Targeting NMDA Receptor Complex in Management of Epilepsy
Abstract
:1. Introduction
2. NMDAR Complex
2.1. NMDA Trafficking
2.2. NMDA Modulation (Glycine and Other Sites)
2.3. NMDA mGluR and AMPA Interactions
3. NMDAR Alterations and Their Role in Human Epilepsy
3.1. Genetic Mutations of the NDMA Receptor
3.2. Anti-NMDAR Encephalitis
- (a)
- Internalization of NMDAR,
- (b)
- Disruption of interaction of NMDAR with EphB2R,
- (c)
4. NMDAR Modulators Currently in Use
4.1. Ketamine
4.2. Memantine
4.3. Amantadine
4.4. Magnesium Sulphate
4.5. Felbamate
4.6. Remacemide
4.7. Riluzole
4.8. Dizocilpine or MK-801
4.9. Dextromethorphan
4.10. Ifenprodil
5. Preclinical Studies with Newer NMDAR Modulators
6. Adverse Effects of NMDAR Antagonist in Clinical Settings
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Moshé, S.L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: New advances. Lancet 2015, 385, 884–898. [Google Scholar] [CrossRef]
- Pérez-Pérez, D.; Frías-Soria, C.L.; Rocha, L. Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy Behav. 2021, 121, 106430. [Google Scholar] [CrossRef]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Sultana, B.; Panzini, M.A.; Veilleux Carpentier, A.; Comtois, J.; Rioux, B.; Gore, G.; Bauer, P.R.; Kwon, C.S.; Jetté, N.; Josephson, C.B.; et al. Incidence and Prevalence of Drug-Resistant Epilepsy: A Systematic Review and Meta-analysis. Neurology 2021, 96, 805–817. [Google Scholar] [CrossRef]
- Gan, J.; Qu, Y.; Li, J.; Zhao, F.; Mu, D. An evaluation of the links between microRNA, autophagy, and epilepsy. Rev. Neurosci. 2015, 26, 225–237. [Google Scholar] [CrossRef]
- Albrecht, J.; Zielińska, M. Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem. Res. 2017, 42, 1724–1734. [Google Scholar] [CrossRef]
- Levite, M. GLUTAMATE RECEPTOR ANTIBODIES IN NEUROLOGICAL DISEASES: Anti-AMPA-GluR3 antibodies, Anti-NMDA-NR1 antibodies, Anti-NMDA-NR2A/B antibodies, Anti-mGluR1 antibodies or Anti-mGluR5 antibodies are present in subpopulations of patients with either: Epilepsy, Encephalitis, Cerebellar Ataxia, Systemic Lupus Erythematosus (SLE) and Neuropsychiatric SLE, Sjogren’s syndrome, Schizophrenia, Mania or Stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor’s expression, impair glutamate-induced signaling and function, activate Blood Brain Barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and Ataxia in animal models, and can be removed or silenced in some patients by immunotherapy. J. Neural Transm. 2014, 121, 1029–1075. [Google Scholar] [CrossRef]
- Hendry, S.H.; Schwark, H.D.; Jones, E.G.; Yan, J. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci. 1987, 7, 1503–1519. [Google Scholar] [CrossRef]
- Hanada, T. Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors. Biomolecules 2020, 10, 464. [Google Scholar] [CrossRef]
- Ghasemi, M.; Schachter, S.C. The NMDA receptor complex as a therapeutic target in epilepsy: A review. Epilepsy Behav. 2011, 22, 617–640. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P. Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 2011, 33, 1351–1365. [Google Scholar] [CrossRef] [PubMed]
- Mennerick, S.; Zorumski, C.F. Neural activity and survival in the developing nervous system. Mol. Neurobiol. 2000, 22, 41–54. [Google Scholar] [CrossRef]
- Li, M.; Long, C.; Yang, L. Hippocampal-Prefrontal Circuit and Disrupted Functional Connectivity in Psychiatric and Neurodegenerative Disorders. BioMed Res. Int. 2015, 2015, 810548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collingridge, G.L.; Bliss, T.V. Memories of NMDA receptors and LTP. Trends Neurosci. 1995, 18, 54–56. [Google Scholar] [CrossRef]
- Rison, R.A.; Stanton, P.K. Long-term potentiation and N-methyl-D-aspartate receptors: Foundations of memory and neurologic disease? Neurosci. Biobehav. Rev. 1995, 19, 533–552. [Google Scholar] [CrossRef]
- Morris, R.G.; Anderson, E.; Lynch, G.S.; Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 1986, 319, 774–776. [Google Scholar] [CrossRef]
- Yang, S.; Seo, H.; Wang, M.; Arnsten, A.F.T. NMDAR Neurotransmission Needed for Persistent Neuronal Firing: Potential Roles in Mental Disorders. Front. Psychiatry 2021, 12, 654322. [Google Scholar] [CrossRef]
- Lau, C.G.; Takeuchi, K.; Rodenas-Ruano, A.; Takayasu, Y.; Murphy, J.; Bennett, M.V.; Zukin, R.S. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem. Soc. Trans. 2009, 37, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
- Jahr, C.E.; Stevens, C.F. Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. Proc. Natl. Acad. Sci. USA 1993, 90, 11573–11577. [Google Scholar] [CrossRef]
- Barker-Haliski, M.; White, H.S. Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb. Perspect. Med. 2015, 5, a022863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 2004, 5, 771–781. [Google Scholar] [CrossRef]
- Ladépêche, L.; Dupuis, J.P.; Groc, L. Surface trafficking of NMDA receptors: Gathering from a partner to another. Semin. Cell Dev. Biol. 2014, 27, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Bard, L.; Sainlos, M.; Bouchet, D.; Cousins, S.; Mikasova, L.; Breillat, C.; Stephenson, F.A.; Imperiali, B.; Choquet, D.; Groc, L. Dynamic and specific interaction between synaptic NR2-NMDA receptor and PDZ proteins. Proc. Natl. Acad. Sci. USA 2010, 107, 19561–19566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, C.G.; Zukin, R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 2007, 8, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Wasterlain, C.G.; Naylor, D.E.; Liu, H.; Niquet, J.; Baldwin, R. Trafficking of NMDA receptors during status epilepticus: Therapeutic implications. Epilepsia 2013, 54 (Suppl. S6), 78–80. [Google Scholar] [CrossRef] [PubMed]
- Mele, M.; Costa, R.O.; Duarte, C.B. Alterations in GABA(A)-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Front. Cell. Neurosci. 2019, 13, 77. [Google Scholar] [CrossRef]
- Addis, L.; Virdee, J.K.; Vidler, L.R.; Collier, D.A.; Pal, D.K.; Ursu, D. Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency—Molecular profiling and functional rescue. Sci. Rep. 2017, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Mota Vieira, M.; Nguyen, T.A.; Wu, K.; Badger, J.D.; Collins, B.M.; Anggono, V.; Lu, W.; Roche, K.W. An Epilepsy-Associated GRIN2A Rare Variant Disrupts CaMKIIα Phosphorylation of GluN2A and NMDA Receptor Trafficking. Cell Rep. 2020, 32, 108104. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, X.; Xu, D.; Zheng, F.; Lu, X.; Zhang, Y.; Ma, Y.; Li, Y.; Xu, X.; Zhu, B.; et al. GPR40 modulates epileptic seizure and NMDA receptor function. Sci. Adv. 2018, 4, eaau2357. [Google Scholar] [CrossRef]
