4.7. In Vivo Assessment
4.7.1. AChE Calculation in Blood and Brain
4.7.2. Determination of Lipid Peroxidation Assay (TBARS)
4.7.3. Catalase Assay (CAT)
4.7.4. Superoxide Dismutase Assay (SOD)
4.7.5. Glutathione Peroxidase Assay (GSH-Px)
4.7.6. Reduced Glutathione Assay (GSH)
4.7.7. In vitro α-Amylase and α-Glycosidase Assays
4.8. Molecular Docking Studies of α-Glycosidase and α-Amylase
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Abifarin, T.O.; Otunola, G.A.; Afolayan, A.J. Cytotoxicity, Anti-Obesity and Anti-Diabetic Activities of Heteromorpha arborescens (Spreng.) Cham Leaves. Processes 2021, 9, 1671. [Google Scholar] [CrossRef]
- Kang, G.G.; Francis, N.; Hill, R.; Waters, D.; Blanchard, C.; Santhakumar, A.B. Dietary polyphenols and gene expression in molecular pathways associated with type 2 diabetes mellitus: A Review. Int. J. Mol. Sci. 2020, 21, 140. [Google Scholar] [CrossRef]
- García-González, L.; Pilat, D.; Baranger, K.; Rivera, S. Emerging alternative proteinases in APP metabolism and Alzheimer’s disease pathogenesis: A focus on MT1-MMP and MT5-MMP. Front. Aging Neurosci. 2021, 11, 244. [Google Scholar] [CrossRef]
- Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med. 2010, 362, 329–344. [Google Scholar] [CrossRef]
- Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science 2006, 314, 777–781. [Google Scholar] [CrossRef]
- Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal. Trends Pharmacol. Sci. 2008, 29, 609–615. [Google Scholar] [CrossRef]
- Marcus, D.L.; Thomas, C.; Rodriguez, C.; Simberkoff, K.; Tsai, J.S.; Strafaci, J.A.; Freedman, M.L. Increased perox idation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp. Neurol. 1998, 150, 40–44. [Google Scholar] [CrossRef]
- Omar, R.A.; Chyan, Y.J.; Andorn, A.C.; Poeggeler, B.N.; Robakis, K.; Pappolla, M.A. Increased expression but reduced activity of antioxidant enzymes in Alzheimer’s disease. J. Alzheimer’s Dis. 1999, 1, 139–145. [Google Scholar] [CrossRef]
- Furuta, A.; Price, D.L.; Pardo, C.A. Localization of superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus. Am. J. Pathol. 1998, 146, 357–367. [Google Scholar] [PubMed]
- Padurariu, M.; Ciobica, A.; Hritcu, L.; Stoica, B.; Bild, W.; Stefanescu, C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 2010, 469, 6–10. [Google Scholar] [CrossRef]
- Ansari, M.A.; Scheff, S.W. Oxidative stress in the progression of alzheimers disease in the frontal cortex. J. Neuropathol. Exp. Neurol. 2010, 69, 155–167. [Google Scholar] [CrossRef]
- Reale, M.A.; Di Nicola, M.; Velluto, L. Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-b ex vivo activation of peripheral chemo-cytokines from Alzheimer’s disease subjects: Exploring the cholinergic anti-inflammatory pathway. Curr. Alzheimer Res. 2014, 11, 608–622. [Google Scholar] [CrossRef]
- Mushtaq, G.; Khan, J.A.; Kamal, M.A. Biological Mechanisms linking Alzheimer’s disease and Type 2 Diabetes Mellitus. CNS Neurol. Disord. Drug Targets 2014, 13, 1192–1201. [Google Scholar] [CrossRef]
- Sato, K.K.; Hayashi, T.; Maeda, I. Serum butyrylcholinesterase and the risk of future type 2 diabetes: The Kansai Healthcare Study. Clin. Endocrinol. 2014, 80, 362–367. [Google Scholar] [CrossRef]
- Henriksen, E.J.; Diamond-Stanic, M.K.; Marchionne, E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 2011, 51, 993–999. [Google Scholar] [CrossRef]
