Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families
Abstract
:1. Introduction
1.1. Objective of Review
1.2. Relevance to Hillsborough County in the State of Florida and Selection of Plant Families
1.3. Methods—Search Terms and Pubmed Results
2. Overview of Plant Families: Cucurbitaceae, Ericaceae, and Rosaceae
2.1. Plant Background
2.1.1. Plant Background on Cucurbitaceae
2.1.2. Plant Background on Ericaceae
2.1.3. Plant Background on Rosaceae
2.2. Overview of Plant Metabolite Type Use (Pure versus Mixture) and Human Disease Focus in the Reviewed Literature
3. Phytochemical-Induced Alterations on the Cytoskeleton
3.1. Importance of the Cytoskeleton
3.2. Effect of Cucurbitaceae Phytochemicals on the Cytoskeleton
3.2.1. Cucurbitacin B (CuB)
3.2.2. Cucurbitacin E (CuE)
3.2.3. Cucurbitacin I (CuI)
3.2.4. Other Cucurbitacins
3.3. Ericaceae Phytochemicals on the Cytoskeleton
3.3.1. Extracts
3.3.2. Purified Components
3.4. Rosaceae Phytochemicals on the Cytoskeleton
3.4.1. Extracts
3.4.2. Purified Components
4. Phytochemical-Induced Alterations on Protein Trafficking
4.1. Importance of Protein Trafficking Dynamics
4.2. Cucurbitaceae Phytochemicals in Protein Trafficking Dynamics
4.2.1. Cucurbitacin B (CuB)
4.2.2. Cucurbitacin E (CuE)
4.3. Ericaceae Phytochemicals in Protein Trafficking Dynamics
4.3.1. Extracts
4.3.2. Purified Components
4.4. Rosaceae Phytochemicals in Protein Trafficking Dynamics
4.4.1. Extracts
4.4.2. Purified Components
5. Phytochemical-Induced Alterations on Signaling
5.1. Importance of Signaling Events
5.2. Cucurbitaceae Phytochemicals in Signaling
5.2.1. Cucurbitacin A (CuA)
PI3K/AKT/mTOR Signaling
5.2.2. Cucurbitacin B (CuB)
PI3K/AKT/mTOR Signaling
JAK/STAT Signaling
MAPK Signaling
5.2.3. Cucurbitacin C (CuC)
JAK/STAT Signaling
5.2.4. Cucurbitacin D (CuD)
PI3K/AKT/mTOR Signaling
MAPK Signaling
5.2.5. Cucurbitacin E (CuE)
PI3K/AKT/mTOR Signaling
JAK/STAT Signaling
MAPK Signaling
5.2.6. Cucurbitacin I (CuI)
PI3K/AKT/mTOR Signaling
JAK/STAT Signaling
MAPK Signaling
5.2.7. Cucurbitacin Q (CuQ)
JAK/STAT Signaling
5.2.8. Cucurbitacin Derivatives
JAK/STAT and AKT Signaling
MAPK Signaling
5.3. Ericaceae Phytochemicals in Signaling
5.3.1. Ericaceae Extracts
PI3K/AKT/mTOR Signaling
JAK/STAT Signaling
MAPK Signaling
5.3.2. Ericaceae Purified Phytochemicals
PI3K/AKT/mTOR Signaling
MAPK Signaling
5.4. Rosaceae Phytochemicals in Signaling
5.4.1. Rosaceae Extracts
PI3K/AKT/mTOR Signaling
JAK/STAT Signaling
MAPK Signaling
5.4.2. Rosaceae Purified Phytochemicals
PI3K/AKT/mTOR Signaling
MAPK Signaling
Effects on Signaling | |||
---|---|---|---|
Cucurbitaceae | |||
Plant Metabolite | Signaling Pathway | Associated Disease Model | References |
CuA | PI3K/AKT/mTOR | Solid Tumors | [73,74] |
CuB | PI3K/AKT/mTOR | Cardiac Hypertrophy | [75] |
CuB | PI3K/AKT/mTOR | Solid Tumors | [76,77,78,79,80,81,82] |
CuB | JAK/STAT | Solid Tumors | [83,84,85,86,87,88] |
CuB | MAPK | Solid Tumors | [89,90] |
CuC | JAK/STAT | Solid Tumors | [92] |
CuD | PI3K/AKT/mTOR | Solid Tumors | [93] |
CuD | MAPK | Blood Cancers | [94] |
CuD | MAPK | Solid Tumors | [95] |
CuE | PI3K/AKT/mTOR | Solid Tumors | [96,97] |
CuE | JAK/STAT | Solid Tumors | [98] |
CuE | JAK/STAT | Neovascularization | [99] |
CuE | MAPK | Solid Tumors | [100,101] |
CuI | PI3K/AKT/mTOR | Solid Tumors | [102] |
CuI | JAK/STAT | Blood Cancers | [103] |
CuI | JAK/STAT | Solid Tumors | [104,105,106,107,108,109,110,111] |
CuI | MAPK | Blood Cancers | [112] |
CuI | MAPK | Solid Tumors | [113,114,115] |
CuI | MAPK | Cardiac | [116] |
CuQ | JAK/STAT | Solid Tumors | [117] |
Extract from leaves of C. colocynthis (L.) Shrad | JAK/STAT and AKT | Solid Tumors | [118] |
DHCE | MAPK | Solid Tumors | [119] |
CuIIa | MAPK | Solid Tumors | [120] |
CuIIb | MAPK | Solid Tumors | [121] |
Ericaceae | |||
Plant Metabolite | Signaling Pathway | Associated Disease Model | References |
Antho 50 (Bilberry extract from Vaccinium myrtillus L) | PI3K/AKT/mTOR | Blood Cancers | [122] |
Enriched fraction of cranberry oligomeric proanthocyanidins (PAC-1A) | PI3K/AKT/mTOR | Solid Tumors | [123] |
Cranberry proanthocyanidin extract (PAC-1) | PI3K/AKT/mTOR | Solid Tumors | [124] |
Cranberry proanthocyanidin extract (CPAC) | PI3K/AKT/mTOR | Solid Tumors | [125] |
Whole cranberry extracts from berry juice (CB) | PI3K/AKT/mTOR | Blood Cancers | [126] |
Whole cranberry powder from Vaccinium macrocarpon (WCP) | PI3K/AKT/mTOR | Solid Tumors | [127] |
Blueberry extract (BE) | PI3K/AKT/mTOR | Solid Tumors | [128] |
Whole blueberry extract from Vaccinium angustifolium | PI3K/AKT/mTOR | Solid Tumors | [129] |
Blueberry supplement from Vaccinium myrtillus | PI3K/AKT/mTOR | Solid Tumors | [130] |
Anthocyanins (ACN) | PI3K/AKT/mTOR | Solid Tumors | [131] |
Phenolic acids (PA) | PI3K/AKT/mTOR | Solid Tumors | |
Bilberry extract (BE) | PI3K/AKT/mTOR | Cardiovascular Disease | [132] |
Bilberry anthocyanins (BA) | PI3K/AKT/mTOR | Perimenopause | [133] |
Anthocyanin-enriched blueberry extract (BAE) | PI3K/AKT/mTOR | Metabolic Disorder | [134] |
Blueberry anthocyanin extract (BAE) | PI3K/AKT/mTOR | Metabolic Disorder | [135] |
Blueberry anthocyanin extract | PI3K/AKT/mTOR | Macular Degeneration | [136] |
Malvidin (Mv) | PI3K/AKT/mTOR | Macular Degeneration | |
Malvidin-3-glucoside (Mv-3-glc) | PI3K/AKT/mTOR | Macular Degeneration | |
Malvidin-3-galactoside (Mv-3-gal) | PI3K/AKT/mTOR | Macular Degeneration | |
Blueberries (BB) | PI3K/AKT/mTOR | Cognitive Function | [137] |
Rabbit-eye blueberry leaf fractions from Vaccinium virgatum Aiton | JAK/STAT | Blood Cancers | [138] |
Blueberry supplementation | JAK/STAT | Solid Tumors | [139] |
Malvidin (Mv) | JAK/STAT | Solid Tumors | |
Rhododendron album blume methanol extract (RAME) | JAK/STAT | Inflammation | [140] |
Extracts from chokeberry (Aronia melanocarpa) | MAPK | Solid Tumors | [141] |
Extracts from elderberry (Sambicus nigra) | MAPK | Solid Tumors | |
Extracts from bilberry (Vaccinium myrtillus) | MAPK | Solid Tumors | |
Microencapsulated form of bilberry extract | MAPK | Solid Tumors | [142] |
Mixture of 15 anthocyanins from bilberries | MAPK | Solid Tumors | [143] |
Polyphenol-enriched blueberry preparation (PEBP) from Vaccinium angustifolium Ait juice | MAPK | Solid Tumors | [144] |
Lingonberry extracts | MAPK | Solid Tumors | [145] |
Ethanol extracts from stems (VOS) of Vaccinium oldhamii Miquel | MAPK | Inflammation | [146] |
Ethanol extracts from leaves (VOL) of Vaccinium oldhamii Miquel | MAPK | Inflammation | |
Ethanol extracts from fruits (VOF) of Vaccinium oldhamii Miquel | MAPK | Inflammation | |
Anthocyanins extracted from blueberry (Vaccinium sp.) (BE) | MAPK | Inflammation | [147] |
Anthocyanin extract from bog blueberry (ATH-Bbe) | MAPK | Inflammation | [148] |
High-molecular weight non-dialyzable material (NDM) from cranberry juice of Vaccinium macrocarpon | MAPK | Inflammation | [149] |
Mixture of 7 phenolic acids (7PA) | MAPK | Inflammation | [150] |
Whole extract (TifBlue BB) from Vaccinium virgatum | MAPK | Cognitive Function | [151] |
Fractions from wild blueberry juice from Vaccinium angustifolium Aiton | MAPK | Cognitive Function | |
Blueberry supplementation (BB) | MAPK | Cognitive Function | [152] |
Pterostilbene (Pter) | PI3K/AKT/mTOR | Solid Tumors | [153,154] |
Cinnamtannin D1 (CNT D1) | PI3K/AKT/mTOR | Solid Tumors | [155] |
Rhodomeroterpene (RMT) | PI3K/AKT/mTOR | Inflammation | [156] |
Hyperoside | PI3K/AKT/mTOR | Inflammation | [157] |
Malvidin (Mv) | PI3K/AKT/mTOR | Metabolic Disorder | [158] |
Malvidin-3-glucoside (Mv-3-glc) | PI3K/AKT/mTOR | Metabolic Disorder | |
Malvidin-3-galactoside (Mv-3-gal) | PI3K/AKT/mTOR | Metabolic Disorder | |
Cya-3-Ara | PI3K/AKT/mTOR | Metabolic Disorder | [159] |
Purified cranberry flavonols and A type proanthocyanidins (PACs) | MAPK | Solid Tumors | [160] |
Malvidin-3-galactoside (M3G) | MAPK | Solid Tumors | [161] |
Methyl salicylate 2-O-b-D-lactoside (MSL) | MAPK | Inflammation | [162] |
Rhododendrin | MAPK | Inflammation | [163] |
Rosaceae | |||
Plant Metabolite | Signaling Pathway | Associated Disease Model | References |