- Bergeron, R.; Meyer, T.M.; Coyle, J.T.; Greene, R.W. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc. Natl. Acad. Sci. USA 1998, 95, 15730–15734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mothet, J.P.; Le Bail, M.; Billard, J.M. Time and space profiling of NMDA receptor co-agonist functions. J. Neurochem. 2015, 135, 210–225. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Paoletti, P. Allosteric modulators of NMDA receptors: Multiple sites and mechanisms. Curr. Opin. Pharmacol. 2015, 20, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, B.; Lu, L.; Xu, D.; Sun, L.; Lin, W. D-serine and NMDA Receptor 1 Expression in Patients with Intractable Epilepsy. Turk. Neurosurg. 2021, 31, 76–82. [Google Scholar] [CrossRef]
- Singh, L.; Oles, R.J.; Tricklebank, M.D. Modulation of seizure susceptibility in the mouse by the strychnine-insensitive glycine recognition site of the NMDA receptor/ion channel complex. Br. J. Pharmacol. 1990, 99, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Meftah, A.; Hasegawa, H.; Kantrowitz, J.T. D-Serine: A Cross Species Review of Safety. Front. Psychiatry 2021, 12, 726365. [Google Scholar] [CrossRef]
- Mony, L.; Kew, J.N.; Gunthorpe, M.J.; Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: Molecular mechanisms and therapeutic potential. Br. J. Pharmacol. 2009, 157, 1301–1317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-B.; Chang, S.; Xu, P.; Miao, M.; Wu, H.; Zhang, Y.; Zhang, T.; Wang, H.; Zhang, J.; Xie, C.; et al. Structural Basis of the Proton Sensitivity of Human GluN1-GluN2A NMDA Receptors. Cell Rep. 2018, 25, 3582–3590.e3584. [Google Scholar] [CrossRef] [Green Version]
- Regan, M.C.; Zhu, Z.; Yuan, H.; Myers, S.J.; Menaldino, D.S.; Tahirovic, Y.A.; Liotta, D.C.; Traynelis, S.F.; Furukawa, H. Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nat. Commun. 2019, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, J.A.; Schepmann, D.; Frehland, B.; Thum, S.; Datunashvili, M.; Budde, T.; Hollmann, M.; Strutz-Seebohm, N.; Wünsch, B.; Seebohm, G. A common mechanism allows selective targeting of GluN2B subunit-containing N-methyl-D-aspartate receptors. Commun. Biol. 2019, 2, 420. [Google Scholar] [CrossRef]
- Low, C.M.; Zheng, F.; Lyuboslavsky, P.; Traynelis, S.F. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors. Proc. Natl. Acad. Sci. USA 2000, 97, 11062–11067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannara, F.; Radosevic, M.; Planagumà, J.; Soto, D.; Aguilar, E.; García-Serra, A.; Maudes, E.; Pedreño, M.; Paul, S.; Doherty, J.; et al. Allosteric modulation of NMDA receptors prevents the antibody effects of patients with anti-NMDAR encephalitis. Brain 2020, 143, 2709–2720. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, O.; Tirapelli, D.P.d.C.; Lizarte Neto, F.S.; Freitas-Lima, P.; Saggioro, F.P.; Cirino, M.L.d.A.; Assirati, J.A., Jr.; Serafini, L.N.; Velasco, T.R.; Sakamoto, A.C.; et al. Modulation of NMDA receptor by miR-219 in the amygdala and hippocampus of patients with mesial temporal lobe epilepsy. J. Clin. Neurosci. 2020, 74, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Ure, J.; Baudry, M.; Perassolo, M. Metabotropic glutamate receptors and epilepsy. J. Neurol. Sci. 2006, 247, 1–9. [Google Scholar] [CrossRef]
- Alagarsamy, S.; Rouse, S.T.; Junge, C.; Hubert, G.W.; Gutman, D.; Smith, Y.; Conn, P.J. NMDA-induced phosphorylation and regulation of mGluR5. Pharmacol. Biochem. Behav. 2002, 73, 299–306. [Google Scholar] [CrossRef]
- Chen, H.-H.; Liao, P.-F.; Chan, M.-H. mGluR5 positive modulators both potentiate activation and restore inhibition in NMDA receptors by PKC dependent pathway. J. Biomed. Sci. 2011, 18, 19. [Google Scholar] [CrossRef] [Green Version]
- Pietraszek, M.; Gravius, A.; Schäfer, D.; Weil, T.; Trifanova, D.; Danysz, W. mGluR5, but not mGluR1, antagonist modifies MK-801-induced locomotor activity and deficit of prepulse inhibition. Neuropharmacology 2005, 49, 73–85. [Google Scholar] [CrossRef]
- Henry, S.A.; Lehmann-Masten, V.; Gasparini, F.; Geyer, M.A.; Markou, A. The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology 2002, 43, 1199–1209. [Google Scholar] [CrossRef]
- Chapman, A.G.; Nanan, K.; Williams, M.; Meldrum, B.S. Anticonvulsant activity of two metabotropic glutamate group I antagonists selective for the mGlu5 receptor: 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and (E)-6-methyl-2-styryl-pyridine (SIB 1893). Neuropharmacology 2000, 39, 1567–1574. [Google Scholar] [CrossRef]
- Yan, Q.J.; Rammal, M.; Tranfaglia, M.; Bauchwitz, R.P. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 2005, 49, 1053–1066. [Google Scholar] [CrossRef]
- Kano, M.; Watanabe, T. Type-1 metabotropic glutamate receptor signaling in cerebellar Purkinje cells in health and disease. F1000Research 2017, 6, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sillevis Smitt, P.; Kinoshita, A.; De Leeuw, B.; Moll, W.; Coesmans, M.; Jaarsma, D.; Henzen-Logmans, S.; Vecht, C.; De Zeeuw, C.; Sekiyama, N.; et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N. Engl. J. Med. 2000, 342, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Höftberger, R.; Sabater, L.; Ortega, A.; Dalmau, J.; Graus, F. Patient with homer-3 antibodies and cerebellitis. JAMA Neurol. 2013, 70, 506–509. [Google Scholar] [CrossRef] [Green Version]
- Sarantis, K.; Antoniou, K.; Matsokis, N.; Angelatou, F. Exposure to novel environment is characterized by an interaction of D1/NMDA receptors underlined by phosphorylation of the NMDA and AMPA receptor subunits and activation of ERK1/2 signaling, leading to epigenetic changes and gene expression in rat hippocampus. Neurochem. Int. 2012, 60, 55–67. [Google Scholar] [CrossRef]
- Laurido-Soto, O.; Brier, M.R.; Simon, L.E.; McCullough, A.; Bucelli, R.C.; Day, G.S. Patient characteristics and outcome associations in AMPA receptor encephalitis. J. Neurol. 2019, 266, 450–460. [Google Scholar] [CrossRef]
- Höftberger, R.; van Sonderen, A.; Leypoldt, F.; Houghton, D.; Geschwind, M.; Gelfand, J.; Paredes, M.; Sabater, L.; Saiz, A.; Titulaer, M.J.; et al. Encephalitis and AMPA receptor antibodies: Novel findings in a case series of 22 patients. Neurology 2015, 84, 2403–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Hughes, E.G.; Moscato, E.H.; Parsons, T.D.; Dalmau, J.; Balice-Gordon, R.J. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann. Neurol. 2015, 77, 381–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schidlitzki, A.; Twele, F.; Klee, R.; Waltl, I.; Römermann, K.; Bröer, S.; Meller, S.; Gerhauser, I.; Rankovic, V.; Li, D.; et al. A combination of NMDA and AMPA receptor antagonists retards granule cell dispersion and epileptogenesis in a model of acquired epilepsy. Sci. Rep. 2017, 7, 12191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathern, G.W.; Pretorius, J.K.; Mendoza, D.; Leite, J.P.; Chimelli, L.; Born, D.E.; Fried, I.; Assirati, J.A.; Ojemann, G.A.; Adelson, P.D.; et al. Hippocampal N-methyl-D-aspartate receptor subunit mRNA levels in temporal lobe epilepsy patients. Ann. Neurol. 1999, 46, 343–358. [Google Scholar] [CrossRef]