- Krishnakumar, K.; Augusti, K.T.; Vijaymmal, P.L. Hypoglycaemic and anti-oxidant activity of Salacia oblonga Wall. Extract in Streptezotocin-induced diabetic rats. Indian J. Physiol. Pharmacol. 1999, 43, 510–514. [Google Scholar]
- Anderson, D.Y.T.W.; Yu, T.W.; Phillips, B.J.; Schmezer, P. The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay. Mutat. Res. Mol. Mech. Mutagen. 1994, 307, 261–271. [Google Scholar] [CrossRef]
- Ghareeb, D.A.; Hussen, H.M. Vanadium improves brain acetylcholinesterase activity on early stage alloxan-diabetic rats. Neurosci. Lett. 2008, 436, 44–47. [Google Scholar] [CrossRef]
- Kaur, A.; Gill, K.D. Possible peripheral markers for chronic aluminum toxicity in Wistar rats. Toxicol. Ind. Health 2006, 22, 39–46. [Google Scholar] [CrossRef]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001, 50, 537–546. [Google Scholar]
- Siems, W.; Wiswedel, I.; Salerno, C.; Crifò, C.; Augustin, W.; Schild, L.; Sommerburg, O. β-Carotene breakdown products may impair mitochondrial functions—Potential side effects of high-dose β-carotene supplementation. J. Nutr. Biochem. 2005, 16, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Almalki, D.A.; Alghamdi, S.A. Hepatorenal protective effects of some plant extracts on experimental diabetes in male rats. Int. J. Pharmacol. 2019, 15, 238–247. [Google Scholar]
- Das, A.; Dikshit, M.; Nath, C. Profile of acetylcholinesterase in brain areas of male and female rats of adult and old age. Life Sci. 2001, 68, 1545–1555. [Google Scholar] [CrossRef]
- Hussain, H.; Ahmad, S.; Shah, S.W.A.; Ullah, A.; Ali, N.; Almehmadi, M.; Ahmad, M.; Khalil, A.A.K.; Jamal, S.B.; Ahmad, H.; et al. Attenuation of Scopolamine-Induced Amnesia via Cholinergic Modulation in Mice by Synthetic Curcumin Analogs. Molecules 2022, 27, 2468. [Google Scholar] [CrossRef]
- Hussain, H.; Ahmad, S.; Shah, S.W.A.; Ghias, M.; Ullah, A.; Rahman, S.U.; Alghamdi, S. Neuroprotective Potential of Synthetic Mono-Carbonyl Curcumin Analogs Assessed by Molecular Docking Studies. Molecules 2021, 26, 7168. [Google Scholar] [CrossRef]
- Shahidi, S.; Komaki, A.; Mahmoodi, M.; Atrvash, N.; Ghodrati, M. Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Res. Bull. 2008, 76, 109–113. [Google Scholar] [CrossRef]
- Gumieniczek, A. Effects of repaglinide on oxidative stress in tissues of diabetic rabbits. Diabetes Res. Clin. Pract. 2005, 68, 89–95. [Google Scholar] [CrossRef]
- Doungue, H.T.; Kengne, A.P.N.; Kuate, D. Neuroprotective effect and antioxidant activity of Passiflora edulis fruit flavonoid fraction, aqueous extract, and juice in aluminum chloride-induced Alzheimer’s disease rats. Nutrire 2018, 43, 23. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Omojokun, O.S.; Oboh, G. Modulatory effects of ferulic acid on cadmium-induced brain damage. J. Evid.-Based Integr. Med. 2016, 21, NP56–NP61. [Google Scholar] [CrossRef]
- Ma, C.; Wang, J.; Chu, H.; Zhang, X.; Wang, Z.; Wang, H.; Li, G. Purification and Characterization of Aporphine Alkaloids from Leaves of Nelumbo nucifera Gaertn and Their Effects on Glucose Consumption in 3T3-L1 Adipocytes. Int. J. Mol. Sci. 2014, 15, 3481–3494. [Google Scholar] [CrossRef]