Extracts from dried fruits of Rosa cymosa (RCE) | PI3K/AKT/mTOR | Blood Cancers | [164] |
Multiple polyphenolic fractions from Kakadu and Illawarra plums | PI3K/AKT/mTOR | Solid Tumors | [165] |
Methanol extract (RIME) from Rubus idaeus L | PI3K/AKT/mTOR | Solid Tumors | [166] |
Chloroform extract (RICE) from Rubus idaeus L | PI3K/AKT/mTOR | Solid Tumors | |
Ethyl acetate extract (RIAE) from Rubus idaeus L | PI3K/AKT/mTOR | Solid Tumors | |
N-butanol extract (RIBE) from Rubus idaeus L | PI3K/AKT/mTOR | Solid Tumors | |
Water extract (RIWE) from Rubus idaeus L | PI3K/AKT/mTOR | Solid Tumors | |
Extracts from lyophilized strawberries (Fragaria x ananassa) | PI3K/AKT/mTOR | Solid Tumors | [167] |
Extracts from red raspberry fruits of Rubus idaeus L (RRE) | PI3K/AKT/mTOR | Solid Tumors | [168] |
Extract from petals of Rosa gallica (RPE) | PI3K/AKT/mTOR | Solid Tumors | [169] |
Polyphenol-enriched plum pulp extract (PPP) from Wushancuili | PI3K/AKT/mTOR | Solid Tumors | [170] |
Red flesh component of apples (Meihong variety) (AFP) | PI3K/AKT/mTOR | Solid Tumors | [171] |
Peel component of apples (Meihong variety) (APP) | PI3K/AKT/mTOR | Solid Tumors | |
Extracts from fruits of Rubus coreanus Miquel (RCM): 50% ethanol extract from unripe RCM (UE), aqueous extract of unripe RCM (UH), 50% ethanol extract of ripe RCM (RE), and aqueous extract of ripe RCM (RH) | PI3K/AKT/mTOR | Solid Tumors | [172] |
Polysaccharide extract from Rosa rugosa petals (RRP) | PI3K/AKT/mTOR | Solid Tumors | [173] |
Ethanol extracts from apple Malus pumila Mill | PI3K/AKT/mTOR | Tissue Regeneration | [174] |
Black raspberry extract (BRE) | PI3K/AKT/mTOR | Inflammation | [175] |
Total flavonols (TFs) from leaves of Eriobotrya japonica | PI3K/AKT/mTOR | Inflammation | [176] |
Water extract from dried inner bark of stems of Sorbus commixta (Sc-WE) | PI3K/AKT/mTOR | Inflammation | [177] |
Bark extract from Prunus jamasakura | PI3K/AKT/mTOR | Inflammation | [178] |
Leaf extract from Eriobotrya japonica (LE) | PI3K/AKT/mTOR | Muscle Aging | [179] |
Extract from Aronia melanocarpa (AME) | PI3K/AKT/mTOR | Muscle Aging | [180] |
Polysaccharide ethanol extract (PAP) from roots of Potentilla anserine L | PI3K/AKT/mTOR | Neurodegenerative Disease | [181] |
Extracts from fruit of chokeberry (CBE) from Aronia melanocarpa | PI3K/AKT/mTOR | Metabolic Disorder | [182] |
Root, fruit, and leaf extracts from Sarcopoterium spinosum Sp | PI3K/AKT/mTOR | Metabolic Disorder | [183] |
Extracts from fruits (without seeds) of Crataegus pinnatifida Bge (HPE) | PI3K/AKT/mTOR | Metabolic Disorder | [184] |
Methanol extract from aerial components of Alchemilla monticola (ALM) | PI3K/AKT/mTOR | Metabolic Disorder | [185] |
Kaempferol-3-O-glucoside (AST) | PI3K/AKT/mTOR | Metabolic Disorder | |
Quercetin-3-O-rhamnoside (QUE) | PI3K/AKT/mTOR | Metabolic Disorder | |
Water extract from unripe fruits of Rubus coreanus Miquel (RF) | JAK/STAT | Inflammation | [186] |
Water extract from Sanguisorbae Radix (WSR) | JAK/STAT | Inflammation | [187] |
Ethanol extract from black raspberry powder (BRB-E) from Rubus occidentalis | JAK/STAT | Inflammation | [188] |
Strawberry extracts (Fragaria x ananassas cv. Earliglow) | MAPK | Solid Tumors | [189] |
Methylene chloride fraction from Geum japonicum Thunberg | MAPK | Solid Tumors | [190] |
Extracts from different stages of plum maturity (Prunus salicina Lindl cv Soldam): immature extract (IPE), midmature extract (MMPE), mature extract (MPE) | MAPK | Solid Tumors | [191] |
Total phenolics from dark sweet cheries (WE) | MAPK | Solid Tumors | [192,193] |
Enriched fractions of anthocyanins (ACN) and proanthocyanidins (PCA) | MAPK | Solid Tumors | |
Methanol extract from Agrimona Pilosa Ledeb (APLME) | MAPK | Solid Tumors | [194] |
Leaf extract from Chaenomeles japonica L (PRE) | MAPK | Solid Tumors | [195] |
Fruit juice concentrate from Asian plum (Bainiku-ekisu) | MAPK | Cardiovascular Disease | [196] |
Apple powder (skin and pulp) from two varieties of apples (Marie Menard and Golden Delicious) | MAPK | Inflammation | [197] |
Apple polyphenol extract (APP) | MAPK | Inflammation | [198] |
Extracts from the bark of Prunus yedoensis (PYE) | MAPK | Inflammation | [199] |
Extracts from berries of Crataegus laevigata (CLE) | MAPK | Inflammation | [200] |
Extracts from leaves of Rosa davurica Pall (RDL) | MAPK | Inflammation | [201] |
Peel extract from Cydonia oblonga miller | MAPK | Inflammation | [202] |
Extract from whole plant of Filipendula palmata (FPE) | MAPK | Inflammation | [203] |
Ripe fruit extracts from Rubus coreanus Miquel (RFRC) | MAPK | Allergic Responses | [204] |
Total flavonol extract (TFs) from Rosa laevigata michx | MAPK | Neurodegenerative Disease | [205] |
Extract from unripe fruit of Prunus mume | MAPK | Neurodegenerative Disease | [206] |
Extracts from fruits of Chaenomeles thibetica (CTE) | MAPK | Liver Injury | [207] |
Ethanol extracts from twigs of Sorbus commixta (STE) | MAPK | Skin Aging | [208] |
Extracts from cherry blossoms of Prubus yeonesis (CBE) | MAPK | Skin Aging | [209] |
Extract from dried fruit of Rubus idaeus L (RI) | MAPK | Skin Aging | [210] |
Polyphenol extracts from fruits of Crataegus pinnatifida (HPE) | MAPK | Skin Aging | [211] |
Extracts from leaves of Pourthiaea villosa (PVDE) | MAPK | Skin Aging | [212] |
Ethanol extracts from Potentilla glabra (Pg-EE) | MAPK | Skin Aging | [213] |
Extract from Crataegus pinnatifa fruits | MAPK | Hair Growth | [214] |
PDB-1 (C-27-carboxylated-lupane-triterpenoid derivative) | PI3K/AKT/mTOR | Solid Tumors | [215] |
Ellagic acid | PI3K/AKT/mTOR | Solid Tumors | [216] |
Euscaphic acid (EA) | PI3K/AKT/mTOR | Cardiovascular Disease | [217] |
Tormentic acid (TA) | PI3K/AKT/mTOR | Cardiovascular Disease | |
Cyanidin-3-rutinoside (C3R) | MAPK | Blood Cancers | [218] |
Astragalin | MAPK | Inflammation | [219] |
Phloretin | MAPK | Inflammation | [220] |
2′-3-dihydroxy-5-methoxybiphenyl (RIR-2) | MAPK | Inflammation | [221] |
Prunetin | MAPK | Skeletal Maintenance | [222] |
Trihydroxybenzaldehyde (THBA) | MAPK | Cardiovascular Disease | [223] |
6. Concluding Perspectives
6.1. Cytoskeletal Alterations—Future Perspectives and Gaps in Knowledge
6.2. Protein Trafficking Dynamics—Future Perspectives and Gaps in Knowledge
6.3. Signaling—Future Perspectives and Gaps in Knowledge
6.4. Limitations of This Study
6.5. Overall Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109 (Suppl. S1), 69–75. [Google Scholar] [PubMed]
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; et al. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022, 22, 206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hansen, L.G.; Gudich, O.; Viehrig, K.; Lassen, L.M.M.; Schrubbers, L.; Adhikari, K.B.; Rubaszka, P.; Carrasquer-Alvarez, E.; Chen, L.; et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 2022, 609, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, T.C.; da Silva, J.M.; Ramos, M.A. What Factors Guide the Selection of Medicinal Plants in a Local Pharmacopoeia? A Case Study in a Rural Community from a Historically Transformed Atlantic Forest Landscape. Evid. Based Complement. Alternat. Med. 2018, 2018, 2519212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kew RBG. State of the World’s Plants 2017. Royal Botanic Gardens, Kew. 2017. Available online: https://stateoftheworldsplants.org/ (accessed on 31 August 2022).
- Moerman, D.E. An analysis of the food plants and drug plants of native North America. J. Ethnopharmacol. 1996, 52, 1–22. [Google Scholar] [CrossRef]
- Ford, J.; Gaoue, O.G. Alkaloid-poor plant families, Poaceae and Cyperaceae, are over-utilized for medicine in Hawaiian pharmacopoeia. Econ. Bot. 2017, 71, 123–132. [Google Scholar] [CrossRef]
- Phumthum, M.; Balslev, H.; Barfod, A.S. Important Medicinal Plant Families in Thailand. Front Pharmacol. 2019, 10, 1125. [Google Scholar] [CrossRef] [Green Version]
- Wunderlin, R.P.; Hansen, B.F.; Franck, A.R.; Essig, F.B. Atlas of Florida Plants. Institute for Systematic Botany, University of South Florida, Tampa. 2022. Available online: http://florida.plantatlas.usf.edu/ (accessed on 19 July 2022).
