Radiosynthesis and Preclinical Evaluation of an 18F-Labeled Triazolopyridopyrazine-Based Inhibitor for Neuroimaging of the Phosphodiesterase 2A (PDE2A)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Organic Syntheses of the New Inhibitor 11 and the Precursor Compounds 13 and 19
2.2. Radiosyntheses
2.2.1. Copper-Mediated Radiofluorination Experiments-Strategy A
2.2.2. Aromatic Nucleophilic Substitution Reactions-Strategy B
2.2.3. Automated Radiosynthesis of [18F]11
2.3. Biological Evaluation
2.3.1. In Vitro Autoradiography with Rat Brain Cryosections
2.3.2. Metabolism of [18F]11 in CD-1 Mice and SPRD Rats
2.3.3. Biodistribution and Central Nervous System Penetration Study in CD-1 Mice and SPRD Rats
3. Materials and Methods
3.1. Organic Chemistry
3.1.1. General
3.1.2. Syntheses
General Procedure 1 (GP1)
Ethyl 2-fluoro-5-(1-hydroxybutyl)benzoate 3
Ethyl 2-bromo-5-(1-hydroxybutyl)benzoate 4
General Procedure 2 (GP2)
Ethyl 2-fluoro-5-(1-[(tetrahydro-2H-pyran-2-yl)oxy]butyl)benzoate 5
Ethyl 2-bromo-5-(1-[(tetrahydro-2H-pyran-2-yl)oxy]butyl)benzoate 6
General Procedure 3 (GP3)
2-Fluoro-5-(1-[(tetrahydro-2H-pyran-2-yl)oxy]butyl)benzohydrazide 7
2-Bromo-5-(1-[(tetrahydro-2H-pyran-2-yl)oxy]butyl)benzohydrazide 8
General Procedure 4 (GP4)
2-Cyclopropyl-9-(2-fluoro-5-(1-[(tetrahydro-2H-pyran-2-yl)oxy]butyl)phenyl)-6-methylpyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrazine 9
9-(2-Bromo-5-(1-[(tetrahydro-2H-pyran-2-yl)oxy]butyl)phenyl)-2-cyclopropyl-6-methylpyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrazine 10
1-[3-(2-Cyclopropyl-6-methylpyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrazin-9-yl)-4-fluorophenyl]butan-1-ol 11
1-[3-(2-Cyclopropyl-6-methylpyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrazin-9-yl)-4-fluorophenyl]butan-1-one 12
2-Cyclopropyl-6-methyl-9-(5-(1-[(tetrahydro-2H-pyran-2-yl)oxy]butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrazine 13
Ethyl 5-butyryl-2-nitrobenzoate 15
Ethyl 5-(1,1-diethoxybutyl)-2-nitrobenzoate 16
5-(1,1-Diethoxybutyl)-2-nitrobenzohydrazide 17
2-Cyclopropyl-9-[5-(1,1-diethoxybutyl)-2-nitrophenyl]-6-methylpyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrazine 18
1-[3-(2-Cyclopropyl-6-methylpyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrazin-9-yl)-4-nitrophenyl]butan-1-one 19
3.2. Radiochemistry
3.2.1. General
3.2.2. Manual Copper-Mediated Radiofluorination Experiments
(a) Experiments with Azeotropic Drying
(b) Experiments without Azeotropic Drying
3.2.3. Manual Aromatic Nucleophilic Substitution Reactions Experiments
3.2.4. Automated Radiosynthesis of [18F]11
3.2.5. Determination of Stability and logD Value
3.3. Biology
3.3.1. In Vitro Autoradiography
3.3.2. Metabolite Studies
3.3.3. In Vivo PET Studies in CD-1 Mice and SPRD Rats
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baillie, G.S.; Tejeda, G.S.; Kelly, M.P. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: Inhibition and beyond. Nat. Rev. Drug Discov. 2019, 18, 770–796. [Google Scholar] [CrossRef] [PubMed]
- Iffland, A.; Kohls, D.; Low, S.; Luan, J.; Zhang, Y.; Kothe, M.; Cao, Q.; Kamath, A.V.; Ding, Y.H.; Ellenberger, T. Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system. Biochemistry 2005, 44, 8312–8325. [Google Scholar] [CrossRef] [PubMed]
- Sadek, M.S.; Cachorro, E.; El-Armouche, A.; Kammerer, S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 7462. [Google Scholar] [CrossRef] [PubMed]