- Mathern, G.W.; Pretorius, J.K.; Kornblum, H.I.; Mendoza, D.; Lozada, A.; Leite, J.P.; Chimelli, L.M.; Fried, I.; Sakamoto, A.C.; Assirati, J.A.; et al. Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients. Brain 1997, 120 Pt 11, 1937–1959. [Google Scholar] [CrossRef]
- Mathern, G.W.; Leite, J.P.; Babb, T.L.; Pretorius, J.K.; Kuhlman, P.A.; Mendoza, D.; Fried, I.; Sakamoto, A.C.; Assirati, J.A.; Adelson, P.D. Aberrant hippocampal mossy fiber sprouting correlates with greater NMDAR2 receptor staining. Neuroreport 1996, 7, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Franck, J.E.; Pokorny, J.; Kunkel, D.D.; Schwartzkroin, P.A. Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia 1995, 36, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Isokawa, M.; Levesque, M.F. Increased NMDA responses and dendritic degeneration in human epileptic hippocampal neurons in slices. Neurosci. Lett. 1991, 132, 212–216. [Google Scholar] [CrossRef]
- Masukawa, L.M.; Higashima, M.; Hart, G.J.; Spencer, D.D.; O’Connor, M.J. NMDA receptor activation during epileptiform responses in the dentate gyrus of epileptic patients. Brain Res. 1991, 562, 176–180. [Google Scholar] [CrossRef]
- Banerjee, J.; Banerjee Dixit, A.; Tripathi, M.; Sarkar, C.; Gupta, Y.K.; Chandra, P.S. Enhanced endogenous activation of NMDA receptors in pyramidal neurons of hippocampal tissues from patients with mesial temporal lobe epilepsy: A mechanism of hyper excitation. Epilepsy Res. 2015, 117, 11–16. [Google Scholar] [CrossRef]
- McGinnity, C.J.; Koepp, M.J.; Hammers, A.; Riaño Barros, D.A.; Pressler, R.M.; Luthra, S.; Jones, P.A.; Trigg, W.; Micallef, C.; Symms, M.R.; et al. NMDA receptor binding in focal epilepsies. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1150–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- André, V.M.; Flores-Hernández, J.; Cepeda, C.; Starling, A.J.; Nguyen, S.; Lobo, M.K.; Vinters, H.V.; Levine, M.S.; Mathern, G.W. NMDA receptor alterations in neurons from pediatric cortical dysplasia tissue. Cereb. Cortex 2004, 14, 634–646. [Google Scholar] [CrossRef] [PubMed]
- White, R.; Hua, Y.; Scheithauer, B.; Lynch, D.R.; Henske, E.P.; Crino, P.B. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann. Neurol. 2001, 49, 67–78. [Google Scholar] [CrossRef]
- Zhu, J.M.; Li, K.X.; Cao, S.X.; Chen, X.J.; Shen, C.J.; Zhang, Y.; Geng, H.Y.; Chen, B.Q.; Lian, H.; Zhang, J.M.; et al. Increased NRG1-ErbB4 signaling in human symptomatic epilepsy. Sci. Rep. 2017, 7, 141. [Google Scholar] [CrossRef]
- Jeon, A.R.; Kim, J.E. PDI Knockdown Inhibits Seizure Activity in Acute Seizure and Chronic Epilepsy Rat Models via S-Nitrosylation-Independent Thiolation on NMDA Receptor. Front. Cell. Neurosci. 2018, 12, 438. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Xiong, L.; Xie, J.; Huang, C.; Pi, R.; Huang, Z.; Li, L. Icaritin Alleviates Glutamate-Induced Neuronal Damage by Inactivating GluN2B-Containing NMDARs Through the ERK/DAPK1 Pathway. Front. Neurosci. 2021, 15, 525615. [Google Scholar] [CrossRef] [PubMed]
- Endele, S.; Rosenberger, G.; Geider, K.; Popp, B.; Tamer, C.; Stefanova, I.; Milh, M.; Kortüm, F.; Fritsch, A.; Pientka, F.K. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat. Genet. 2010, 42, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.X.; Luo, J.H. Mutations of N-Methyl-D-Aspartate Receptor Subunits in Epilepsy. Neurosci. Bull. 2018, 34, 549–565. [Google Scholar] [CrossRef]
- Fry, A.E.; Fawcett, K.A.; Zelnik, N.; Yuan, H.; Thompson, B.A.N.; Shemer-Meiri, L.; Cushion, T.D.; Mugalaasi, H.; Sims, D.; Stoodley, N.; et al. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain 2018, 141, 698–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmasri, M.; Hunter, D.W.; Winchester, G.; Bates, E.E.; Aziz, W.; Van Der Does, D.M.; Karachaliou, E.; Sakimura, K.; Penn, A.C. Common synaptic phenotypes arising from diverse mutations in the human NMDA receptor subunit GluN2A. Commun. Biol. 2022, 5, 174. [Google Scholar] [CrossRef]
- Myers, S.J.; Yuan, H.; Kang, J.Q.; Tan, F.C.K.; Traynelis, S.F.; Low, C.M. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Research 2019, 8, F1000. [Google Scholar] [CrossRef] [Green Version]
- XiangWei, W.; Jiang, Y.; Yuan, H. De Novo Mutations and Rare Variants Occurring in NMDA Receptors. Curr. Opin. Physiol. 2018, 2, 27–35. [Google Scholar] [CrossRef]
- Punnakkal, P.; Dominic, D. NMDA Receptor GluN2 Subtypes Control Epileptiform Events in the Hippocampus. Neuromol. Med. 2018, 20, 90–96. [Google Scholar] [CrossRef]
- Camp, C.R.; Yuan, H. GRIN2D/GluN2D NMDA receptor: Unique features and its contribution to pediatric developmental and epileptic encephalopathy. Eur. J. Paediatr. Neurol. 2020, 24, 89–99. [Google Scholar] [CrossRef]
- Zhang, W.; Ross, P.J.; Ellis, J.; Salter, M.W. Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells. Transl. Psychiatry 2022, 12, 243. [Google Scholar] [CrossRef]
- Spatola, M.; Dalmau, J. Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr. Opin. Neurol. 2017, 30, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Dubey, D.; Pittock, S.J.; Kelly, C.R.; McKeon, A.; Lopez-Chiriboga, A.S.; Lennon, V.A.; Gadoth, A.; Smith, C.Y.; Bryant, S.C.; Klein, C.J.; et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann. Neurol. 2018, 83, 166–177. [Google Scholar] [CrossRef]
- Leypoldt, F.; Armangue, T.; Dalmau, J. Autoimmune encephalopathies. Ann. N. Y. Acad. Sci. 2015, 1338, 94–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalmau, J.; Gleichman, A.J.; Hughes, E.G.; Rossi, J.E.; Peng, X.; Lai, M.; Dessain, S.K.; Rosenfeld, M.R.; Balice-Gordon, R.; Lynch, D.R. Anti-NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies. Lancet Neurol. 2008, 7, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Dalmau, J.; Lancaster, E.; Martinez-Hernandez, E.; Rosenfeld, M.R.; Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011, 10, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Ladépêche, L.; Planagumà, J.; Thakur, S.; Suárez, I.; Hara, M.; Borbely, J.S.; Sandoval, A.; Laparra-Cuervo, L.; Dalmau, J.; Lakadamyali, M. NMDA Receptor Autoantibodies in Autoimmune Encephalitis Cause a Subunit-Specific Nanoscale Redistribution of NMDA Receptors. Cell Rep. 2018, 23, 3759–3768. [Google Scholar] [CrossRef]