- Rajasree, R.S.; Sibi, P.I.; Francis, F.; William, H. Phytochemicals of Cucurbitaceae Family—A Review. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 113–123. [Google Scholar]
- Alghasham, A.A. Cucurbitacins—A promising target for cancer therapy. Int. J. Health Sci. 2013, 7, 77–89. [Google Scholar] [CrossRef]
- Kaushik, U.; Aeri, V.; Mir, S.R. Cucurbitacins—An insight into medicinal leads from nature. Pharmacogn. Rev. 2015, 9, 12–18. [Google Scholar]
- Lyrene, P.M.; Sherman, W.B. The Rabbiteye Blueberry Industry in Florida—1887 to 1930—With notes on the Current Status of Abandoned Plantations. Econ. Bot. 1979, 33, 237–243. [Google Scholar] [CrossRef]
- Tundis, R.; Tenuta, M.C.; Loizzo, M.R.; Bonesi, M.; Finetti, F.; Trabalzini, L.; Deguin, B. Vaccinium Species (Ericaceae): From Chemical Composition to Bio-Functional Activities. Appl. Sci. 2021, 11, 5655. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, R.; Liu, Z.; Liu, W.; Xie, M.; Wei, S.; She, G. Phytochemicals and biological activities of poisonous genera of Ericaceae in China. Nat. Prod. Commun. 2014, 9, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Soundararajan, P.; Won, S.Y.; Kim, J.S. Insight on Rosaceae Family with Genome Sequencing and Functional Genomics Perspective. Biomed. Res. Int. 2019, 2019, 7519687. [Google Scholar] [CrossRef]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv. Nutr. 2016, 7, 44–65. [Google Scholar] [CrossRef] [Green Version]
- Aseervatham, J. Cytoskeletal Remodeling in Cancer. Biology 2020, 9, 385. [Google Scholar] [CrossRef]
- Bayless, K.J.; Johnson, G.A. Role of the Cytoskeleton in Formation and Maintenance of Angiogenic Sprouts. J. Vasc. Res. 2011, 48, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Haritunians, T.; Gueller, S.; Zhang, L.; Badr, R.; Yin, D.; Xing, H.; Fung, M.C.; Koeffler, H.P. Cucurbitacin B induces differentiation, cell cycle arrest, and actin cytoskeletal alterations in myeloid leukemia cells. Leuk. Res. 2008, 32, 1366–1373. [Google Scholar] [CrossRef]
- Zhu, J.-S.; Ouyang, D.-Y.; Shi, Z.-J.; Xu, L.-H.; Zhang, Y.-T.; He, X.-H. Cucurbitacin B Induces Cell Cycle Arrest, Apoptosis and Autophagy Associated with G Actin Reduction and Persistent Activation of Cofilin in Jurkat Cells. Pharmacology 2012, 89, 348–356. [Google Scholar] [CrossRef]
- Ueno, M.; Kariya, R.; Sittithumcharee, G.; Okada, S. Cucurbitacin B induces apoptosis of primary effusion lymphoma via disruption of cytoskeletal organization. Phytomedicine 2021, 85, 153545. [Google Scholar] [CrossRef]
- Wakimoto, N.; Yin, D.; O’Kelly, J.; Haritunians, T.; Karlan, B.; Said, J.; Xing, H.; Koeffler, H.P. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci. 2008, 99, 1793–1797. [Google Scholar] [CrossRef]
- Duangmano, S.; Sae-Lim, P.; Suksamrarn, A.; Domann, F.E.; Patmasiriwat, P. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation. BMC Complement. Altern. Med. 2012, 12, 185. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, X.L.; Yuan, J.W.; Zhang, H.R.; Liu, D.; Hao, J.; Ji, W.; Wu, X.Z.; Chen, D. Cucurbitacin B inhibits the migration and invasion of breast cancer cells by altering the biomechanical properties of cells. Phytother. Res. 2019, 33, 618–630. [Google Scholar] [CrossRef]
- Kausar, H.; Munagala, R.; Bansal, S.S.; Aqil, F.; Vadhanam, M.V.; Gupta, R.C. Cucurbitacin B potently suppresses non-small-cell lung cancer growth: Identification of intracellular thiols as critical targets. Cancer Lett. 2013, 332, 35–45. [Google Scholar] [CrossRef]
- Yin, D.; Wakimoto, N.; Xing, H.; Lu, D.; Huynh, T.; Wang, X.; Black, K.L.; Koeffler, H.P. Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. Int. J. Cancer 2008, 123, 1364–1375. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Xu, L.H.; Lu, Q.; Liu, K.P.; Liu, P.Y.; Ji, F.; Liu, X.M.; Ouyang, D.Y.; He, X.H. VASP activation via the Galpha13/RhoA/PKA pathway mediates cucurbitacin-B-induced actin aggregation and cofilin-actin rod formation. PLoS ONE 2014, 9, e93547. [Google Scholar]
- Nakashima, S.; Matsuda, H.; Kurume, A.; Oda, Y.; Nakamura, S.; Yamashita, M.; Yoshikawa, M. Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorg. Med. Chem. Lett. 2010, 20, 2994–2997. [Google Scholar] [CrossRef]
- Duncan, K.L.; Duncan, M.D.; Alley, M.C.; Sausville, E.A. Cucurbitacin E-induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells. Biochem. Pharmacol. 1996, 52, 1553–1560. [Google Scholar] [CrossRef]
- Zhang, T.; Li, J.; Dong, Y.; Zhai, D.; Lai, L.; Dai, F.; Deng, H.; Chen, Y.; Liu, M.; Yi, Z. Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Res. Treat. 2012, 135, 445–458. [Google Scholar] [CrossRef]
- Ma, G.; Luo, W.; Lu, J.; Ma, D.-L.; Leung, C.-H.; Wang, Y.; Chen, X. Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells. Chem. Biol. Interact. 2016, 253, 1–9. [Google Scholar] [CrossRef]
- Song, H.; Wang, Y.; Li, L.; Sui, H.; Wang, P.; Wang, F. Cucurbitacin E Inhibits Proliferation and Migration of Intestinal Epithelial Cells via Activating Cofilin. Front. Physiol. 2018, 9, 1090. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, P.M.; Iacob, R.E.; Fritzsche, M.; Engen, J.R.; Brieher, W.M.; Charras, G.; Eggert, U.S. The natural product cucurbitacin E inhibits depolymerization of actin filaments. ACS Chem. Biol. 2012, 7, 1502–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sari-Hassoun, M.; Clement, M.-J.; Hamdi, I.; Bollot, G.; Bauvais, C.; Joshi, V.; Toma, F.; Burgo, A.; Cailleret, M.; Rosales-Hernández, M.C.; et al. Cucurbitacin I elicits the formation of actin/phospho-myosin II co-aggregates by stimulation of the RhoA/ROCK pathway and inhibition of LIM-kinase. Biochem. Pharmacol. 2016, 102, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Boykin, C.; Zhang, G.; Chen, Y.H.; Zhang, R.W.; Fan, X.E.; Yang, W.M.; Lu, Q. Cucurbitacin IIa: A novel class of anti-cancer drug inducing non-reversible actin aggregation and inhibiting survivin independent of JAK2/STAT3 phosphorylation. Br. J. Cancer 2011, 104, 781–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.; Ouyang, D.-Y.; Saltis, M.; Xu, L.-H.; Zha, Q.-B.; Cai, J.-Y.; He, X.-H. Anti-proliferative effect of 23,24-dihydrocucurbitacin F on human prostate cancer cells through induction of actin aggregation and cofilin-actin rod formation. Cancer Chemother. Pharmacol. 2012, 70, 415–424. [Google Scholar] [CrossRef]
- Nakashima, S.; Oda, Y.; Morita, M.; Ohta, A.; Morikawa, T.; Matsuda, H.; Nakamura, S. Analysis of Active Compounds Using Target Protein Cofilin―Cucurbitacins in Cytotoxic Plant Bryonia cretica. Toxins 2022, 14, 212. [Google Scholar] [CrossRef]
- Harmidy, K.; Tufenkji, N.; Gruenheid, S. Perturbation of Host Cell Cytoskeleton by Cranberry Proanthocyanidins and Their Effect on Enteric Infections. PLoS ONE 2011, 6, e27267. [Google Scholar] [CrossRef]
- Nguyen, V.; Tang, J.; Oroudjev, E.; Lee, C.J.; Marasigan, C.; Wilson, L.; Ayoub, G. Cytotoxic Effects of Bilberry Extract on MCF7-GFP-Tubulin Breast Cancer Cells. J. Med. Food 2010, 13, 278–285. [Google Scholar] [CrossRef]
- Mak, K.K.; Wu, A.T.; Lee, W.H.; Chang, T.C.; Chiou, J.F.; Wang, L.S.; Wu, C.H.; Huang, C.Y.; Shieh, Y.S.; Chao, T.Y.; et al. Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-kappaB/microRNA 448 circuit. Mol. Nutr. Food Res. 2013, 57, 1123–1134. [Google Scholar] [CrossRef]
- Bubik, M.F.; Willer, E.A.; Bihari, P.; Jurgenliemk, G.; Ammer, H.; Krombach, F.; Zahler, S.; Vollmar, A.M.; Furst, R. A novel approach to prevent endothelial hyperpermeability: The Crataegus extract WS(R) 1442 targets the cAMP/Rap1 pathway. J. Mol. Cell Cardiol. 2012, 52, 196–205. [Google Scholar] [CrossRef]
- Sousa, M.; Machado, V.; Costa, R.; Figueira, M.; Sepodes, B.; Barata, P.; Ribeiro, L.; Soares, R. Red Raspberry Phenols Inhibit Angiogenesis: A Morphological and Subcellular Analysis Upon Human Endothelial Cells. J. Cell. Biochem. 2016, 117, 1604–1612. [Google Scholar] [CrossRef]
- Wu, T.-H.; Wang, P.-W.; Lin, T.-Y.; Yang, P.-M.; Li, W.-T.; Yeh, C.-T.; Pan, T.-L. Antioxidant properties of red raspberry extract alleviate hepatic fibrosis via inducing apoptosis and transdifferentiation of activated hepatic stellate cells. Biomed. Pharmacother. 2021, 144, 112284. [Google Scholar] [CrossRef]
- Park, H.; Park, H.; Chung, T.-W.; Choi, H.-J.; Jung, Y.-S.; Lee, S.-O.; Ha, K.-T. Effect of Sorbus commixta on the invasion and migration of human hepatocellular carcinoma Hep3B cells. Int. J. Mol. Med. 2017, 40, 483–490. [Google Scholar] [CrossRef]
- Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I.T. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. [Google Scholar] [CrossRef]
- Quiles, M.T.; Arbós, M.A.; Fraga, A.; de Torres, I.M.; Reventós, J.; Morote, J. Antiproliferative and apoptotic effects of the herbal agent Pygeum africanum on cultured prostate stromal cells from patients with benign prostatic hyperplasia (BPH). Prostate 2010, 70, 1044–1053. [Google Scholar] [CrossRef]
- Hsieh, Y.S.; Chu, S.C.; Hsu, L.S.; Chen, K.S.; Lai, M.T.; Yeh, C.H.; Chen, P.N. Rubus idaeus L. reverses epithelial-to-mesenchymal transition and suppresses cell invasion and protease activities by targeting ERK1/2 and FAK pathways in human lung cancer cells. Food Chem. Toxicol. 2013, 62, 908–918. [Google Scholar] [CrossRef]
- Chen, P.N.; Yang, S.F.; Yu, C.C.; Lin, C.Y.; Huang, S.H.; Chu, S.C.; Hsieh, Y.S. Duchesnea indica extract suppresses the migration of human lung adenocarcinoma cells by inhibiting epithelial-mesenchymal transition. Environ. Toxicol. 2017, 32, 2053–2063. [Google Scholar] [CrossRef]
- Sun, Q.; Dong, M.; Wang, Z.; Wang, C.; Sheng, D.; Li, Z.; Huang, D.; Yuan, C. Selenium-enriched polysaccharides from Pyracantha fortuneana (Se-PFPs) inhibit the growth and invasive potential of ovarian cancer cells through inhibiting beta-catenin signaling. Oncotarget 2016, 7, 28369–28383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Peng, C.; Yan, J.; Chen, P.; Jiang, C.; Sang, S.; Yuan, Y.; Hong, Y.; Yao, M. Sanguisorba officinalis L. suppresses 5-fluorouracil-sensitive and-resistant colorectal cancer growth and metastasis via inhibition of the Wnt/beta-catenin pathway. Phytomedicine 2022, 94, 153844. [Google Scholar] [CrossRef]