- Martinez, S.E. PDE2 Structure and Functions in: Cyclic nucleotide phosphodiesterases in health and Disease. CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Brisch, R.; Saniotis, A.; Wolf, R.; Bielau, H.; Bernstein, H.G.; Steiner, J.; Bogerts, B.; Braun, K.; Jankowski, Z.; Kumaratilake, J.; et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front. Psychiatry 2014, 5, 47. [Google Scholar]
- Helal, C.J.; Arnold, E.; Boyden, T.; Chang, C.; Chappie, T.A.; Fisher, E.; Hajos, M.; Harms, J.F.; Hoffman, W.E.; Humphrey, J.M.; et al. Identification of a Potent, Highly Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor Clinical Candidate. J. Med. Chem. 2018, 61, 1001–1018. [Google Scholar] [CrossRef]
- Nakashima, M.; Imada, H.; Shiraishi, E.; Ito, Y.; Suzuki, N.; Miyamoto, M.; Taniguchi, T.; Iwashita, H. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia. J. Pharmacol. Exp. Ther. 2018, 365, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Fryknas, M.; Rickardson, L.; Wickstrom, M.; Dhar, S.; Lovborg, H.; Gullbo, J.; Nygren, P.; Gustafsson, M.G.; Isaksson, A.; Larsson, R. Phenotype-based screening of mechanistically annotated compounds in combination with gene expression and pathway analysis identifies candidate drug targets in a human squamous carcinoma cell model. J. Biomol. Screen 2006, 11, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Murata, T.; Shimizu, K.; Kurohara, K.; Tomeoku, A.; Koizumi, G.; Arai, N. Role of Phosphodiesterase2A in Proliferation and Migration of Human Osteosarcoma Cells. Anticancer Res. 2019, 39, 6057–6062. [Google Scholar] [CrossRef]
- Geranpayehvaghei, M.; Dabirmanesh, B.; Khaledi, M.; Atabakhshi-Kashi, M.; Gao, C.; Taleb, M.; Zhang, Y.; Khajeh, K.; Nie, G. Cancer-associated-platelet-inspired nanomedicines for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1702. [Google Scholar] [CrossRef]
- He, J.; Zhao, H.; Deng, D.; Wang, Y.; Zhang, X.; Zhao, H.; Xu, Z. Screening of significant biomarkers related with prognosis of liver cancer by lncRNA-associated ceRNAs analysis. J. Cell Physiol. 2020, 235, 2464–2477. [Google Scholar] [CrossRef]
- Li, S.Z.; Ren, K.X.; Zhao, J.; Wu, S.; Li, J.; Zang, J.; Fei, Z.; Zhao, J.L. miR-139/PDE2A-Notch1 feedback circuit represses stemness of gliomas by inhibiting Wnt/beta-catenin signaling. Int. J. Biol. Sci. 2021, 17, 3508–3521. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xiao, Z.; Haider, A.; Gebhard, C.; Xu, H.; Luo, H.B.; Zhang, H.T.; Josephson, L.; Wang, L.; Liang, S.H. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J. Med. Chem. 2021, 64, 7083–7109. [Google Scholar] [CrossRef]
- Schröder, S.; Scheunemann, M.; Wenzel, B.; Brust, P. Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016. Int. J. Mol. Sci. 2021, 22, 3832. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Nabulsi, N.; Naganawa, M.; Zasadny, K.; Skaddan, M.B.; Zhang, L.; Najafzadeh, S.; Lin, S.F.; Helal, C.J.; Boyden, T.L.; et al. Preclinical Evaluation of [18F]PF-05270430, a Novel PET Radioligand for the Phosphodiesterase 2A Enzyme. J. Nucl. Med. 2016, 57, 1448–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naganawa, M.; Waterhouse, R.N.; Nabulsi, N.; Lin, S.F.; Labaree, D.; Ropchan, J.; Tarabar, S.; DeMartinis, N.; Ogden, A.; Banerjee, A.; et al. First-in-Human Assessment of the Novel PDE2A PET Radiotracer [18F]PF-05270430. J. Nucl. Med. 2016, 57, 1388–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCluskey, S.P.; Plisson, C.; Rabiner, E.A.; Howes, O. Advances in CNS PET: The state-of-the-art for new imaging targets for pathophysiology and drug development. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 451–489. [Google Scholar] [CrossRef] [Green Version]