- Planagumà, J.; Haselmann, H.; Mannara, F.; Petit-Pedrol, M.; Grünewald, B.; Aguilar, E.; Röpke, L.; Martín-García, E.; Titulaer, M.J.; Jercog, P.; et al. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity. Ann. Neurol. 2016, 80, 388–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planagumà, J.; Leypoldt, F.; Mannara, F.; Gutiérrez-Cuesta, J.; Martín-García, E.; Aguilar, E.; Titulaer, M.J.; Petit-Pedrol, M.; Jain, A.; Balice-Gordon, R.; et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 2014, 138, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.; Hashemi, K.; Stasiak, L.; Bartram, J.; Lang, B.; Vincent, A.; Upton, A.L. Epileptogenic effects of NMDAR antibodies in a passive transfer mouse model. Brain 2015, 138, 3159–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, S.K.; Rosch, R.E.; Wilson, M.A.; Upadhya, M.A.; Dhangar, D.R.; Clarke-Bland, C.; Wahid, T.T.; Barman, S.; Goebels, N.; Kreye, J.; et al. Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis. Commun. Biol. 2021, 4, 1106. [Google Scholar] [CrossRef]
- Wandinger, K.P.; Saschenbrecker, S.; Stoecker, W.; Dalmau, J. Anti-NMDA-receptor encephalitis: A severe, multistage, treatable disorder presenting with psychosis. J. Neuroimmunol. 2011, 231, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Irani, S.R.; Vincent, A. NMDA receptor antibody encephalitis. Curr. Neurol. Neurosci. Rep. 2011, 11, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Finke, C.; Kopp, U.A.; Prüss, H.; Dalmau, J.; Wandinger, K.P.; Ploner, C.J. Cognitive deficits following anti-NMDA receptor encephalitis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 195–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mealing, G.A.; Lanthorn, T.H.; Murray, C.L.; Small, D.L.; Morley, P. Differences in degree of trapping of low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists with similar kinetics of block. J. Pharmacol. Exp. Ther. 1999, 288, 204–210. [Google Scholar] [PubMed]
- Marland, S.; Ellerton, J.; Andolfatto, G.; Strapazzon, G.; Thomassen, O.; Brandner, B.; Weatherall, A.; Paal, P. Ketamine: Use in anesthesia. CNS Neurosci. Ther. 2013, 19, 381–389. [Google Scholar] [CrossRef]
- Ghasemi, M.; Shafaroodi, H.; Nazarbeiki, S.; Meskar, H.; Heydarpour, P.; Ghasemi, A.; Talab, S.S.; Ziai, P.; Bahremand, A.; Dehpour, A.R. Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav. 2010, 18, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Marrero-Rosado, B.M.; de Araujo Furtado, M.; Kundrick, E.R.; Walker, K.A.; Stone, M.F.; Schultz, C.R.; Nguyen, D.A.; Lumley, L.A. Ketamine as adjunct to midazolam treatment following soman-induced status epilepticus reduces seizure severity, epileptogenesis, and brain pathology in plasma carboxylesterase knockout mice. Epilepsy Behav. 2020, 111, 107229. [Google Scholar] [CrossRef]
- Santoro, J.D.; Filippakis, A.; Chitnis, T. Ketamine use in refractory status epilepticus associated with anti-NMDA receptor antibody encephalitis. Epilepsy Behav. Rep. 2019, 12, 100326. [Google Scholar] [CrossRef] [PubMed]
- Borsato, G.S.; Siegel, J.L.; Rose, M.Q.; Ojard, M.; Feyissa, A.M.; Quinones-Hinojosa, A.; Jackson, D.A.; Rogers, E.R.; Freeman, W.D. Ketamine in seizure management and future pharmacogenomic considerations. Pharmacogenom. J. 2020, 20, 351–354. [Google Scholar] [CrossRef]
- Meaden, C.W.; Barnes, S. Ketamine Implicated in New Onset Seizure. Clin. Pract. Cases Emerg. Med. 2019, 3, 401–404. [Google Scholar] [CrossRef]
- Borowicz, K.K.; Łuszczki, J.; Czuczwar, S.J. Interactions between non-barbiturate injectable anesthetics and conventional antiepileptic drugs in the maximal electroshock test in mice--an isobolographic analysis. Eur. Neuropsychopharmacol. 2004, 14, 163–172. [Google Scholar] [CrossRef]
- Martin, B.S.; Kapur, J. A combination of ketamine and diazepam synergistically controls refractory status epilepticus induced by cholinergic stimulation. Epilepsia 2008, 49, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Gaspard, N.; Foreman, B.; Judd, L.M.; Brenton, J.N.; Nathan, B.R.; McCoy, B.M.; Al-Otaibi, A.; Kilbride, R.; Fernández, I.S.; Mendoza, L.; et al. Intravenous ketamine for the treatment of refractory status epilepticus: A retrospective multicenter study. Epilepsia 2013, 54, 1498–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhachroum, A.; Der-Nigoghossian, C.A.; Mathews, E.; Massad, N.; Letchinger, R.; Doyle, K.; Chiu, W.-T.; Kromm, J.; Rubinos, C.; Velazquez, A.; et al. Ketamine to treat super-refractory status epilepticus. Neurology 2020, 95, e2286. [Google Scholar] [CrossRef]
- Godoy, D.A.; Badenes, R.; Pelosi, P.; Robba, C. Ketamine in acute phase of severe traumatic brain injury “an old drug for new uses?”. Crit. Care 2021, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Hurth, K.P.; Jaworski, A.; Thomas, K.B.; Kirsch, W.B.; Rudoni, M.A.; Wohlfarth, K.M. The Reemergence of Ketamine for Treatment in Critically Ill Adults. Crit. Care Med. 2020, 48, 899–911. [Google Scholar] [CrossRef]
- Flower, O.; Hellings, S. Sedation in Traumatic Brain Injury. Emerg. Med. Int. 2012, 2012, 637171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umunna, B.-P.; Tekwani, K.; Barounis, D.; Kettaneh, N.; Kulstad, E. Ketamine for continuous sedation of mechanically ventilated patients. J. Emerg. Trauma Shock 2015, 8, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Luz, M.; Brandão Barreto, B.; de Castro, R.E.V.; Salluh, J.; Dal-Pizzol, F.; Araujo, C.; De Jong, A.; Chanques, G.; Myatra, S.N.; Tobar, E.; et al. Practices in sedation, analgesia, mobilization, delirium, and sleep deprivation in adult intensive care units (SAMDS-ICU): An international survey before and during the COVID-19 pandemic. Ann. Intensive Care 2022, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Hertle, D.N.; Dreier, J.P.; Woitzik, J.; Hartings, J.A.; Bullock, R.; Okonkwo, D.O.; Shutter, L.A.; Vidgeon, S.; Strong, A.J.; Kowoll, C.; et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 2012, 135, 2390–2398. [Google Scholar] [CrossRef]
- Zou, X.; Patterson, T.A.; Sadovova, N.; Twaddle, N.C.; Doerge, D.R.; Zhang, X.; Fu, X.; Hanig, J.P.; Paule, M.G.; Slikker, W.; et al. Potential neurotoxicity of ketamine in the developing rat brain. Toxicol. Sci. 2009, 108, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujikawa, D.G. Neuroprotective effect of ketamine administered after status epilepticus onset. Epilepsia 1995, 36, 186–195. [Google Scholar] [CrossRef]