- Han, C.R.; Jun, D.Y.; Woo, H.J.; Jeong, S.-Y.; Woo, M.-H.; Kim, Y.H. Induction of microtubule-damage, mitotic arrest, Bcl-2 phosphorylation, Bak activation, and mitochondria-dependent caspase cascade is involved in human Jurkat T-cell apoptosis by aruncin B from Aruncus dioicus var. kamtschaticus. Bioorg. Med. Chem. Lett. 2012, 22, 945–953. [Google Scholar] [CrossRef]
- Wu, K.-H.; Ho, C.-T.; Chen, Z.-F.; Chen, L.-C.; Whang-Peng, J.; Lin, T.-N.; Ho, Y.-S. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J. Food Drug Anal. 2018, 26, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Eskra, J.N.; Schlicht, M.J.; Bosland, M.C. Effects of Black Raspberries and Their Ellagic Acid and Anthocyanin Constituents on Taxane Chemotherapy of Castration-Resistant Prostate Cancer Cells. Sci. Rep. 2019, 9, 4367. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Yang, L.; Wu, L.; Wang, H.; Chen, K.; Wu, H.; Li, Y. Kaempferol, the melanogenic component of Sanguisorba officinalis, enhances dendricity and melanosome maturation/transport in melanocytes. J. Pharmacol. Sci. 2021, 147, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Tejeda-Muñoz, N.; Mei, K.-C.; Sheladiya, P.; Monka, J. Targeting Membrane Trafficking as a Strategy for Cancer Treatment. Vaccines 2022, 10, 790. [Google Scholar] [CrossRef]
- Lippincott-Schwartz, J.; Roberts, T.H.; Hirschberg, K. Secretory Protein Trafficking and Organelle Dynamics in Living Cells. Annu. Rev. Cell Dev. Biol. 2000, 16, 557–589. [Google Scholar] [CrossRef]
- Dakeng, S.; Duangmano, S.; Jiratchariyakul, W.; U-Pratya, Y.; Bogler, O.; Patmasiriwat, P. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated beta-catenin to the nucleus. J. Cell Biochem. 2012, 113, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Cheng, W.; Yue, Y.; Hu, Y.; Zhang, J.; Pan, X.; Xu, Z.; Zhang, P. Cucurbitacin E inhibits TNF-alpha-induced inflammatory cytokine production in human synoviocyte MH7A cells via suppression of PI3K/Akt/NF-kappaB pathways. Int. Immunopharmacol. 2015, 29, 884–890. [Google Scholar] [CrossRef]
- Baba, A.B.; Kowshik, J.; Krishnaraj, J.; Sophia, J.; Dixit, M.; Nagini, S. Blueberry inhibits invasion and angiogenesis in 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinogenesis in hamsters via suppression of TGF-beta and NF-kappaB signaling pathways. J. Nutr. Biochem. 2016, 35, 37–47. [Google Scholar] [CrossRef]
- Turan, I.; Demir, S.; Yaman, S.O.; Canbolat, D.; Mentese, A.; Aliyazicioglu, Y. An Investigation of the Antiproliferative Effect of Rhododendron luteum Extract on Cervical Cancer (HeLa) Cells via Nrf2 Signaling Pathway. Nutr. Cancer 2022, 74, 1882–1893. [Google Scholar] [CrossRef]
- Macedo, D.; Jardim, C.E.C.G.; Figueira, I.; Almeida, A.F.; McDougall, G.J.; Stewart, D.; Yuste, J.E.; Tomás-Barberán, F.A.; Tenreiro, S.; Outeiro, T.F.; et al. (Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Sci. Rep. 2018, 8, 6965. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-Y.; Liu, Y.-M.; Wang, J.; Wang, X.-N.; Li, C.Y. Anti-Inflammatory Effect of the Blueberry Anthocyanins Malvidin-3-Glucoside and Malvidin-3-Galactoside in Endothelial Cells. Molecules 2014, 19, 12827–12841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, I.; Espín, J.C.; Carr, T.P.; Tomás-Barberán, F.A.; Chung, S. Raspberry seed flour attenuates high-sucrose diet-mediated hepatic stress and adipose tissue inflammation. J. Nutr. Biochem. 2016, 32, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leu, S.-Y.; Chen, Y.-C.; Tsai, Y.-C.; Hung, Y.-W.; Hsu, C.-H.; Lee, Y.M.; Cheng, P.-Y. Raspberry Ketone Reduced Lipid Accumulation in 3T3-L1 Cells and Ovariectomy-Induced Obesity in Wistar Rats by Regulating Autophagy Mechanisms. J. Agric. Food Chem. 2017, 65, 10907–10914. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Xiang, B.; Dolinsky, V.W.; Xia, M.; Shen, G.X. Saskatoon berry powder reduces hepatic steatosis and insulin resistance in high fat-high sucrose diet-induced obese mice. J. Nutr. Biochem. 2021, 95, 108778. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Giampieri, F.; Cianciosi, D.; Alvarez-Suarez, J.M.; Bullon, B.; Amici, A.; Quiles, J.L.; Forbes-Hernández, T.Y.; Battino, M. Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food Chem. Toxicol. 2021, 156, 112484. [Google Scholar] [CrossRef]
- Wanes, D.; Toutounji, M.; Sebai, H.; Rizk, S.; Naim, H.Y. Rosa canina L. Can Restore Endoplasmic Reticulum Alterations, Protein Trafficking and Membrane Integrity in a Dextran Sulfate Sodium-Induced Inflammatory Bowel Disease Phenotype. Nutrients 2021, 13, 441. [Google Scholar] [CrossRef]
- Wang, G.; Tang, J.; Song, Q.; Yu, Q.; Yao, C.; Li, P.; Ding, Y.; Lin, M.; Cheng, D. Malus micromalus Makino phenolic extract preserves hepatorenal function by regulating PKC-α signaling pathway and attenuating endoplasmic reticulum stress in lead (II) exposure mice. J. Inorg. Biochem. 2020, 203, 110925. [Google Scholar] [CrossRef]
- Zhao, R.; Xie, X.; Le, K.; Li, W.; Moghadasian, M.H.; Beta, T.; Shen, G.X. Endoplasmic reticulum stress in diabetic mouse or glycated LDL-treated endothelial cells: Protective effect of Saskatoon berry powder and cyanidin glycans. J. Nutr. Biochem. 2015, 26, 1248–1253. [Google Scholar] [CrossRef]
- Wang, D.; Lao, L.; Pang, X.; Qiao, Q.; Pang, L.; Feng, Z.; Bai, F.; Sun, X.; Lin, X.; Wei, J. Asiatic acid from Potentilla chinensis alleviates non-alcoholic fatty liver by regulating endoplasmic reticulum stress and lipid metabolism. Int. Immunopharmacol. 2018, 65, 256–267. [Google Scholar] [CrossRef]
- Golemis, E.A.; Ochs, M.F.; Pugacheva, E.N. Signal transduction driving technology driving signal transduction: Factors in the design of targeted therapies. J. Cell Biochem. 2001, 84 (Suppl. S1), 42–52. [Google Scholar] [CrossRef]
- Wang, W.D.; Liu, Y.; Su, Y.; Xiong, X.Z.; Shang, D.; Xu, J.J.; Liu, H.J. Antitumor and Apoptotic Effects of Cucurbitacin a in a-549 Lung Carcinoma Cells Is Mediated Via G2/M Cell Cycle Arrest and M-Tor/Pi3k/Akt Signalling Pathway. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Liu, X.; Ma, W.; Kou, W.; Li, C.; Zhao, J. Anticancer activity of cucurbitacin-A in ovarian cancer cell line SKOV3 involves cell cycle arrest, apoptosis and inhibition of mTOR/PI3K/Akt signaling pathway. J. BUON Off. J. Balk. Union Oncol. 2018, 23, 124–128. [Google Scholar]
- Xiao, Y.; Yang, Z.; Wu, Q.Q.; Jiang, X.H.; Yuan, Y.; Chang, W.; Bian, Z.Y.; Zhu, J.X.; Tang, Q.Z. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J. Cell Biochem. 2017, 118, 3899–3910. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Guo, X.X.; Li, W.W.; Rao, W.; Chen, M.L.; Mu, L.N.; Li, S.J. Cucurbitacin-B inhibits neuroblastoma cell proliferation through up-regulation of PTEN. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3297–3303. [Google Scholar] [PubMed]
- Qin, S.; Li, J.; Si, Y.; He, Z.; Zhang, T.; Wang, D.; Liu, X.; Guo, Y.; Zhang, L.; Li, S.; et al. Cucurbitacin B induces inhibitory effects via CIP2A/PP2A/Akt pathway in glioblastoma multiforme. Mol. Carcinog. 2018, 57, 687–699. [Google Scholar] [CrossRef]
- Gupta, P.; Srivastava, S.K. Inhibition of HER2-integrin signaling by Cucurbitacin B leads to in vitro and in vivo breast tumor growth suppression. Oncotarget 2014, 5, 1812–1828. [Google Scholar] [CrossRef] [Green Version]
- Cai, F.; Zhang, L.; Xiao, X.; Duan, C.; Huang, Q.; Fan, C.; Li, J.; Liu, X.; Li, S.; Liu, Y. Cucurbitacin B reverses multidrug resistance by targeting CIP2A to reactivate protein phosphatase 2A in MCF-7/adriamycin cells. Oncol. Rep. 2016, 36, 1180–1186. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Sun, W.; Lu, J.-J.; Ma, D.-L.; Leung, C.-H.; Pei, L.; Chen, X. PTEN Activation by DNA Damage Induces Protective Autophagy in Response to Cucurbitacin B in Hepatocellular Carcinoma Cells. Oxidative Med. Cell Longev. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Klungsaeng, S.; Kukongviriyapan, V.; Prawan, A.; Kongpetch, S.; Senggunprai, L. Cucurbitacin B induces mitochondrial-mediated apoptosis pathway in cholangiocarcinoma cells via suppressing focal adhesion kinase signaling. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 392, 271–278. [Google Scholar] [CrossRef]
- Zhou, B.; Zong, S.; Zhong, W.; Tian, Y.; Wang, L.; Zhang, Q.; Zhang, R.; Li, L.; Wang, W.; Zhao, J.; et al. Correction: Interaction between laminin-5gamma2 and integrin beta1 promotes the tumor budding of colorectal cancer via the activation of Yes-associated proteins. Oncogene 2020, 39, 1617. [Google Scholar] [CrossRef] [Green Version]
- Thoennissen, N.H.; Iwanski, G.B.; Doan, N.B.; Okamoto, R.; Lin, P.; Abbassi, S.; Song, J.H.; Yin, D.; Toh, M.; Xie, W.D.; et al. Cucurbitacin B Induces Apoptosis by Inhibition of the JAK/STAT Pathway and Potentiates Antiproliferative Effects of Gemcitabine on Pancreatic Cancer Cells. Cancer Res. 2009, 69, 5876–5884. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Sun, C.; Shan, X.; Yang, X.; Li-Ling, J.; Deng, Y. Inhibition of Pancreatic Cancer Cell Growth by Cucurbitacin B Through Modulation of Signal Transducer and Activator of Transcription 3 Signaling. Pancreas 2010, 39, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Iwanski, G.B.; Lee, D.H.; En-Gal, S.; Doan, N.B.; Castor, B.; Vogt, M.; Toh, M.; Bokemeyer, C.; Said, J.W.; Thoennissen, N.H.; et al. Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer. Br. J. Pharmacol. 2010, 160, 998–1007. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.R.; Gao, M.X.; Yang, K. Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways. Exp. Ther. Med. 2017, 14, 805–812. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, B.; Wei, H.; Zeng, H.; Sheng, D.; Zhang, Y. Cucurbitacin B controls M2 macrophage polarization to suppresses metastasis via targeting JAK-2/STAT3 signalling pathway in colorectal cancer. J. Ethnopharmacol. 2022, 287, 114915. [Google Scholar] [CrossRef]