- Shahnaz, H.K.; Ali, F.; Shah, A.; Kamran, F.; Jahan, S. Evaluation of antihyperglycemic and antihyperlipidemic potential of Nelumbo nucifera seeds in diabetic rats. Sains Malays. 2016, 45, 1517–1523. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Mukherjee, D.; Maji, A.K.; Rai, S.; Heinrich, M. The sacred lotus (Nelumbo nucifera)–phytochemical and therapeutic profile. J. Pharm. Pharmacol. 2009, 61, 407–422. [Google Scholar] [CrossRef]
- Nagappa, A.N.; Thakurdesai, P.A.; Venkat Rao, N.; Singh, J. Antidiabetic activity of Terminalia catappa Linn. Fruits. J. Ethnopharmacol. 2003, 88, 45–50. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Khan, R.A.; Khan, M.R.; Sahreen, S.; Alkreathy, H.M. Effect of Launaea procumbens extract on oxidative marker, p53, and CYP 2E1: A randomized control study. Food Nutr. Res. 2016, 60, 3402. [Google Scholar] [CrossRef]
- Hadwan, M.H. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018, 19, 7. [Google Scholar] [CrossRef]
- Kakkar, P.; Das, B.; Viswanathan, P.N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 1984, 21, 130–132. [Google Scholar]
- Mohandas, J.; Marshall, J.J.; Duggin, G.G.; Horvath, J.S.; Tiller, D. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem. Pharmacol. 1984, 33, 1801–1807. [Google Scholar] [CrossRef]
- Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillette, J.R. Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as a hepatotoxic metabolite. Pharmacology 2003, 11, 151–169. [Google Scholar] [CrossRef]
- Kwon, Y.; Apostolidis, E.; Shetty, K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J. Food Biochem. 2006, 32, 15–31. [Google Scholar] [CrossRef]
Sample Treatment | Blood Glucose Level (mg/mL) | |||
---|---|---|---|---|
Days = | 0 | 5 | 10 | 15 |
Normal control (Nc) | 0.95 ± 1.65 | 0.93 ± 1.25 | 0.88 ± 0.12 | 0.85 ± 1.53 |
Diabetic control (Dc) | 2.52 ± 2.85 | 2.31 ± 2.32 | 2.10 ± 1.68 | 2.00 ± 1.32 |
Dc+ glibencamide (10 mg/kg) | 2.00 ± 1.85 | 1.54 ± 1.68 | 1.37 ± 1.20 | 0.94 ± 1.20 * |
Dc+ crude (100 mg/kg) | 2.10 ± 2.85 | 1.65 ± 1.08 | 1.44 ± 1.03 | 1.20 ± 1.90 |
Dc + crude (200 mg/kg) | 2.15 ± 1.35 | 1.60 ± 1.55 | 1.52 ± 0.97 | 1.11 ± 1.79 * |
Dc + nuciferine (10 mg/kg) | 2.05 ± 3.85 | 1.64 ± 2.51 | 1.42 ± 1.23 | 1.00 ± 1.45 * |
Dc + norcoclaurine (10 mg/kg) | 2.10 ± 4.67 | 1.70 ± 3.25 | 1.58 ± 1.43 | 1.08 ± 3.15 |
Sample Treatment | Variations in Body Weight (g) | |||
---|---|---|---|---|
Days = | 0 | 5 | 10 | 15 |
Normal control (Nc) | 180.21 ±1.54 | 177.71 ± 1.21 | 178.21 ± 0.32 | 181.21 ± 1.43 |
Diabetic control (Dc) | 170.12 ± 1.82 | 161.22 ± 1.51 | 154.32 ± 2.48 | 149.87 ± 2.45 |
Dc+ glibencamide (10 mg/kg) | 180.11 ± 1.90 | 169.54 ± 2.41 | 171.23 ± 2.07 | 179.50 ± 1.40 * |
Dc+ crude (100 mg/kg) | 179.10 ± 2.81 | 161.22 ± 1.09 | 166.32 ± 1.04 | 171.63 ± 1.87 |
Dc + crude (200 mg/kg) | 179.01 ± 2.67 | 163.43 ± 2.45 | 171.44 ± 0.87 | 175.02 ± 2.71 * |
Dc + nuciferine (10 mg/kg) | 177.43 ± 4.19 | 161.97 ± 2.21 | 173.22 ± 2.67 | 177.33 ± 3.05 * |
Dc + norcoclaurine (10 mg/kg) | 178.22 ± 7.61 | 159.85 ± 1.34 | 169.11 ± 3.01 | 178.91 ± 1.32 * |
Parameter | TBARS (nmol MDA/mg Protein) | SOD SOD/mg Protein | CAT E/min/mg Protein | GPx nmol NADPH/min/mg Protein | GSH GSH/mg Protein |
---|---|---|---|---|---|
Normal control (Nc) | 1.75 ± 0.5 | 7.31 ± 0.9 | 6.86 ± 3.8 | 8.12 ± 0.6 | 95.10 ± 5.04 |
Diabetic control (Dc) | 3.10 ± 1.3 * | 3.01 ± 0.3 * | 2.91 ± 4.2 * | 3.55 ± 0.9 ** | 45.30 ± 7.27 ** |