- Långsjö, J.W.; Maksimow, A.; Salmi, E.; Kaisti, K.; Aalto, S.; Oikonen, V.; Hinkka, S.; Aantaa, R.; Sipilä, H.; Viljanen, T.; et al. S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology 2005, 103, 258–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, A.P.; Abbas, M.; Alunday, R.L.; Qeadan, F.; Shuttleworth, C.W. Spreading depolarization in acute brain injury inhibited by ketamine: A prospective, randomized, multiple crossover trial. J. Neurosurg. 2018, 130, 1513–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreier, J.P.; Major, S.; Pannek, H.W.; Woitzik, J.; Scheel, M.; Wiesenthal, D.; Martus, P.; Winkler, M.K.; Hartings, J.A.; Fabricius, M.; et al. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain 2012, 135, 259–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, D.R.; Fujii, T.; Ohiorhenuan, I.; Liu, C.Y. Interplay between Cortical Spreading Depolarization and Seizures. Stereotact. Funct. Neurosurg. 2017, 95, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Foreman, B.; Lee, H.; Okonkwo, D.O.; Strong, A.J.; Pahl, C.; Shutter, L.A.; Dreier, J.P.; Ngwenya, L.B.; Hartings, J.A. The Relationship Between Seizures and Spreading Depolarizations in Patients with Severe Traumatic Brain Injury. Neurocrit. Care 2022, 37, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.S.; Pellegrini, J.W.; Aggarwal, S.K.; Lei, S.Z.; Warach, S.; Jensen, F.E.; Lipton, S.A. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: Therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 1992, 12, 4427–4436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chojnacka-Wójcik, E.; Tatarczyńska, E.; Maj, J. The influence of memantine on the anticonvulsant effects of the antiepileptic drugs. Pol. J. Pharmacol. Pharm. 1983, 35, 511–515. [Google Scholar] [PubMed]
- McLean, M.J. In vitro electrophysiological evidence predicting anticonvulsant efficacy of memantine and flunarizine. Pol. J. Pharmacol. Pharm. 1987, 39, 513–525. [Google Scholar] [PubMed]
- Urbańska, E.; Dziki, M.; Czuczwar, S.J.; Kleinrok, Z.; Turski, W.A. Antiparkinsonian drugs memantine and trihexyphenidyl potentiate the anticonvulsant activity of valproate against maximal electroshock-induced seizures. Neuropharmacology 1992, 31, 1021–1026. [Google Scholar] [CrossRef]
- Kalemenev, S.V.; Zubareva, O.E.; Sizov, V.V.; Lavrent’eva, V.V.; Lukomskaya, N.Y.; Kim, K.K.; Zaitsev, A.V.; Magazanik, L.G. Memantine attenuates cognitive impairments after status epilepticus induced in a lithium-pilocarpine model. Dokl. Biol. Sci. 2016, 470, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, A.V.; Kim, K.; Vasilev, D.S.; Lukomskaya, N.Y.; Lavrentyeva, V.V.; Tumanova, N.L.; Zhuravin, I.A.; Magazanik, L.G. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J. Neurosci. Res. 2015, 93, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Czuczwar, S.J.; Turski, W.A.; Kleinrok, Z. Interactions of excitatory amino acid antagonists with conventional antiepileptic drugs. Metab. Brain Dis. 1996, 11, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Dhamne, S.C.; Carretero-Guillén, A.; Salvador, R.; Goldenberg, M.C.; Godlewski, B.R.; Pascual-Leone, A.; Madsen, J.R.; Stone, S.S.D.; Ruffini, G.; et al. Drug-Responsive Inhomogeneous Cortical Modulation by Direct Current Stimulation. Ann. Neurol. 2020, 88, 489–502. [Google Scholar] [CrossRef]
- Platzer, K.; Yuan, H.; Schütz, H.; Winschel, A.; Chen, W.; Hu, C.; Kusumoto, H.; Heyne, H.O.; Helbig, K.L.; Tang, S.; et al. GRIN2B encephalopathy: Novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J. Med. Genet. 2017, 54, 460–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornhuber, J.; Bormann, J.; Hübers, M.; Rusche, K.; Riederer, P. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: A human postmortem brain study. Eur. J. Pharmacol. Mol. Pharmacol. 1991, 206, 297–300. [Google Scholar] [CrossRef]
- Sreedharan, M.; Devadathan, K.; Pathan, H.K.; Chalipat, S.; Mohammed, K.P.A. Amantadine for the Treatment of Refractory Absence Seizures in Children. J. Pediatr. Neurosci. 2018, 13, 131–136. [Google Scholar] [CrossRef]
- Shahar, E.M.; Brand, N. Effect of add-on amantadine therapy for refractory absence epilepsy. J. Pediatr. 1992, 121, 819–821. [Google Scholar] [CrossRef]
- Perry, M.S.; Bailey, L.J.; Kotecha, A.C.; Malik, S.I.; Hernandez, A.W. Amantadine for the treatment of refractory absence seizures in children. Pediatr. Neurol. 2012, 46, 243–245. [Google Scholar] [CrossRef]
- Barra, M.E.; Edlow, B.L.; Brophy, G.M. Pharmacologic Therapies to Promote Recovery of Consciousness. Semin. Neurol. 2022, 42, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, A.M.; Riker, R.R.; Brown, C.S.; May, T.; Nocella, K.; Cote, J.; Eldridge, A.; Seder, D.B.; Gagnon, D.J. Amantadine and Modafinil as Neurostimulants Following Acute Stroke: A Retrospective Study of Intensive Care Unit Patients. Neurocrit. Care 2021, 34, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, E.; Mauro, L.S.; Ohlinger, M.J. Amantadine enhancement of arousal and cognition after traumatic brain injury. Ann. Pharmacother. 2008, 42, 247–252. [Google Scholar] [CrossRef]
- Suter, C.; Klingman, W.O. Neurologic Manifestations of Magnesium Depletion States. Neurology 1955, 5, 691. [Google Scholar] [CrossRef] [PubMed]
- Kampa, B.M.; Clements, J.; Jonas, P.; Stuart, G.J. Kinetics of Mg2+ unblock of NMDA receptors: Implications for spike-timing dependent synaptic plasticity. J. Physiol. 2004, 556, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Kruse, H.D.; Orent, E.R.; McCollum, E.V. Studies on Magnesium Deficiency in Animals: I. Symptomatology Resulting from Magnesium Deprivation. J. Biol. Chem. 1932, 96, 519–539. [Google Scholar] [CrossRef]
- Hallak, M. Effect of parenteral magnesium sulfate administration on excitatory amino acid receptors in the rat brain. Magnes. Res. 1998, 11, 117–131. [Google Scholar] [PubMed]
- Hallak, M.; Berman, R.F.; Irtenkauf, S.M.; Janusz, C.A.; Cotton, D.B. Magnesium sulfate treatment decreases N-methyl-D-aspartate receptor binding in the rat brain: An autoradiographic study. J. Soc. Gynecol. Investig. 1994, 1, 25–30. [Google Scholar] [CrossRef]
- Visser, N.A.; Braun, K.P.J.; Leijten, F.S.S.; van Nieuwenhuizen, O.; Wokke, J.H.J.; van den Bergh, W.M. Magnesium treatment for patients with refractory status epilepticus due to POLG1-mutations. J. Neurol. 2011, 258, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.P.; Wang, X.; Dong, C.H.; Chen, C.H.; Zhao, W.; Zhao, R.Y. Three-week combination treatment with ACTH + magnesium sulfate versus ACTH monotherapy for infantile spasms: A 24-week, randomized, open-label, follow-up study in China. Clin. Ther. 2010, 32, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Euser, A.G.; Cipolla, M.J. Magnesium sulfate for the treatment of eclampsia: A brief review. Stroke 2009, 40, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- McCubbin, J.; Sibai, B.; Abdella, T.; Anderson, G. Cardiopulmonary arrest due to acute maternal hypermagnesaemia. Lancet 1981, 317, 1058. [Google Scholar] [CrossRef]