- Liu, J.H.; Li, C.; Cao, L.; Zhang, C.H.; Zhang, Z.H. Cucurbitacin B regulates lung cancer cell proliferation and apoptosis via inhibiting the IL-6/STAT3 pathway through the lncRNA XIST/miR-let-7c axis. Pharm. Biol. 2022, 60, 154–162. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Wang, Y.; Li, W.; Li-Ling, J.; Deng, Y.; Zhang, M. Cucurbitacin B inhibits 12-O-tetradecanoylphorbol 13-acetate-induced invasion and migration of human hepatoma cells through inactivating mitogen-activated protein kinase and PI3K/Akt signal transduction pathways. Hepatol. Res. 2012, 42, 401–411. [Google Scholar] [CrossRef]
- Liu, P.; Xiang, Y.; Liu, X.; Zhang, T.; Yang, R.; Chen, S.; Xu, L.; Yu, Q.; Zhao, H.; Zhang, L.; et al. Cucurbitacin B Induces the Lysosomal Degradation of EGFR and Suppresses the CIP2A/PP2A/Akt Signaling Axis in Gefitinib-Resistant Non-Small Cell Lung Cancer. Molecules 2019, 24, 647. [Google Scholar] [CrossRef] [Green Version]
- Aiswarya, S.U.D.; Vikas, G.; Haritha, N.H.; Liju, V.B.; Shabna, A.; Swetha, M.; Rayginia, T.P.; Keerthana, C.K.; Nath, L.R.; Reshma, M.V.; et al. Purified and Characterized From the Rhizome of Corallocarpus epigaeus Exhibits Anti-Melanoma Potential. Front Oncol. 2022, 12, 903832. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Z.; Lin, M.; Shang, Y.; Wang, F.; Zhou, J.; Zhang, X.; Luo, X.; Huang, W. In Vitro and In Vivo Antitumor Activity of Cucurbitacin C, a Novel Natural Product From Cucumber. Front. Pharmacol. 2019, 10, 1287. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Z.; Wang, C.F.; Zhang, L.F. Cucurbitacin D impedes gastric cancer cell survival via activation of the iNOS/NO and inhibition of the Akt signalling pathway. Oncol. Rep. 2018, 39, 2595–2603. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shen, M.; Kitamura, N.; Sennari, Y.; Morita, K.; Tsukada, J.; Kanazawa, T.; Yoshida, Y. Mitogen-activated protein kinases are involved in cucurbitacin D-induced antitumor effects on adult T-cell leukemia cells. Investig. New Drugs 2021, 39, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Lee, K.; Ku, J.M.; Choi, Y.J.; Mok, K.; Kim, D.; Cheon, C.; Ko, S.G. Cucurbitacin D Induces G2/M Phase Arrest and Apoptosis via the ROS/p38 Pathway in Capan-1 Pancreatic Cancer Cell Line. Evid. Based Complement. Alternat. Med. 2020, 2020, 6571674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liang, H.; Xin, Y. Cucurbitacin E inhibits esophageal carcinoma cell proliferation, migration, and invasion by suppressing Rac1 expression through PI3K/AKT/mTOR pathway. Anti-Cancer Drugs 2020, 31, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Sui, H.; Zhang, Q.; Wang, P.; Wang, F. Cucurbitacin E Induces Autophagy-Involved Apoptosis in Intestinal Epithelial Cells. Front. Physiol. 2020, 11, 1020. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Guo, Q.; Liu, T.; Jiang, Y.; Zhao, M.; Zeng, K.; Tu, P. Cucurbitacin E Inhibits Huh7 Hepatoma Carcinoma Cell Proliferation and Metastasis via Suppressing MAPKs and JAK/STAT3 Pathways. Molecules 2020, 25, 560. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Lu, B.; Zhang, X.; Zhang, J.; Lai, L.; Li, D.; Wu, Y.; Song, Y.; Luo, J.; Pang, X.; et al. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 2010, 31, 2097–2104. [Google Scholar] [CrossRef] [Green Version]
- Jing, S.-Y.; Wu, Z.-D.; Zhang, T.-H.; Zhang, J.; Wei, Z.-Y. In vitro antitumor effect of cucurbitacin E on human lung cancer cell line and its molecular mechanism. Chin. J. Nat. Med. 2020, 18, 483–490. [Google Scholar] [CrossRef]
- Kong, Y.; Chen, J.; Zhou, Z.; Xia, H.; Qiu, M.H.; Chen, C. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer. PLoS ONE 2014, 9, e103760. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Huang, H.; Zhang, J.; Liu, H.; Hao, L.; Xiao, M.; Wu, Y. The anticancer effects of Cucurbitacin I inhibited cell growth of human non-small cell lung cancer through PI3K/AKT/p70S6K pathway. Mol. Med. Rep. 2018, 17, 2750–2756. [Google Scholar] [CrossRef] [Green Version]
- Van Kester, M.S.; Out-Luiting, J.J.; von dem Borne, P.A.; Willemze, R.; Tensen, C.P.; Vermeer, M.H. Cucurbitacin I inhibits Stat3 and induces apoptosis in Sezary cells. J. Investig. Dermatol. 2008, 128, 1691–1695. [Google Scholar] [CrossRef] [Green Version]
- Blaskovich, M.A.; Sun, J.; Cantor, A.; Turkson, J.; Jove, R.; Sebti, S.M. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res. 2003, 63, 1270–1279. [Google Scholar]
- Guo, H.; Kuang, S.; Song, Q.-L.; Liu, M.; Sun, X.-X.; Yu, Q. Cucurbitacin I inhibits STAT3, but enhances STAT1 signaling in human cancer cells in vitro through disrupting actin filaments. Acta Pharmacol. Sin. 2018, 39, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Al-Harbi, B.; Aboussekhra, A. Cucurbitacin I (JSI-124)-dependent inhibition of STAT3 permanently suppresses the pro-carcinogenic effects of active breast cancer-associated fibroblasts. Mol. Carcinog. 2021, 60, 242–251. [Google Scholar] [CrossRef]
- Su, Y.; Li, G.; Zhang, X.; Gu, J.; Zhang, C.; Tian, Z.; Zhang, J. JSI-124 inhibits glioblastoma multiforme cell proliferation through G(2)/M cell cycle arrest and apoptosis augment. Cancer Biol. Ther. 2008, 7, 1243–1249. [Google Scholar] [CrossRef]
- Yuan, G.; Yan, S.-F.; Xue, H.; Zhang, P.; Sun, J.-T.; Li, G. Cucurbitacin I Induces Protective Autophagy in Glioblastoma in Vitro and in Vivo. J. Biol. Chem. 2014, 289, 10607–10619. [Google Scholar] [CrossRef] [Green Version]
- Chau, M.N.; Banerjee, P.P. Development of a STAT3 reporter prostate cancer cell line for high throughput screening of STAT3 activators and inhibitors. Biochem. Biophys. Res. Commun. 2008, 377, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Lui, V.W.; Yau, D.M.; Wong, E.Y.; Ng, Y.-K.; Lau, C.P.-K.; Ho, Y.; Chan, J.P.; Hong, B.; Ho, K.; Cheung, C.S.; et al. Cucurbitacin I elicits anoikis sensitization, inhibits cellular invasion and in vivo tumor formation ability of nasopharyngeal carcinoma cells. Carcinogenesis 2009, 30, 2085–2094. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Xia, G.; Huang, C.R.; Wang, J.X.; Zhang, J. JSI-124 (Cucurbitacin I) Inhibits Tumor Angiogenesis of Human Breast Cancer Through Reduction of STAT3 Phosphorylation. Am. J. Chin. Med. 2015, 43, 337–347. [Google Scholar] [CrossRef]
- Ishdorj, G.; Johnston, J.B.; Gibson, S.B. Cucurbitacin-I (JSI-124) activates the JNK/c-Jun signaling pathway independent of apoptosis and cell cycle arrest in B Leukemic Cells. BMC Cancer 2011, 11, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escandell, J.M.; Kaler, P.; Recio, M.C.; Sasazuki, T.; Shirasawa, S.; Augenlicht, L.; Ríos, J.-L.; Klampfer, L. Activated kRas protects colon cancer cells from cucurbitacin-induced apoptosis: The role of p53 and p21. Biochem. Pharmacol. 2008, 76, 198–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, Y.; Wu, S.; Wang, X.; Zhu, G.; Chen, X.; Ding, Y.; Jiang, W. Cucurbitacin I induces pro-death autophagy in A549 cells via the ERK-mTOR-STAT3 signaling pathway. J. Cell Biochem. 2018, 119, 6104–6112. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, B.; Zhang, S.; Duan, C.; Cao, Y.; Kang, W.; Yan, H.; Ding, X.; Zhou, F.; Wu, L.; et al. Low nanomolar concentrations of Cucurbitacin-I induces G2/M phase arrest and apoptosis by perturbing redox homeostasis in gastric cancer cells in vitro and in vivo. Cell Death Dis. 2016, 7, e2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Chen, H.; Li, R.; Wang, X.; Li, H.; Xin, J.; Liu, Z.; Wu, S.; Jiang, W.; Zhu, L. Cucurbitacin-I induces hypertrophy in H9c2 cardiomyoblasts through activation of autophagy via MEK/ERK1/2 signaling pathway. Toxicol. Lett. 2016, 264, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Blaskovich, M.A.; Jove, R.; Livingston, S.K.; Coppola, D. Sa Cucurbitacin Q: A selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 2005, 24, 3236–3245. [Google Scholar] [CrossRef]
- Tannin-Spitz, T.; Grossman, S.; Dovrat, S.; Gottlieb, H.E.; Bergman, M. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. Biochem. Pharmacol. 2007, 73, 56–67. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Dong, A.; Huo, X.; Wang, H.; Wang, J.; Si, J. The Inhibition of Gastric Cancer Cells’ Progression by 23,24-Dihydrocucurbitacin E through Disruption of the Ras/Raf/ERK/MMP9 Signaling Pathway. Molecules 2022, 27, 2697. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Y.; Liang, Y.; Zou, H.; Zuo, P.; Yan, M.; Jing, S.; Li, T.; Wang, Y.; Li, D.; et al. Cucurbitacin IIa interferes with EGFR-MAPK signaling pathway leads to proliferation inhibition in A549 cells. Food Chem. Toxicol. 2019, 132, 110654. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, T.; Ren, L.; Jing, S.; Li, Z.; Zuo, P.; Li, T.; Wang, Y.; Zhang, J.; Wei, Z. Cucurbitacin IIb induces apoptosis and cell cycle arrest through regulating EGFR/MAPK pathway. Environ. Toxicol. Pharmacol. 2021, 81, 103542. [Google Scholar] [CrossRef]
- Alhosin, M.; Leon-Gonzalez, A.J.; Dandache, I.; Lelay, A.; Rashid, S.K.; Kevers, C.; Pincemail, J.; Fornecker, L.M.; Mauvieux, L.; Herbrecht, R.; et al. Bilberry extract (Antho 50) selectively induces redox-sensitive caspase 3-related apoptosis in chronic lymphocytic leukemia cells by targeting the Bcl-2/Bad pathway. Sci. Rep. 2015, 5, 8996. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, R.A.; Percival, S.S. Cranberry extract initiates intrinsic apoptosis in HL-60 cells by increasing BAD activity through inhibition of AKT phosphorylation. BMC Complement. Med. Ther. 2020, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vorsa, N.; Singh, A.P.; Lange, T.S.; Kim, K.K.; Brard, L.; Horan, T.; Moore, R.G.; Singh, R.K. Purified cranberry proanthocyanidines (PAC-1A) cause pro-apoptotic signaling, ROS generation, cyclophosphamide retention and cytotoxicity in high-risk neuroblastoma cells. Int. J. Oncol. 2012, 40, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.K.; Singh, A.P.; Singh, R.K.; DeMartino, A.; Brard, L.; Vorsa, N.; Lange, T.S.; Moore, R.G. Anti-angiogenic activity of cranberry proanthocyanidins and cytotoxic properties in ovarian cancer cells. Int. J. Oncol. 2012, 40, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Déziel, B.A.; Patel, K.; Neto, C.; Gottschall-Pass, K.; Hurta, R.A. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways. J. Cell Biochem. 2010, 111, 742–754. [Google Scholar] [CrossRef]