Dc + glibenclamide (10 mg/kg) | 1.55 ± 0.8 * | 5.91 ± 0.3 * | 6.45 ± 3.9 | 7.80 ± 1.6 * | 89.52 ± 4.74 * |
Dc + crude (100 mg/kg) | 2.65 ± 0.5 | 4.90 ± 0.2 * | 2.32 ± 2.8 * | 6.20 ± 2.8 * | 67.15 ± 3.95 |
Dc +crude (200 mg/kg) | 1.96 ± 0.7 * | 5.20 ± 1.5 * | 4.95 ± 3.5 * | 7.10 ± 3.0 ** | 78.56 ± 4.19 ** |
Dc + nuciferine (10 mg/kg) | 1.60 ± 0.8 * | 7.1 ± 0.2 * | 6.16 ± 0.7 * | 7.98 ± 0.9 * | 86.96 ± 0.7 * |
Dc + norcoclaurine (10 mg/kg) | 1.98 ± 0.9 * | 6.2 ± 0.7 * | 5.1 ± 0.3 * | 6.70 ± 0.89 * | 76.68 ± 0.4 * |
Sample | Cerebral Cortex | Cerebellum | Hypothalamus | Striatum | Hippocampus |
---|---|---|---|---|---|
Normal control (Nc) | 53 ± 2.25 | 48 ± 2.15 | 45 ± 1.65 | 40 ± 1.55 | 40 ± 1.18 |
Diabetic control (Dc) | 80 ± 5.12 | 75 ± 4.25 | 72 ± 4.05 | 70 ± 3.21 | 67 ± 3.91 |
Dc + glibenclamide (10 mg/kg) | 55 ± 2.06 ** | 50 ± 1.20 ** | 50 ± 2.15 ** | 46 ± 1.59 ** | 43 ± 1.10 * |
Dc + crude (100 mg/kg) | 74 ± 2.15 | 66 ± 2.54 * | 66 ± 2.62 | 69 ± 1.81 | 50 ± 2.01 * |
Dc + crude (200 mg/kg) | 65 ± 1.70 * | 60 ± 2.50 | 61 ± 2.05 * | 55 ± 1.92 * | 47 ± 1.25 ** |
Dc+ nuciferine (10 mg/kg) | 56 ± 1.41 ** | 53 ± 1.70 ** | 55 ± 3.20 ** | 50 ± 1.90 ** | 41 ± 1.10 * |
Dc + norcoclaurine (10 mg/kg) | 60 ± 0.80 * | 57 ± 1.40 * | 60 ± 4.30 * | 56 ± 0.90 * | 48 ± 0.20 * |
Sample | AChE Inhibition (%) |
---|---|
Normal | 40 ± 2.51 |
Diabetic control | 75 ± 3.59 |
Diabetic + glibenclamide (10 mg/kg) | 45 ± 2.01 * |
Diabetic + crude (100 mg/kg) | 56 ± 2.61 * |
Diabetic + crude (200 mg/kg) | 52 ± 2.55 * |
Diabetic + Nuciferine (10 mg/kg) | 42 ± 7.43 ** |
Diabetic + Norcoclaurine (10 mg/kg) | 55 ± 1.23 * |
Sample | α-Glucosidase ± SEM | α-Amylase ± SEM | Type of Inhibition |
---|---|---|---|
Nuciferine | 19.06 ± 0.03 | 24.07 ± 0.05 | Non-competitive |
Norcoclaurine | 15.03 ± 0.09 | 18.04 ± 0.021 | Competitive |
Glimepiride | 12.02 ± 0.019 | 18.02 ± 0.11 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Khan, H.U.; Khan, F.A.; Shah, A.; Wadood, A.; Ahmad, S.; Almehmadi, M.; Alsaiari, A.A.; Shah, F.U.; Kamran, N. Anti-Alzheimer and Antioxidant Effects of Nelumbo nucifera L. Alkaloids, Nuciferine and Norcoclaurine in Alloxan-Induced Diabetic Albino Rats. Pharmaceuticals 2022, 15, 1205. https://doi.org/10.3390/ph15101205
Khan S, Khan HU, Khan FA, Shah A, Wadood A, Ahmad S, Almehmadi M, Alsaiari AA, Shah FU, Kamran N. Anti-Alzheimer and Antioxidant Effects of Nelumbo nucifera L. Alkaloids, Nuciferine and Norcoclaurine in Alloxan-Induced Diabetic Albino Rats. Pharmaceuticals. 2022; 15(10):1205. https://doi.org/10.3390/ph15101205
Chicago/Turabian StyleKhan, Shahnaz, Hidayat Ullah Khan, Farman Ali Khan, Afzal Shah, Abdul Wadood, Shujaat Ahmad, Mazen Almehmadi, Ahad Amer Alsaiari, Farid Ullah Shah, and Naveed Kamran. 2022. "Anti-Alzheimer and Antioxidant Effects of Nelumbo nucifera L. Alkaloids, Nuciferine and Norcoclaurine in Alloxan-Induced Diabetic Albino Rats" Pharmaceuticals 15, no. 10: 1205. https://doi.org/10.3390/ph15101205
APA StyleKhan, S., Khan, H. U., Khan, F. A., Shah, A., Wadood, A., Ahmad, S., Almehmadi, M., Alsaiari, A. A., Shah, F. U., & Kamran, N. (2022). Anti-Alzheimer and Antioxidant Effects of Nelumbo nucifera L. Alkaloids, Nuciferine and Norcoclaurine in Alloxan-Induced Diabetic Albino Rats. Pharmaceuticals, 15(10), 1205. https://doi.org/10.3390/ph15101205