- Sachdeo, R.; Kramer, L.D.; Rosenberg, A.; Sachdeo, S. Felbamate monotherapy: Controlled trial in patients with partial onset seizures. Ann. Neurol. 1992, 32, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Rho, J.M.; Donevan, S.D.; Rogawski, M.A. Mechanism of action of the anticonvulsant felbamate: Opposing effects on N-methyl-D-aspartate and gamma-aminobutyric acidA receptors. Ann. Neurol. 1994, 35, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Harty, T.P.; Rogawski, M.A. Felbamate block of recombinant N-methyl-D-aspartate receptors: Selectivity for the NR2B subunit. Epilepsy Res. 2000, 39, 47–55. [Google Scholar] [CrossRef] [Green Version]
- French, J.; Smith, M.; Faught, E.; Brown, L. Practice advisory: The use of felbamate in the treatment of patients with intractable epilepsy: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 1999, 52, 1540–1545. [Google Scholar] [CrossRef] [Green Version]
- Zupanc, M.L.; Roell Werner, R.; Schwabe, M.S.; O’Connor, S.E.; Marcuccilli, C.J.; Hecox, K.E.; Chico, M.S.; Eggener, K.A. Efficacy of felbamate in the treatment of intractable pediatric epilepsy. Pediatr. Neurol. 2010, 42, 396–403. [Google Scholar] [CrossRef]
- Thakkar, K.; Billa, G.; Rane, J.; Chudasama, H.; Goswami, S.; Shah, R. The rise and fall of felbamate as a treatment for partial epilepsy—Aplastic anemia and hepatic failure to blame? Expert Rev. Neurother. 2015, 15, 1373–1375. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, S.; Donevan, S.D.; Rogawski, M.A. Block of the N-methyl-D-aspartate receptor by remacemide and its des-glycine metabolite. J. Pharmacol. Exp. Ther. 1996, 276, 161–168. [Google Scholar]
- Davies, J.A. Remacemide hydrochloride: A novel antiepileptic agent. Gen. Pharmacol. 1997, 28, 499–502. [Google Scholar] [CrossRef]
- Devinsky, O.; Vazquez, B.; Faught, E.; Leppik, I.E.; Pellock, J.M.; Schachter, S.; Alderfer, V.; Holdich, T.A. A double-blind, placebo-controlled study of remacemide hydrochloride in patients with refractory epilepsy following pre-surgical assessment. Seizure 2002, 11, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, D.W.; Betts, T.A.; Boddie, H.G.; Crawford, P.M.; Lindstrom, P.; Newman, P.K.; Soryal, I.; Wroe, S.; Holdich, T.A. Remacemide hydrochloride as an add-on therapy in epilepsy: A randomized, placebo-controlled trial of three dose levels (300, 600 and 1200 mg/day) in a Q.I.D. regimen. Seizure 2002, 11, 114–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.W.; Blume, W.T.; Guberman, A.; Lee, M.A.; Pillay, N.; Weaver, D.F.; Veloso, F.; Holdich, T.A. Remacemide hydrochloride as an add-on therapy in epilepsy: A randomized, placebo-controlled trial of three dose levels (300, 600 and 800 mg/day) in a B.I.D. regimen. Seizure 2002, 11, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Brodie, M.J.; Wroe, S.J.; Dean, A.D.; Holdich, T.A.; Whitehead, J.; Stevens, J.W. Efficacy and Safety of Remacemide versus Carbamazepine in Newly Diagnosed Epilepsy: Comparison by Sequential Analysis. Epilepsy Behav. 2002, 3, 140–146. [Google Scholar] [CrossRef]
- Wesnes, K.A.; Edgar, C.; Dean, A.D.P.; Wroe, S.J. The cognitive and psychomotor effects of remacemide and carbamazepine in newly diagnosed epilepsy. Epilepsy Behav. 2009, 14, 522–528. [Google Scholar] [CrossRef]
- Bialer, M.; Johannessen, S.I.; Kupferberg, H.J.; Levy, R.H.; Loiseau, P.; Perucca, E. Progress report on new antiepileptic drugs: A summary of the fourth Eilat conference (EILAT IV). Epilepsy Res. 1999, 34, 1–41. [Google Scholar] [CrossRef]
- Mizoule, J.; Meldrum, B.; Mazadier, M.; Croucher, M.; Ollat, C.; Uzan, A.; Legrand, J.J.; Gueremy, C.; Le Fur, G. 2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission—I: Anticonvulsant properties. Neuropharmacology 1985, 24, 767–773. [Google Scholar] [CrossRef]
- Prakriya, M.; Mennerick, S. Selective Depression of Low–Release Probability Excitatory Synapses by Sodium Channel Blockers. Neuron 2000, 26, 671–682. [Google Scholar] [CrossRef] [Green Version]
- Debono, M.-W.; Le Guern, J.; Canton, T.; Doble, A.; Pradier, L. Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 1993, 235, 283–289. [Google Scholar] [CrossRef]
- Fumagalli, E.; Funicello, M.; Rauen, T.; Gobbi, M.; Mennini, T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur. J. Pharmacol. 2008, 578, 171–176. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, D.S.; Kwak, S.E.; Choi, H.C.; Song, H.K.; Choi, S.Y.; Kwon, O.S.; Kim, Y.I.; Kang, T.C. Anti-glutamatergic effect of riluzole: Comparison with valproic acid. Neuroscience 2007, 147, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Rothan, H.A.; Amini, E.; Faraj, F.L.; Golpich, M.; Teoh, T.C.; Gholami, K.; Yusof, R. NMDA receptor antagonism with novel indolyl, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, reduces seizures duration in a rat model of epilepsy. Sci. Rep. 2017, 7, 45540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, J.D. Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole. J. Neurochem. 2017, 142, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, L.; Hellier, J.L.; Uskert-Newsom, J.; Williams, P.A.; Staley, K.J.; Yee, A.S. Diphenytoin, riluzole and lidocaine: Three sodium channel blockers, with different mechanisms of action, decrease hippocampal epileptiform activity. Neuropharmacology 2013, 73, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minabe, Y.; Emori, K.; Shibata, R.; Kurachi, M. Antiepileptic effects of MK-801, a noncompetitive NMDA-receptor antagonist, in the low-frequency kindling model of epilepsy. Jpn. J. Psychiatry Neurol. 1992, 46, 755–761. [Google Scholar] [CrossRef]
- Song, X.; Jensen, M.; Jogini, V.; Stein, R.A.; Lee, C.H.; McHaourab, H.S.; Shaw, D.E.; Gouaux, E. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature 2018, 556, 515–519. [Google Scholar] [CrossRef]
- Dravid, S.M.; Erreger, K.; Yuan, H.; Nicholson, K.; Le, P.; Lyuboslavsky, P.; Almonte, A.; Murray, E.; Mosely, C.; Barber, J.; et al. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J. Physiol. 2007, 581, 107–128. [Google Scholar] [CrossRef]
- Xi, D.; Zhang, W.; Wang, H.-X.; Stradtman, G.G., III; Gao, W.-J. Dizocilpine (MK-801) induces distinct changes of N-methyl-d-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex. Int. J. Neuropsychopharmacol. 2009, 12, 1395–1408. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Morimoto, K.; Okamoto, M. Anticonvulsant action of a non-competitive antagonist of NMDA receptors (MK-801) in the kindling model of epilepsy. Brain Res. 1988, 463, 12–20. [Google Scholar] [CrossRef]
- Kubova, H.; Mares, P. Effects of MK-801 (dizocilpine) and ketamine on strychnine-induced convulsions in rats: Comparison with benzodiazepines and standard anticonvulsants. Physiol. Res. 1994, 43, 313–320. [Google Scholar]