- Wu, X.; Song, M.; Cai, X.; Neto, C.; Tata, A.; Han, Y.; Wang, Q.; Tang, Z.; Xiao, H. Chemopreventive Effects of Whole Cranberry (Vaccinium macrocarpon) on Colitis-Associated Colon Tumorigenesis. Mol. Nutr. Food Res. 2018, 62, e1800942. [Google Scholar] [CrossRef]
- Lin, Y.; Li, B.; Zhao, J.; Wei, L.; Wang, Y.; Wang, M.; Dia, V.P.; Meng, X. Combinatorial effect of blueberry extracts and oxaliplatin in human colon cancer cells. J. Cell Physiol. 2019, 234, 17242–17253. [Google Scholar] [CrossRef]
- Adams, L.S.; Phung, S.; Yee, N.; Seeram, N.P.; Li, L.; Chen, S. Blueberry Phytochemicals Inhibit Growth and Metastatic Potential of MDA-MB-231 Breast Cancer Cells through Modulation of the Phosphatidylinositol 3-Kinase Pathway. Cancer Res. 2010, 70, 3594–3605. [Google Scholar] [CrossRef] [Green Version]
- Ranjani, S.; Kowshik, J.; Sophia, J.; Nivetha, R.; Baba, A.B.; Veeravarmal, V.; Joksic, G.; Rutqvist, L.E.; Nilsson, R.; Nagini, S. Activation of PI3K/Akt/NF-kB Signaling Mediates Swedish Snus Induced Proliferation and Apoptosis Evasion in the Rat Forestomach: Modulation by Blueberry. Anticancer Agents Med. Chem. 2020, 20, 59–69. [Google Scholar] [CrossRef]
- Tsakiroglou, P.; Weber, J.; Ashworth, S.; Del Bo’, C.; Klimis-Zacas, D. Angiogenesis is Differentially Modulated by Anthocyanin and Phenolic Acid Extracts from Wild Blueberry (V. angustifolium) Through PI3K Pathway. J. Med. Food 2021, 24, 226–235. [Google Scholar] [CrossRef]
- Bryl-Gorecka, P.; Sathanoori, R.; Arevstrom, L.; Landberg, R.; Bergh, C.; Evander, M.; Olde, B.; Laurell, T.; Frobert, O.; Erlinge, D. Bilberry Supplementation after Myocardial Infarction Decreases Microvesicles in Blood and Affects Endothelial Vesiculation. Mol. Nutr. Food Res. 2020, 64, e2000108. [Google Scholar] [CrossRef]
- Li, N.; Li, J.; Hao, J.; Zhang, M.; Yin, J.; Geng, J.; Wu, T.; Lyv, X. Bilberry anthocyanin improves the serum cholesterol in aging perimenopausal rats via the estrogen receptor signaling pathway. Food Funct. 2019, 10, 3430–3438. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Tian, J.; Shu, C.; Wang, Y.; Gong, E.; Zhang, Y.; Zhang, W.; Cui, H.; Li, B. Serum Ceramide Reduction by Blueberry Anthocyanin-Rich Extract Alleviates Insulin Resistance in Hyperlipidemia Mice. J. Agric. Food Chem. 2020, 68, 8185–8194. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yan, Z.; Li, D.; Ma, Y.; Zhou, J.; Sui, Z. Antioxidant and Anti-Inflammatory Effects of Blueberry Anthocyanins on High Glucose-Induced Human Retinal Capillary Endothelial Cells. Oxidative Med. Cell Longev. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-Y.; Wu, H.; Li, D.-J.; Song, J.-F.; Xiao, Y.-D.; Liu, C.-Q.; Zhou, J.-Z.; Sui, Z.-Q. Protective Effects of Blueberry Anthocyanins against H2O2-Induced Oxidative Injuries in Human Retinal Pigment Epithelial Cells. J. Agric. Food Chem. 2018, 66, 1638–1648. [Google Scholar] [CrossRef]
- Williams, C.; El Mohsen, M.A.; Vauzour, D.; Rendeiro, C.; Butler, L.T.; Ellis, J.A.; Whiteman, M.; Spencer, J.P. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med. 2008, 45, 295–305. [Google Scholar] [CrossRef]
- Ichikawa, T.; Sugamoto, K.; Matsuura, Y.; Kunitake, H.; Shimoda, K.; Morishita, K. Inhibition of adult T-cell leukemia cell proliferation by polymerized proanthocyanidin from blueberry leaves through JAK proteolysis. Cancer Sci. 2022, 113, 1406–1416. [Google Scholar] [CrossRef]
- Baba, A.B.; Nivetha, R.; Chattopadhyay, I.; Nagini, S. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway. Food Chem. Toxicol. 2017, 109, 534–543. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, H.S.; Lim, Y.; Paik, J.H.; Kwon, O.K.; Kim, J.H.; Paryanto, I.; Yunianto, P.; Choi, S.; Oh, S.R.; et al. Rhododendron album Blume extract inhibits TNF-alpha/IFN-gamma-induced chemokine production via blockade of NF-kappaB and JAK/STAT activation in human epidermal keratinocytes. Int. J. Mol. Med. 2018, 41, 3642–3652. [Google Scholar]
- Rooprai, H.K.; Christidou, M.; Murray, S.A.; Davies, D.; Selway, R.; Gullan, R.W.; Pilkington, G.J. Inhibition of Invasion by Polyphenols from Citrus Fruit and Berries in Human Malignant Glioma Cells In Vitro. Anticancer Res. 2021, 41, 619–633. [Google Scholar] [CrossRef]
- Kropat, C.; Betz, M.; Kulozik, U.; Leick, S.; Rehage, H.; Boettler, U.; Teller, N.; Marko, D. Effect of Microformulation on the Bioactivity of an Anthocyanin-rich Bilberry Pomace Extract (Vaccinium myrtillus L.) in Vitro. J. Agric. Food Chem. 2013, 61, 4873–4881. [Google Scholar] [CrossRef]
- Teller, N.; Thiele, W.; Marczylo, T.H.; Gescher, A.J.; Boettler, U.; Sleeman, J.; Marko, D. Suppression of the Kinase Activity of Receptor Tyrosine Kinases by Anthocyanin-Rich Mixtures Extracted from Bilberries and Grapes. J. Agric. Food Chem. 2009, 57, 3094–3101. [Google Scholar] [CrossRef]
- Vuong, T.; Mallet, J.-F.; Ouzounova, M.; Rahbar, S.; Hernandez-Vargas, H.; Herceg, Z.; Matar, C. Role of a polyphenol-enriched preparation on chemoprevention of mammary carcinoma through cancer stem cells and inflammatory pathways modulation. J. Transl. Med. 2016, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Feng, R.; Bowman, L.; Penhallegon, R.; Ding, M.; Lu, Y. Antioxidant activity in lingonberries (Vaccinium vitis-idaea L.) and its inhibitory effect on activator protein-1, nuclear factor-kappaB, and mitogen-activated protein kinases activation. J. Agric. Food Chem. 2005, 53, 3156–3166. [Google Scholar] [CrossRef]
- Kim, H.N.; Baek, J.K.; Park, S.B.; Kim, J.D.; Son, H.J.; Park, G.H.; Eo, H.J.; Park, J.H.; Jung, H.S.; Jeong, J.B. Anti-inflammatory effect of Vaccinium oldhamii stems through inhibition of NF-kappaB and MAPK/ATF2 signaling activation in LPS-stimulated RAW264.7 cells. BMC Complement. Altern. Med. 2019, 19, 291. [Google Scholar]
- Shu, C.; Tian, J.; Si, X.; Xie, X.; Li, B.; Li, D. Blueberry anthocyanin extracts protect against Helicobacter pylori-induced peptic epithelium injuries both in vitro and in vivo: The key role of MAPK/NF-kappaB pathway. Eur. J. Nutr. 2022, 61, 2749–2759. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Lim, S.S.; Kim, S.J.; Choi, J.-S.; Park, J.; Ju, S.M.; Han, S.J.; Kang, I.-J.; Kang, Y.-H. Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermal fibroblasts. Mol. Nutr. Food Res. 2009, 53, 726–738. [Google Scholar] [CrossRef]
- Tipton, D.A.; Carter, T.B.; Dabbous, M. Inhibition of interleukin 1beta-stimulated interleukin-6 production by cranberry components in human gingival epithelial cells: Effects on nuclear factor kappaB and activator protein 1 activation pathways. J. Periodontal. Res. 2014, 49, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Kang, J.; Chen, J.R.; Nagarajan, S.; Badger, T.M.; Wu, X. Phenolic acids are in vivo atheroprotective compounds appearing in the serum of rats after blueberry consumption. J. Agric. Food Chem. 2011, 59, 10381–10387. [Google Scholar] [CrossRef]
- Joseph, J.A.; Shukitt-Hale, B.; Brewer, G.J.; Weikel, K.A.; Kalt, W.; Fisher, D.R. Differential Protection among Fractionated Blueberry Polyphenolic Families against DA-, Aβ42- and LPS-Induced Decrements in Ca2+ Buffering in Primary Hippocampal Cells. J. Agric. Food Chem. 2010, 58, 8196–8204. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Bickford, P.C.; Sanberg, P.; Giunta, B.; Tan, J. Blueberry opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activation protein kinase. Rejuvenation Res. 2008, 11, 891–901. [Google Scholar] [CrossRef]
- Tolba, M.F.; Abdel-Rahman, S.Z. Pterostilbine, an active component of blueberries, sensitizes colon cancer cells to 5-fluorouracil cytotoxicity. Sci. Rep. 2015, 5, 15239. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Xu, Z.; Chang, G.; Hou, J.; Hu, L.; Zhang, Y.; Yu, D.; Li, B.; Chang, S.; Xie, Y.; et al. The blueberry component pterostilbene has potent anti-myeloma activity in bortezomib-resistant cells. Oncol. Rep. 2017, 38, 488–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Way, T.D.; Tsai, S.J.; Wang, C.M.; Jhan, Y.L.; Ho, C.T.; Chou, C.H. Cinnamtannin D1 from Rhododendron formosanum Induces Autophagy via the Inhibition of Akt/mTOR and Activation of ERK1/2 in Non-Small-Cell Lung Carcinoma Cells. J. Agric. Food Chem. 2015, 63, 10407–10417. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shi, Q.; Zhu, P.; Ma, H.; Cui, S.; Li, J.; Hou, A.; Li, J. Rhodomeroterpene alleviates macrophage infiltration and the inflammatory response in renal tissue to improve acute kidney injury. FASEB J. 2021, 35, e21985. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.-K.; Zhou, W.; Lee, W.; Han, M.-S.; Na, M.; Bae, J.-S. Anti-Inflammatory Effects of Hyperoside in Human Endothelial Cells and in Mice. Inflammation 2015, 38, 784–799. [Google Scholar] [CrossRef]
- Huang, W.; Hutabarat, R.P.; Chai, Z.; Zheng, T.; Zhang, W.; Li, D. Antioxidant Blueberry Anthocyanins Induce Vasodilation via PI3K/Akt Signaling Pathway in High-Glucose-Induced Human Umbilical Vein Endothelial Cells. Int. J. Mol. Sci. 2020, 21, 1575. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.-L.; Liao, X.-J.; Wang, Y.-H.; Si, X.; Shu, C.; Gong, E.-S.; Xie, X.; Ran, X.-L.; Li, B. Identification of Cyanidin-3-arabinoside Extracted from Blueberry as a Selective Protein Tyrosine Phosphatase 1B Inhibitor. J. Agric. Food Chem. 2019, 67, 13624–13634. [Google Scholar] [CrossRef]