- Schröder, S.; Wenzel, B.; Deuther-Conrad, W.; Teodoro, R.; Egerland, U.; Kranz, M.; Scheunemann, M.; Höfgen, N.; Steinbach, J.; Brust, P. Synthesis, 18F-radiolabelling and biological characterization of novel fluoroalkylated triazine derivatives for in vivo imaging of phosphodiesterase 2A in brain via positron emission tomography. Molecules 2015, 20, 9591–9615. [Google Scholar] [CrossRef] [Green Version]
- Ritawidya, R.; Ludwig, F.A.; Briel, D.; Brust, P.; Scheunemann, M. Synthesis and In Vitro Evaluation of 8-Pyridinyl-Substituted Benzo[e]imidazo[2,1-c][1,2,4]triazines as Phosphodiesterase 2A Inhibitors. Molecules 2019, 24, 2791. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, R.; Bertani, B.; Frattini, S.; Di Antonio, G. 4-Methyl-2,3,5,9,9B-pentaaza-cyclopenta[a]naphthalenes. Patent WO 2014/019979, 6 February 2014. [Google Scholar]
- Rombouts, F.J.; Tresadern, G.; Buijnsters, P.; Langlois, X.; Tovar, F.; Steinbrecher, T.B.; Vanhoof, G.; Somers, M.; Andres, J.I.; Trabanco, A.A. Pyrido[4,3-e][1,2,4]triazolo[4,3-a]pyrazines as Selective, Brain Penetrant Phosphodiesterase 2 (PDE2) Inhibitors. ACS Med. Chem. Lett. 2015, 6, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.Y.; Han, C.; Zhang, C.; Zhou, Q.; Zhang, B.; Le, M.L.; Huang, M.X.; Wu, Y.; Luo, H.B. Discovery of effective phosphodiesterase 2 inhibitors with antioxidant activities for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2021, 41, 128016. [Google Scholar] [CrossRef]
- Fritzsche, S.R.; Scheunemann, M.; Wenzel, B.; Deuther-Conrad, W.; Brust, P.; Briel, D. Triazolopyridopyrazine-based Inhibitors of Phosphodiesterase 2A—Synthesis and SAR-Exploration“ Annual Meeting of the German Pharmaceutical Society—DPhG 2021, Poster. available from the corresponding authors on resonable request.
- Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 2010, 59, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Unciti-Broceta, A.; Pineda-de-las-Infantas, M.J.; Diaz-Mochon, J.J.; Romagnoli, R.; Baraldi, P.G.; Gallo, M.A.; Espinosa, A. Regioselective one-pot synthesis of 9-alkyl-6-chloropyrido[3,2-e][1,2,4]triazolo-[4,3-a]pyrazines. Reactivity of aliphatic and aromatic hydrazides. J. Org. Chem. 2005, 70, 2878–2880. [Google Scholar] [CrossRef]
- Kosmrlj, J.; Kocevar, M.; Polanc, S. A mild approach to 1,3,4-oxadiazoles and fused 1,2,4-triazoles. Diazenes as intermediates? Synlett 1996, 7, 652. [Google Scholar] [CrossRef]
- Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(O)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes—A Direct Procedure for Arylboronic Esters. J. Org. Chem. 1995, 60, 7508–7510. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, B.; Deng, C.L.; Tang, R.Y.; Zhang, X.G.; Li, J.H. Palladium-Catalyzed Oxidative Coupling of Trialkylamines with Aryl Iodides Leading to Alkyl Aryl Ketones. Org. Lett. 2011, 13, 2184–2187. [Google Scholar] [CrossRef]
- Hahm, H.; Yoo, K.; Ha, H.; Kim, M. Aromatic Substituent Effects on the Flexibility of Metal-Organic Frameworks. Inorg. Chem. 2016, 55, 7576–7581. [Google Scholar] [CrossRef] [PubMed]