- Parsons, C.; Quack, G.; Bresink, I.; Baran, L.; Przegalinski, E.; Kostowski, W.; Krzascik, P.; Hartmann, S.; Danysz, W. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 1995, 34, 1239–1258. [Google Scholar] [CrossRef]
- NIa, L.; Rukoiatkina, N.; Gorbunova, L.; Gmiro, V.; Magazanik, L. Role of NMDA and AMPA glutamate receptors in the mechanism of korazol-induced convulsions in mice. Ross. Fiziol. Zhurnal Im. IM Sechenova 2003, 89, 292–301. [Google Scholar]
- Brackett, R.L.; Pouw, B.; Blyden, J.F.; Nour, M.; Matsumoto, R.R. Prevention of cocaine-induced convulsions and lethality in mice: Effectiveness of targeting different sites on the NMDA receptor complex. Neuropharmacology 2000, 39, 407–418. [Google Scholar] [CrossRef]
- Kulkarni, S.K.; Ticku, M.K. Interaction between GABAergic anticonvulsants and the NMDA receptor antagonist MK 801 against MES-and picrotoxin-induced convulsions in rats. Life Sci. 1989, 44, 1317–1323. [Google Scholar] [CrossRef]
- O’Neill, S.K.; Bolger, G.T. Anticonvulsant activity of MK-801 and nimodipine alone and in combination against pentylenetetrazole and strychnine. Pharmacol. Biochem. Behav. 1989, 32, 595–600. [Google Scholar] [CrossRef]
- Vezzani, A.; Serafini, R.; Stasi, M.; Caccia, S.; Conti, I.; Tridico, R.; Samanin, R. Kinetics of MK-801 and its effect on quinolinic acid-induced seizures and neurotoxicity in rats. J. Pharmacol. Exp. Ther. 1989, 249, 278–283. [Google Scholar]
- Itzhak, Y.; Stein, I. Sensitization to the toxic effects of cocaine in mice is associated with the regulation of N-methyl-D-aspartate receptors in the cortex. J. Pharmacol. Exp. Ther. 1992, 262, 464–470. [Google Scholar]
- Tetz, L.M.; Rezk, P.E.; Ratcliffe, R.H.; Gordon, R.K.; Steele, K.E.; Nambiar, M.P. Development of a rat pilocarpine model of seizure/status epilepticus that mimics chemical warfare nerve agent exposure. Toxicol. Ind. Health 2006, 22, 255–266. [Google Scholar] [CrossRef]
- Thorat, S.; Kulkarni, S. Antagonism of caffeine-induced convulsions by ethanol and dizocilpine (MK-801) in mice. Methods Find. Exp. Clin. Pharmacol. 1991, 13, 413–417. [Google Scholar]
- Wardley-Smith, B.; Wann, K. Effects of four drugs on 4-aminopyridine seizures: A comparison with their effects on HPNS. Undersea Biomed. Res. 1991, 18, 413–419. [Google Scholar]
- Chavko, M.; Braisted, J.; Harabin, A. Effect of MK-801 on seizures induced by exposure to hyperbaric oxygen: Comparison with AP-7. Toxicol. Appl. Pharmacol. 1998, 151, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.; Nahm, W.; Noebels, J. Paradoxical proepileptic response to NMDA receptor blockade linked to cortical interneuron defect in stargazer mice. Front. Cell. Neurosci. 2013, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Shakarjian, M.P.; Ali, M.S.; Velíšková, J.; Stanton, P.K.; Heck, D.E.; Velíšek, L. Combined diazepam and MK-801 therapy provides synergistic protection from tetramethylenedisulfotetramine-induced tonic-clonic seizures and lethality in mice. Neurotoxicology 2015, 48, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, M.K.; Wright, L.K.M.; de Araujo Furtado, M.; Stone, M.F.; Moffett, M.C.; Kelley, N.R.; Bourne, A.R.; Lumeh, W.Z.; Schultz, C.R.; Schwartz, J.E.; et al. Caramiphen edisylate as adjunct to standard therapy attenuates soman-induced seizures and cognitive deficits in rats. Neurotoxicol. Teratol. 2014, 44, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Niquet, J.; Lumley, L.; Baldwin, R.; Rossetti, F.; Schultz, M.; de Araujo Furtado, M.; Suchomelova, L.; Naylor, D.; Franco-Estrada, I.; Wasterlain, C.G. Early polytherapy for benzodiazepine-refractory status epilepticus. Epilepsy Behav. 2019, 101, 106367. [Google Scholar] [CrossRef] [Green Version]
- Kovacic, P.; Somanathan, R. Clinical physiology and mechanism of dizocilpine (MK-801): Electron transfer, radicals, redox metabolites and bioactivity. Oxid. Med. Cell. Longev. 2010, 3, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreutzwiser, D.; Tawfic, Q.A. Expanding Role of NMDA Receptor Antagonists in the Management of Pain. CNS Drugs 2019, 33, 347–374. [Google Scholar] [CrossRef]
- Weinbroum, A.A.; Ben-Abraham, R. Dextromethorphan and dexmedetomidine: New agents for the control of perioperative pain. Eur. J. Surg. 2003, 167, 563–569. [Google Scholar] [CrossRef]
- Kimiskidis, V.K.; Mirtsou-Fidani, V.; Papaioannidou, P.G.; Niopas, I.; Georgiadis, G.; Constadinidis, T.C.; Kazis, A.D. A phase I clinical trial of dextromethorphan in intractable partial epilepsy. Methods Find. Exp. Clin. Pharmacol. 1999, 21, 673–678. [Google Scholar] [CrossRef]
- Smith-Hicks, C.L.; Gupta, S.; Ewen, J.B.; Hong, M.; Kratz, L.; Kelley, R.; Tierney, E.; Vaurio, R.; Bibat, G.; Sanyal, A.; et al. Randomized open-label trial of dextromethorphan in Rett syndrome. Neurology 2017, 89, 1684–1690. [Google Scholar] [CrossRef]
- Hollander, D.; Pradas, J.; Kaplan, R.; McLeod, H.L.; Evans, W.E.; Munsat, T.L. High-dose dextromethorphan in amyotrophic lateral sclerosis: Phase I safety and pharmacokinetic studies. Ann. Neurol. 1994, 36, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Majlesi, N.; Lee, D.C.; Ali, S.S. Dextromethorphan abuse masquerading as a recurrent seizure disorder. Pediatr. Emerg. Care 2011, 27, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Chenard, B.L.; Menniti, F.S. Antagonists selective for NMDA receptors containing the NR2B subunit. Curr. Pharm. Des. 1999, 5, 381–404. [Google Scholar]
- Pontecorvo, M.J.; Karbon, E.W.; Goode, S.; Clissold, D.B.; Borosky, S.A.; Patch, R.J.; Ferkany, J.W. Possible cerebroprotective and in vivo NMDA antagonist activities of sigma agents. Brain Res. Bull. 1991, 26, 461–465. [Google Scholar] [CrossRef]
- Singh, L.; Oles, R.; Vass, C.; Woodruff, G. A slow intravenous infusion of N-methyl-DL-aspartate as a seizure model in the mouse. J. Neurosci. Methods 1991, 37, 227–232. [Google Scholar] [CrossRef]
- Doyle, K.; Shaw, G. Investigation of the involvement of the N-methyl-D-aspartate receptor macrocomplex in the development of spermine-induced CNS excitation in vivo. Br. J. Pharmacol. 1996, 117, 1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, M.; Suzuki, T.; Misawa, M. Age-related decrease in the antiseizure effect of ifenprodil against pentylenetetrazole in mice. Dev. Brain Res. 1997, 104, 201–204. [Google Scholar] [CrossRef]
- Maroso, M.; Balosso, S.; Ravizza, T.; Liu, J.; Aronica, E.; Iyer, A.M.; Rossetti, C.; Molteni, M.; Casalgrandi, M.; Manfredi, A.A. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 2010, 16, 413–419. [Google Scholar] [CrossRef]