- Wang, Y.; Han, A.; Chen, E.; Singh, R.K.; Chichester, C.O.; Moore, R.G.; Singh, A.P.; Vorsa, N. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int. J. Oncol. 2015, 46, 1924–1934. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Lin, J.; Tian, J.; Si, X.; Jiao, X.; Zhang, W.; Gong, E.; Li, B. Blueberry Malvidin-3-galactoside Suppresses Hepatocellular Carcinoma by Regulating Apoptosis, Proliferation, and Metastasis Pathways In Vivo and In Vitro. J. Agric. Food Chem. 2019, 67, 625–636. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Xin, W.; Li, Y.; Ni, L.; Ma, X.; Zhang, D.; Zhang, D.; Zhang, T.; Du, G. Anti-inflammation effect of methyl salicylate 2-O-beta-D-lactoside on adjuvant induced-arthritis rats and lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells. Int. Immunopharmacol. 2015, 25, 88–95. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Kim, B.H.; Kim, S.; Oh, I.; Lee, S.; Shin, J.; Kim, T.Y. Rhododendrin ameliorates skin inflammation through inhibition of NF-kappaB, MAPK, and PI3K/Akt signaling. Eur. J. Pharmacol. 2013, 714, 7–14. [Google Scholar] [CrossRef]
- Wang, K.-C.; Liu, Y.-C.; El-Shazly, M.; Shih, S.-P.; Du, Y.-C.; Hsu, Y.-M.; Lin, H.-Y.; Chen, Y.-C.; Wu, Y.-C.; Yang, S.-C.; et al. The Antioxidant from Ethanolic Extract of Rosa cymosa Fruits Activates Phosphatase and Tensin Homolog In Vitro and In Vivo: A New Insight on Its Antileukemic Effect. Int. J. Mol. Sci. 2019, 20, 1935. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.C.; Kończak, I.; Ramzan, I.; Zabaras, D.; Sze, D.M.-Y. Potential Antioxidant, Antiinflammatory, and Proapoptotic Anticancer Activities of Kakadu Plum and Illawarra Plum Polyphenolic Fractions. Nutr. Cancer 2011, 63, 1074–1084. [Google Scholar] [CrossRef]
- Chu, S.-C.; Hsieh, Y.-S.; Hsu, L.-S.; Chen, K.-S.; Chiang, C.-C.; Chen, P.-N. Rubus idaeus L Inhibits Invasion Potential of Human A549 Lung Cancer Cells by Suppression Epithelial-to-Mesenchymal Transition and Akt Pathway In Vitro and Reduces Tumor Growth In Vivo. Integr. Cancer Ther. 2014, 13, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Shi, N.; Clinton, S.K.; Liu, Z.; Wang, Y.; Riedl, K.M.; Schwartz, S.J.; Zhang, X.; Pan, Z.; Chen, T. Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice. Nutrients 2015, 7, 1696–1715. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, J.; Li, G.; Wei, J.; Chen, H.; Zhang, C.; Zhao, J.; Wang, Y.; Dang, S.; Li, X.; et al. Fresh red raspberry phytochemicals suppress the growth of hepatocellular carcinoma cells by PTEN/AKT pathway. Int. J. Biochem. Cell Biol. 2018, 104, 55–65. [Google Scholar] [CrossRef]
- Lim, W.-C.; Choi, H.-K.; Kim, K.-T.; Lim, T.-G. Rose (Rosa gallica) Petal Extract Suppress Proliferation, Migration, and Invasion of Human Lung Adenocarcinoma A549 Cells through via the EGFR Signaling Pathway. Molecules 2020, 25, 5119. [Google Scholar] [CrossRef]
- Li, W.; Cheng, M.; Zhang, W.; He, R.; Yang, H. New Insights into the Mechanisms of Polyphenol from Plum Fruit Inducing Apoptosis in Human Lung Cancer A549 Cells Via PI3K/AKT/FOXO1 Pathway. Mater. Veg. 2021, 76, 125–132. [Google Scholar] [CrossRef]
- Li, C.X.; Lin, Z.X.; Zhao, X.H.; Zuo, W.F.; Wang, N.; Zhang, Z.Y.; Chen, X.S. Differential effects of phenolic extracts from red-fleshed apple peels and flesh induced G1 cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 cells. J. Food Sci. 2021, 86, 4209–4222. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.M.; Kim, J.-H. Unripe Rubus coreanus Miquel suppresses migration and invasion of human prostate cancer cells by reducing matrix metalloproteinase expression. Biosci. Biotechnol. Biochem. 2014, 78, 1402–1411. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Zheng, Z.; Niu, A.; Liu, S.; Li, W.; Ren, P.; Liu, Y.; Inam, M.; Guan, L.; et al. Rosa rugosa polysaccharide induces autophagy-mediated apoptosis in human cervical cancer cells via the PI3K/AKT/mTOR pathway. Int. J. Biol. Macromol. 2022, 212, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Shin, M.S.; Kim, M.O.; Jang, S.; Oh, S.W.; Kang, M.; Jung, K.; Park, Y.S.; Lee, J. Apple ethanol extract promotes proliferation of human adult stem cells, which involves the regenerative potential of stem cells. Nutr. Res. 2016, 36, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Medda, R.; Lyros, O.; Schmidt, J.L.; Jovanovic, N.; Nie, L.; Link, B.J.; Otterson, M.F.; Stoner, G.D.; Shaker, R.; Rafiee, P. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells. Microvasc. Res. 2015, 97, 167–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, T.; Chen, J.; Ding, X.; Lv, H.; Li, J.; Wu, Y.; Ren, B.; Tong, B.; Zuo, Y.; Su, K.; et al. Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: The role of TRPV1 signaling pathways. Food Funct. 2020, 11, 3516–3526. [Google Scholar] [CrossRef]
- Yu, T.; Lee, Y.J.; Jang, H.-J.; Kim, A.R.; Hong, S.; Kim, T.W.; Kim, M.-Y.; Lee, J.; Cho, J.Y. Anti-inflammatory activity of Sorbus commixta water extract and its molecular inhibitory mechanism. J. Ethnopharmacol. 2011, 134, 493–500. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Okuyama, T.; Ishii, T.; Okumura, T.; Ikeya, Y.; Nishizawa, M. Sakuranetin downregulates inducible nitric oxide synthase expression by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein beta. J. Nat. Med. 2019, 73, 353–368. [Google Scholar] [CrossRef]
- Sung, B.; Hwang, S.Y.; Kim, M.J.; Kim, M.; Jeong, J.W.; Kim, C.M.; Chung, H.Y.; Kim, N.D. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats. Int. J. Mol. Med. 2015, 36, 792–800. [Google Scholar] [CrossRef]
- Makanae, Y.; Ato, S.; Kido, K.; Fujita, S. Dietary Aronia melanocarpa extract enhances mTORC1 signaling, but has no effect on protein synthesis and protein breakdown-related signaling, in response to resistance exercise in rat skeletal muscle. J. Int. Soc. Sports Nutr. 2019, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Zhao, L.; Liu, D.; Shen, R.; Bai, D. Potentilla anserine L. polysaccharide protects against cadmium-induced neurotoxicity. Environ. Toxicol. Pharmacol. 2022, 90, 103816. [Google Scholar] [CrossRef]
- Qin, B.; Anderson, R.A. An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. Br. J. Nutr. 2012, 108, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Elyasiyan, U.; Nudel, A.; Skalka, N.; Rozenberg, K.; Drori, E.; Oppenheimer, R.; Kerem, Z.; Rosenzweig, T. Anti-diabetic activity of aerial parts of Sarcopoterium spinosum. BMC Complement. Altern. Med. 2017, 17, 356. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Fu, M.; Wang, X.; Chang, X. Regulatory effects of hawthorn polyphenols on hyperglycemic, inflammatory, insulin resistance responses, and alleviation of aortic injury in type 2 diabetic rats. Food Res. Int. 2021, 142, 110239. [Google Scholar] [CrossRef]
- Mladenova, S.G.; Vasileva, L.V.; Savova, M.S.; Marchev, A.S.; Tews, D.; Wabitsch, M.; Ferrante, C.; Orlando, G.; Georgiev, M.I. Anti-Adipogenic Effect of Alchemilla monticola is Mediated Via PI3K/AKT Signaling Inhibition in Human Adipocytes. Front. Pharmacol. 2021, 12, 707507. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, J.-Y.; Kim, Y.-J.; Kim, H.-J.; Park, W. Rubi Fructus Water Extract Alleviates LPS-Stimulated Macrophage Activation via an ER Stress-Induced Calcium/CHOP Signaling Pathway. Nutrients 2020, 12, 3577. [Google Scholar] [CrossRef]
- Yang, J.H.; Yoo, J.M.; Cho, W.K.; Ma, J.Y. Anti-inflammatory effects of Sanguisorbae Radix water extract on the suppression of mast cell degranulation and STAT-1/Jak-2 activation in BMMCs and HaCaT keratinocytes. BMC Complement. Altern. Med. 2016, 16, 347. [Google Scholar] [CrossRef] [Green Version]
- Mace, T.A.; King, S.A.; Ameen, Z.; Elnaggar, O.; Young, G.; Riedl, K.M.; Schwartz, S.J.; Clinton, S.K.; Knobloch, T.J.; Weghorst, C.M.; et al. Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling. Cancer Immunol. Immunother. 2014, 63, 889–900. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Feng, R.; Lu, Y.; Bowman, L.; Ding, M. Inhibitory effect on activator protein-1, nuclear factor-kappaB, and cell transformation by extracts of strawberries (Fragaria x ananassa Duch). J. Agric. Food Chem. 2005, 53, 4187–4193. [Google Scholar] [CrossRef]
- Lee, S.-H.; Cho, K.-J.; Choi, W.-S.; Lee, H.K.; Yoon, E.K.; Son, M.; Woo, S.-U.; Kweon, M.-A.; Heo, J.-C. A fraction of methylene chloride from Geum japonicum Thunberg inhibits tumor metastatic and angiogenic potential. Oncol. Rep. 2008, 19, 1399–1403. [Google Scholar] [CrossRef]
- Yu, M.H.; Im, H.G.; Lee, S.G.; Kim, D.-I.; Seo, H.J.; Lee, I.-S. Inhibitory effect of immature plum on PMA-induced MMP-9 expression in human hepatocellular carcinoma. Nat. Prod. Res. 2009, 23, 704–718. [Google Scholar] [CrossRef]
- Noratto, G.; Layosa, M.A.; Lage, N.N.; Atienza, L.; Ivanov, I.; Mertens-Talcott, S.U.; Chew, B.P. Antitumor potential of dark sweet cherry sweet (Prunus avium) phenolics in suppressing xenograft tumor growth of MDA-MB-453 breast cancer cells. J. Nutr. Biochem. 2020, 84, 108437. [Google Scholar] [CrossRef]
- Layosa, M.A.A.; Lage, N.N.; Chew, B.P.; Atienza, L.; Mertens-Talcott, S.; Talcott, S.; Noratto, G.D. Dark Sweet Cherry (Prunus avium) Phenolics Enriched in Anthocyanins Induced Apoptosis in MDA-MB-453 Breast Cancer Cells through MAPK-Dependent Signaling and Reduced Invasion via Akt and PLCgamma-1 Downregulation. Nutr. Cancer 2021, 73, 1985–1997. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.Y.; Kim, M. The inhibitory effect of Agrimonia Pilosa methanolic extract on matrix metalloproteinases in HT1080 cells. J. Food Biochem. 2021, 45, e13894. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Owczarek, K.; Caban, M.; Sosnowska, D.; Kajszczak, D.; Lewandowska, U. Chemoprotective effects of Japanese quince (Chaenomeles japonica L.) phenol leaf extract on colon cancer cells through the modulation of extracellular signal-regulated kinases/AKT signaling pathway. J. Physiol. Pharmacol. 2022, 73, 1. [Google Scholar]
- Utsunomiya, H.; Takekoshi, S.; Gato, N.; Utatsu, H.; Motley, E.D.; Eguchi, K.; Fitzgerald, T.G.; Mifune, M.; Frank, G.D.; Eguchi, S. Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II. Life Sci. 2002, 72, 659–667. [Google Scholar] [CrossRef]
- Castagnini, C.; Luceri, C.; Toti, S.; Bigagli, E.; Caderni, G.; Femia, A.P.; Giovannelli, L.; Lodovici, M.; Pitozzi, V.; Salvadori, M.; et al. Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Menard apples, rich in polyphenols. Br. J. Nutr. 2009, 102, 1620–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, M.J.; Shen, J.; Jia, Y.L.; Li, F.F.; Ma, W.J.; Shen, H.J.; Shen, L.L.; Lin, X.X.; Zhang, L.H.; Dong, X.W.; et al. Apple polyphenol protects against cigarette smoke-induced acute lung injury. Nutrition 2013, 29, 235–243. [Google Scholar] [CrossRef]