- Tredwell, M.; Preshlock, S.M.; Taylor, N.J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Genicot, C.; Gouverneur, V. A general copper-mediated nucleophilic 18F-fluorination of arenes. Angew. Chem. Int. Ed. Engl. 2014, 53, 7751–7755. [Google Scholar] [CrossRef] [PubMed]
- Preshlock, S.; Calderwood, S.; Verhoog, S.; Tredwell, M.; Huiban, M.; Hienzsch, A.; Gruber, S.; Wilson, T.C.; Taylor, N.J.; Cailly, T.; et al. Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem. Commun. 2016, 52, 8361–8364. [Google Scholar] [CrossRef]
- Zischler, J.; Kolks, N.; Modemann, D.; Neumaier, B.; Zlatopolskiy, B.D. Alcohol-Enhanced Cu-Mediated Radiofluorination. Chem. Eur. J. 2017, 23, 3251–3256. [Google Scholar] [CrossRef]
- Guibbal, F.; Isenegger, P.G.; Wilson, T.C.; Pacelli, A.; Mahaut, D.; Sap, J.B.I.; Taylor, N.J.; Verhoog, S.; Preshlock, S.; Hueting, R.; et al. Manual and automated Cu-mediated radiosynthesis of the PARP inhibitor [18F]olaparib. Nat. Protoc. 2020, 15, 1525–1541. [Google Scholar] [CrossRef]
- Antuganov, D.; Zykov, M.; Timofeev, V.; Timofeeva, K.; Antuganova, Y.; Orlovskaya, V.; Fedorova, O.; Krasikova, R. Copper-Mediated Radiofluorination of Aryl Pinacolboronate Esters: A Straightforward Protocol by Using Pyridinium Sulfonates. Eur. J. Org. Chem. 2019, 2019, 918–922. [Google Scholar] [CrossRef]
- Zhang, X.; Basuli, F.; Swenson, R.E. An azeotropic drying-free approach for copper-mediated radiofluorination without addition of base. J. Label. Compd. Radiopharm. 2019, 62, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Dukic-Stefanovic, S.; Lai, T.H.; Toussaint, M.; Clauss, O.; Jevtic, I.; Penjisevic, J.Z.; Andric, D.; Ludwig, F.A.; Gündel, D.; Deuther-Conrad, W.; et al. In vitro and in vivo evaluation of fluorinated indanone derivatives as potential positron emission tomography agents for the imaging of monoamine oxidase B in the brain. Bioorg. Med. Chem. Lett. 2021, 48, 128254. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, R.P.; Gündel, D.; Teodoro, R.; Ludwig, F.A.; Fischer, S.; Toussaint, M.; Schepmann, D.; Wünsch, B.; Brust, P.; Deuther-Conrad, W. Design, Radiosynthesis and Preliminary Biological Evaluation in Mice of a Brain-Penetrant 18F-Labelled sigma2 Receptor Ligand. Int. J. Mol. Sci. 2021, 22, 5447. [Google Scholar] [CrossRef]
- Tago, T.; Toyohara, J.; Ishii, K. Preclinical Evaluation of an 18F-Labeled SW-100 Derivative for PET Imaging of Histone Deacetylase 6 in the Brain. ACS Chem. Neurosci. 2021, 12, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.J.; Emer, E.; Preshlock, S.; Schedler, M.; Tredwell, M.; Verhoog, S.; Mercier, J.; Genicot, C.; Gouverneur, V. Derisking the Cu-Mediated 18F-Fluorination of Heterocyclic Positron Emission Tomography Radioligands. J. Am. Chem. Soc. 2017, 139, 8267–8276. [Google Scholar] [CrossRef]
- Chen, Z.; Destro, G.; Guibbal, F.; Chan, C.Y.; Cornelissen, B.; Gouverneur, V. Copper-Mediated Radiosynthesis of [18F]Rucaparib. Org. Lett. 2021, 23, 7290–7294. [Google Scholar] [CrossRef]
- Stephenson, D.T.; Coskran, T.M.; Wilhelms, M.B.; Adamowicz, W.O.; O’Donnell, M.M.; Muravnick, K.B.; Menniti, F.S.; Kleiman, R.J.; Morton, D. Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species. J. Histochem. Cytochem. 2009, 57, 933–949. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.; Scott, T.; Yan, Y.; Warren, N.; Zhang, A.; Tabatabaei, A.; Xu, H.; Aertgeerts, K.; Gomez, L.; Morse, A.; et al. Target Engagement of a Phosphodiesterase 2A Inhibitor Affecting Long-Term Memory in the Rat. J. Pharmacol. Exp. Ther. 2019, 370, 399–407. [Google Scholar] [CrossRef]
- Sjostedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, 5947. [Google Scholar] [CrossRef]
- de Witte, W.E.A.; Wong, Y.C.; Nederpelt, I.; Heitman, L.H.; Danhof, M.; van der Graaf, P.H.; Gilissen, R.A.H.J.; de Lange, E.C.M. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients. Expert Opin. Drug Disc. 2016, 11, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Sadeghzadeh, M.; Moldovan, R.P.; Teodoro, R.; Brust, P.; Wenzel, B. One-step radiosynthesis of the MCTs imaging agent [18F]FACH by aliphatic 18F-labelling of a methylsulfonate precursor containing an unprotected carboxylic acid group. Sci. Rep. 2019, 9, 18890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boess, F.G.; Hendrix, M.; van der Staay, F.J.; Erb, C.; Schreiber, R.; van Staveren, W.; de Vente, J.; Prickaerts, J.; Blokland, A.; Koenig, G. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 2004, 47, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
Fluorination Agent | Entry | Solvent | 13 (µmol) | Ratio 13 to [Cu(OTf)2(py)4] | RCY (%) a | RCY (%) b |
---|---|---|---|---|---|---|
[18F]TBAF | 1 | DMA/tert-BuOH c | 3.4 | 1:3.5 | 0.6 | - |
2 | DMA/n-BuOH c | 3.4 | 1:1 | 0 | - | |
3 | DMA/n-BuOH c | 3.4 | 1:3.5 | 0 | 68 | |
4 | DMA/n-BuOH c | 8.5 | 1:2 | 0 | - | |
[18F]F−/K222/K2CO3 | 5 | DMF | 3.4 | 1:1.5 | 0 | - |
6 | DMF | 3.4 | 5:1 | 0 | - | |
[18F]DMAPF d | 7 | DMA | 3.4 | 1:1.5 | 0.7 | 54 |
8 | DMI | 3.4 | 1:1.5 | 0 | 88 | |
9 | DMI | 3.4 | 1:0.5 | 0.5 | - |
Fluorination Agent | Entry | Solvent | Temperature (°C) | RCY (%) a |
---|---|---|---|---|
[18F]F−/K222/K2CO3 | 1 | ACN | 110 | 0 |
2 | DMF | 150 | 0 | |
3 | DMSO | 150 | 0 | |
[18F]TBAF | 4 | ACN | 110 | 21 |
5 | ACN/DMSO b | 130 | 10 | |
6 | tert-butanol | 90 | 0 | |
7 | DMF | 160 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wenzel, B.; Fritzsche, S.R.; Toussaint, M.; Briel, D.; Kopka, K.; Brust, P.; Scheunemann, M.; Deuther-Conrad, W. Radiosynthesis and Preclinical Evaluation of an 18F-Labeled Triazolopyridopyrazine-Based Inhibitor for Neuroimaging of the Phosphodiesterase 2A (PDE2A). Pharmaceuticals 2022, 15, 1272. https://doi.org/10.3390/ph15101272
Wenzel B, Fritzsche SR, Toussaint M, Briel D, Kopka K, Brust P, Scheunemann M, Deuther-Conrad W. Radiosynthesis and Preclinical Evaluation of an 18F-Labeled Triazolopyridopyrazine-Based Inhibitor for Neuroimaging of the Phosphodiesterase 2A (PDE2A). Pharmaceuticals. 2022; 15(10):1272. https://doi.org/10.3390/ph15101272
Chicago/Turabian StyleWenzel, Barbara, Stefan R. Fritzsche, Magali Toussaint, Detlef Briel, Klaus Kopka, Peter Brust, Matthias Scheunemann, and Winnie Deuther-Conrad. 2022. "Radiosynthesis and Preclinical Evaluation of an 18F-Labeled Triazolopyridopyrazine-Based Inhibitor for Neuroimaging of the Phosphodiesterase 2A (PDE2A)" Pharmaceuticals 15, no. 10: 1272. https://doi.org/10.3390/ph15101272
APA StyleWenzel, B., Fritzsche, S. R., Toussaint, M., Briel, D., Kopka, K., Brust, P., Scheunemann, M., & Deuther-Conrad, W. (2022). Radiosynthesis and Preclinical Evaluation of an 18F-Labeled Triazolopyridopyrazine-Based Inhibitor for Neuroimaging of the Phosphodiesterase 2A (PDE2A). Pharmaceuticals, 15(10), 1272. https://doi.org/10.3390/ph15101272