- Mareš, P. Age and activation determines the anticonvulsant effect of ifenprodil in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2014, 387, 753–761. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Li, T.; Shu, Y.; Qi, S.; Luan, G. Anti-epileptic effect of ifenprodil on neocortical pyramidal neurons in patients with malformations of cortical development. Exp. Ther. Med. 2017, 14, 5757–5766. [Google Scholar] [CrossRef] [Green Version]
- Gorlewicz, A.; Pijet, B.; Orlova, K.; Kaczmarek, L.; Knapska, E. Epileptiform GluN2B-driven excitation in hippocampus as a therapeutic target against temporal lobe epilepsy. Exp. Neurol. 2022, 354, 114087. [Google Scholar] [CrossRef] [PubMed]
- Zarnowski, T.; Kleinrok, Z.; Turski, W.; Czuczwar, S. The NMDA antagonist procyclidine, but not ifenprodil, enhances the protective efficacy of common antiepileptics against maximal electroshock-induced seizures in mice. J. Neural Transm. Gen. Sect. 1994, 97, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, R.; Abdolmaleki, Z.; Bahremand, T.; Ghasemi, M.; Gharghabi, M.; Dehpour, A.R. Involvement of N-Methyl-D-Aspartate Receptors in the Anticonvulsive Effects of Licofelone on Pentylenetetrazole-Induced Clonic Seizure in Mice. J. Epilepsy Res. 2021, 11, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J.E.; Ma, K.; Elstrott, J.; Weber, M.; Saillet, S.; Khan, A.S.; Simms, J.; Liu, B.; Kim, T.A.; Yu, G.-Q.; et al. GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer’s Disease Models. Cell Rep. 2020, 30, 381–396.e4. [Google Scholar] [CrossRef] [PubMed]
- Mareš, P.; Kozlová, L.; Mikulecká, A.; Kubová, H. The GluN2B-Selective Antagonist Ro 25-6981 Is Effective against PTZ-Induced Seizures and Safe for Further Development in Infantile Rats. Pharmaceutics 2021, 13, 1482. [Google Scholar] [CrossRef]
- Mares, P.; Tsenov, G.; Kubova, H. Anticonvulsant Action of GluN2A-Preferring Antagonist PEAQX in Developing Rats. Pharmaceutics 2021, 13, 415. [Google Scholar] [CrossRef]
- Sveinbjornsdottir, S.; Sander, J.; Upton, D.; Thompson, P.; Patsalos, P.; Hirt, D.; Emre, M.; Lowe, D.; Duncan, J. The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res. 1993, 16, 165–174. [Google Scholar] [CrossRef]
- Lipton, S.A. Failures and successes of NMDA receptor antagonists: Molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 2004, 1, 101–110. [Google Scholar] [CrossRef]
- Newcomer, J.W.; Farber, N.B.; Jevtovic-Todorovic, V.; Selke, G.; Melson, A.K.; Hershey, T.; Craft, S.; Olney, J.W. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 1999, 20, 106–118. [Google Scholar] [CrossRef]
- Ikonomidou, C.; Bosch, F.; Miksa, M.; Bittigau, P.; Vöckler, J.; Dikranian, K.; Tenkova, T.I.; Stefovska, V.; Turski, L.; Olney, J.W. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999, 283, 70–74. [Google Scholar] [CrossRef]
- Johnston, M.V. Neurotransmitters and vulnerability of the developing brain. Brain Dev. 1995, 17, 301–306. [Google Scholar] [CrossRef]
- Deutsch, S.I.; Mastropaolo, J.; Rosse, R.B. Neurodevelopmental consequences of early exposure to phencyclidine and related drugs. Clin. Neuropharmacol. 1998, 21, 320–332. [Google Scholar] [PubMed]
- Mondadori, C.; Weiskrantz, L.; Buerki, H.; Petschke, F.; Fagg, G.E. NMDA receptor antagonists can enhance or impair learning performance in animals. Exp. Brain Res. 1989, 75, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Bye, C.M.; McDonald, R.J. A Specific Role of Hippocampal NMDA Receptors and Arc Protein in Rapid Encoding of Novel Environmental Representations and a More General Long-Term Consolidation Function. Front. Behav. Neurosci. 2019, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Castellano, C.; Cestari, V.; Ciamei, A. NMDA receptors and learning and memory processes. Curr. Drug Targets 2001, 2, 273–283. [Google Scholar] [CrossRef]
- Honey, G.D.; Honey, R.A.; O’Loughlin, C.; Sharar, S.R.; Kumaran, D.; Suckling, J.; Menon, D.K.; Sleator, C.; Bullmore, E.T.; Fletcher, P.C. Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: An fMRI study. Cereb. Cortex 2005, 15, 749–759. [Google Scholar] [CrossRef]
- Hadj Tahar, A.; Blanchet, P.J.; Doyon, J. Motor-learning impairment by amantadine in healthy volunteers. Neuropsychopharmacology 2004, 29, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Rowland, L.M.; Astur, R.S.; Jung, R.E.; Bustillo, J.R.; Lauriello, J.; Yeo, R.A. Selective cognitive impairments associated with NMDA receptor blockade in humans. Neuropsychopharmacology 2005, 30, 633–639. [Google Scholar] [CrossRef]
- Yaksh, T.L.; Tozier, N.; Horais, K.A.; Malkmus, S.; Rathbun, M.; LaFranco, L.; Eisenach, J. Toxicology Profile of N -Methyl-d-aspartate Antagonists Delivered by Intrathecal Infusion in the Canine Model. Anesthesiology 2008, 108, 938–949. [Google Scholar] [CrossRef] [Green Version]
- Vranken, J.H.; Troost, D.; de Haan, P.; Pennings, F.A.; van der Vegt, M.H.; Dijkgraaf, M.G.; Hollmann, M.W. Severe toxic damage to the rabbit spinal cord after intrathecal administration of preservative-free S(+)-ketamine. Anesthesiology 2006, 105, 813–818. [Google Scholar] [CrossRef]
- Gomes, L.M.; Garcia, J.B.; Ribamar, J.S., Jr.; Nascimento, A.G. Neurotoxicity of subarachnoid preservative-free S(+)-ketamine in dogs. Pain Physician 2011, 14, 83–90. [Google Scholar] [PubMed]
- Karpinski, N.; Dunn, J.; Hansen, L.; Masliah, E. Subpial vacuolar myelopathy after intrathecal ketamine: Report of a case. Pain 1997, 73, 103–105. [Google Scholar] [CrossRef]
Substance | Effect on NMDARs | Seizure Model | Effect | Ref. |
---|---|---|---|---|
GNE-0723 | Positive allosteric modulator of GluN2A | Mouse model of Dravet syndrome | ↓ Low-frequency oscillatory and epileptiform activities | [204] |
Ro 25-6981 | Selective GluN2B antagonist | PTZ model in infantile (12-day-old, P12) and juvenile (25-day-old, P25) rats | ↓ PTZ-induced seizures in infantile, but not juvenile, rats | [205] |
PEAQX | Selective GluN2A antagonist | PTZ-induced generalized seizures | Age-dependent differences in anticonvulsant effects in PTZ-induced seizures and epilepsy after discharge | [206] |
DDBM | Both GluN1 and GluN2 antagonist | Rat ECS model of epilepsy | ↓ Seizure behaviors in rats | [162] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivakumar, S.; Ghasemi, M.; Schachter, S.C. Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals 2022, 15, 1297. https://doi.org/10.3390/ph15101297
Sivakumar S, Ghasemi M, Schachter SC. Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals. 2022; 15(10):1297. https://doi.org/10.3390/ph15101297
Chicago/Turabian StyleSivakumar, Shravan, Mehdi Ghasemi, and Steven C. Schachter. 2022. "Targeting NMDA Receptor Complex in Management of Epilepsy" Pharmaceuticals 15, no. 10: 1297. https://doi.org/10.3390/ph15101297
APA StyleSivakumar, S., Ghasemi, M., & Schachter, S. C. (2022). Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals, 15(10), 1297. https://doi.org/10.3390/ph15101297