- Yun, J.M.; Im, S.B.; Roh, M.K.; Park, S.H.; Kwon, H.A.; Lee, J.Y.; Choi, H.Y.; Ham, I.H.; Kim, Y.B.; Lee, J.M.; et al. Prunus yedoensis bark inhibits lipopolysaccharide-induced inflammatory cytokine synthesis by IkappaBalpha degradation and MAPK activation in macrophages. J. Med. Food 2014, 17, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.T.N.; Fang, M.; Zhang, M.; Do, N.Q.; Kim, M.; Zheng, S.D.; Hwang, E.; Yi, T.H. Crataegus laevigata Suppresses LPS-Induced Oxidative Stress during Inflammatory Response in Human Keratinocytes by Regulating the MAPKs/AP-1, NFkappaB, and NFAT Signaling Pathways. Molecules 2021, 26, 869. [Google Scholar] [CrossRef]
- Hwang, D.H.; Koh, P.-O.; Kang, C.; Kim, E. Rosa davurica Pall. improves DNCB-induced atopic dermatitis in mice and regulated TNF-Alpa/IFN-gamma-induced skin inflammatory responses in HaCaT cells. Phytomedicine 2021, 91, 153708. [Google Scholar] [CrossRef]
- Essafi-Benkhadir, K.; Refai, A.; Riahi, I.; Fattouch, S.; Karoui, H.; Essafi, M. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-kappaB, p38MAPK and Akt inhibition. Biochem. Biophys. Res. Commun. 2012, 418, 180–185. [Google Scholar] [CrossRef]
- Mi, X.-J.; Kim, J.-K.; Lee, S.; Moon, S.-K.; Kim, Y.-J.; Kim, H. In vitro assessment of the anti-inflammatory and skin-moisturizing effects of Filipendula palmata (Pall.) Maxim. On human keratinocytes and identification of its bioactive phytochemicals. J. Ethnopharmacol. 2022, 296, 115523. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, H.-H.; Choi, P.H.; Yoo, J.-S.; Jeon, H.; Chae, B.-S.; Park, J.-S.; Shin, T.-Y. Ripe fruit of Rubus coreanus inhibits mast cell-mediated allergic inflammation. Int. J. Mol. Med. 2012, 29, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Xu, Y.; Han, X.; Liang, C.; Yin, L.; Xu, L.; Qi, Y.; Zhao, Y.; Peng, J.; Sun, C. Potent Effects of Flavonoid-Rich Extract from Rosa laevigata Michx Fruit against Hydrogen Peroxide-Induced Damage in PC12 Cells via Attenuation of Oxidative Stress, Inflammation and Apoptosis. Molecules 2014, 19, 11816–11832. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Bang, J.; Kim, B.-Y.; Lee, I.S.; Han, J.-S.; Hwang, B.Y.; Jeon, W.K. Fructus mume alleviates chronic cerebral hypoperfusion-induced white matter and hippocampal damage via inhibition of inflammation and downregulation of TLR4 and p38 MAPK signaling. BMC Complement. Altern. Med. 2015, 15, 125. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Wang, J.; Tong, J.; Zhou, G.; Chen, Y.; He, J.; Wang, Y. Protective effects of Chaenomeles thibetica extract against carbon tetrachloride-induced damage via the MAPK/Nrf2 pathway. Food Funct. 2016, 7, 1492–1500. [Google Scholar] [CrossRef]
- Xuan, S.H.; Park, Y.M.; Park, S.H.; Jeong, H.J.; Park, S.N. Suppression of Ultraviolet B-mediated Matrix Metalloproteinase Generation by Sorbus commixta Twig Extract in Human Dermal Fibroblasts. Photochem. Photobiol. 2018, 94, 370–377. [Google Scholar] [CrossRef]
- Li, L.; Hwang, E.; Ngo, H.T.T.; Lin, P.; Gao, W.; Liu, Y.; Yi, T.H. Antiphotoaging Effect of Prunus yeonesis Blossom Extract via Inhibition of MAPK/AP-1 and Regulation of the TGF-betaI/Smad and Nrf2/ARE Signaling Pathways. Photochem. Photobiol. 2018, 94, 725–732. [Google Scholar] [CrossRef]
- Gao, W.; Wang, Y.-S.; Hwang, E.; Lin, P.; Bae, J.; Seo, S.A.; Yan, Z.; Yi, T.-H. Rubus idaeus L. (red raspberry) blocks UVB-induced MMP production and promotes type I procollagen synthesis via inhibition of MAPK/AP-1, NF-κβ and stimulation of TGF-β/Smad, Nrf2 in normal human dermal fibroblasts. J. Photochem. Photobiol. B Biol. 2018, 185, 241–253. [Google Scholar] [CrossRef]
- Liu, S.; You, L.; Zhao, Y.; Chang, X. Hawthorn Polyphenol Extract Inhibits UVB-Induced Skin Photoaging by Regulating MMP Expression and Type I Procollagen Production in Mice. J. Agric. Food Chem. 2018, 66, 8537–8546. [Google Scholar] [CrossRef]
- Choi, S.-I.; Lee, J.S.; Lee, S.; Cho, B.-Y.; Choi, S.-H.; Han, X.; Sim, W.-S.; Kim, Y.-C.; Lee, B.-Y.; Kang, I.-J.; et al. Protective Effects and Mechanisms of Pourthiaea villosa (Thunb.) Decne. Extract on Hydrogen Peroxide-Induced Skin Aging in Human Dermal Fibroblasts. J. Med. Food 2019, 22, 841–850. [Google Scholar] [CrossRef]
- You, L.; Kim, M.-Y.; Cho, J.Y. Protective Effect of Potentilla glabra in UVB-Induced Photoaging Process. Molecules 2021, 26, 5408. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-S.; Lee, J.-M.; Park, S.-Y.; Yang, J.-E.; Kim, J.-H.; Yi, T.-H. Hair Growth Activity of Crataegus pinnatifida on C57BL/6 Mouse Model. Phytotherapy Res. 2013, 27, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-R.; Meng, N.-N.; Liu, C.; Li, K.-L.; Wang, M.-X.; Lv, Z.-B.; Chen, S.-Y.; Guo, X.; Wang, X.-K.; Wang, Q.; et al. PDB-1 from Potentilla discolor Bunge induces apoptosis and autophagy by downregulating the PI3K/Akt/mTOR signaling pathway in A549 cells. Biomed. Pharmacother. 2020, 129, 110378. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.H.; Shudo, T.; Yoshida, T.; Sugiyama, Y.; Si, J.Y.; Tsukano, C.; Takemoto, Y.; Kakizuka, A. Ellagic acid, extracted from Sanguisorba officinalis, induces G1 arrest by modulating PTEN activity in B16F10 melanoma cells. Genes Cells 2019, 24, 688–704. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Li, Z.; Wu, Y.; Li, X.; Li, Y.; Wei, J.; Li, J.; Zhang, Y.; Li, L. Euscaphic acid and Tormentic acid protect vascular endothelial cells against hypoxia-induced apoptosis via PI3K/AKT or ERK 1/2 signaling pathway. Life Sci. 2020, 252, 117666. [Google Scholar] [CrossRef]
- Feng, R.; Ni, H.-M.; Wang, S.Y.; Tourkova, I.L.; Shurin, M.; Harada, H.; Yin, X.-M. Cyanidin-3-rutinoside, a Natural Polyphenol Antioxidant, Selectively Kills Leukemic Cells by Induction of Oxidative Stress. J. Biol. Chem. 2007, 282, 13468–13476. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Piao, T.; Wang, Y.; Liu, J. Astragalin inhibits IL-1beta-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF-kappaB and MAPK activation. Int. Immunopharmacol. 2015, 25, 83–87. [Google Scholar] [CrossRef]
- Huang, W.C.; Wu, S.J.; Tu, R.S.; Lai, Y.R.; Liou, C.J. Phloretin inhibits interleukin-1beta-induced COX-2 and ICAM-1 expression through inhibition of MAPK, Akt, and NF-kappaB signaling in human lung epithelial cells. Food Funct. 2015, 6, 1960–1967. [Google Scholar] [CrossRef]
- Liao, H.R.; Chen, I.S.; Liu, F.C.; Lin, S.Z.; Tseng, C.P. 2’,3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the beta-subunit of G-protein in human neutrophils. Eur. J. Pharmacol. 2018, 829, 26–37. [Google Scholar] [CrossRef]
- Khan, K.; Pal, S.; Yadav, M.; Maurya, R.; Trivedi, A.K.; Sanyal, S.; Chattopadhyay, N. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration. J. Nutr. Biochem. 2015, 26, 1491–1501. [Google Scholar] [CrossRef]
- Suh, S.J.; Cho, K.J.; Moon, T.C.; Chang, H.W.; Park, Y.G.; Kim, C.H. 3,4,5-trihydroxybenzaldehyde from Geum japonicum has dual inhibitory effect on matrix metalloproteinase 9; inhibition of gelatinoytic activity as well as MMP-9 expression in TNF-alpha induced HASMC. J. Cell Biochem. 2008, 105, 524–533. [Google Scholar] [CrossRef]
- Park, J.-B.; Agnihotri, S.; Golbourn, B.; Bertrand, K.C.; Luck, A.; Sabha, N.; Smith, C.A.; Byron, S.; Zadeh, G.; Croul, S.; et al. Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-Cofilin pathway. Oncotarget 2014, 5, 9382–9395. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Xu, X.; Hou, X.; Liang, R.; Chen, L.; Hao, Y.; Gao, A.; Du, X.; Zhao, L.; Shi, Y.; et al. The pharmacological properties and corresponding mechanisms of farrerol: A comprehensive review. Pharm. Biol. 2022, 60, 9–16. [Google Scholar] [CrossRef]
- Yarar, D.; Waterman-Storer, C.M.; Schmid, S.L. A Dynamic Actin Cytoskeleton Functions at Multiple Stages of Clathrin-mediated Endocytosis. Mol. Biol. Cell 2005, 16, 964–975. [Google Scholar] [CrossRef] [Green Version]
- Howell, G.J.; Holloway, Z.G.; Cobbold, C.; Monaco, A.P.; Ponnambalam, S. Cell Biology of Membrane Trafficking in Human Disease. Int. Rev. Cytol. 2006, 252, 1–69. [Google Scholar] [CrossRef]
- Konc, J.; Lešnik, S.; Janežič, D. Modeling enzyme-ligand binding in drug discovery. J. Cheminform. 2015, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided-Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
CUCURBITACEAE of Florida | ||||
---|---|---|---|---|
Genera | Species | Status | Common Name | Hillsborough Wild Population? |
Cayaponia | Cayaponia americana (Lam.) Cogn | Native | American Melonleaf | |
Cayaponia quinqueloba (Raf.) Shinners | Native | Fivelobe Melonleaf | ||
Citrullus | Citrullus lanatus (Thunb.) Matsum. & Nakai | Not Native | Watermelon | Yes |
Coccinia | Coccinia grandis (L.) Voigt | Not Native | Ivy Gourd | Yes |
Cucumis | Cucumis anguria L. | Not Native | Gooseberry gourd | Yes |
Cucumis melo L. | Not Native | Cantaloupe | Yes | |
Cucumis metulifer E.Meyer ex Naudin | Not Native | African horned cucumber | Pinellas | |
Cucumis sativus L. | Not Native | Garden cucumber | Yes | |
Cucurbita | Cucurbita foetidissima Kunth | Not Native | Buffalo Gourd | |
Cucurbita moschata Duchesne | Not Native | Seminole Pumpkin | Yes | |
Cucurbita okeechobeensis (Small) L.H.Bailey | Native, endangered | Okeechobee Gourd | ||
Lagenaria | Lagenaria siceraria (Molina) Standl. | Not Native | Bottle Gourd | Yes |
Luffa | Luffa aegyptiaca Mill. | Not Native | Loofah | Yes |
Melothria | Melothria pendula L. | Native | Creeping Cucumber | Yes |
Momordica | Momordica balsamina L. | Not Native | Southern Balsampear | |
Momordica charantia L. | Not Native, Invasive II | Balsampear | Yes | |
Sicyos | Sicyos angulatus L. | Native | Oneseed burr cucumber | |
Sicyos edulis Jacq. | Not Native | Chayote | ||
Trichosanthes | Trichosanthes cucumerina L. | Not Native | Snakegourd |
ERICACEAE of Florida | ||||
---|---|---|---|---|
Genera | Species | Status | Common Name | Hillsborough Wild Population? |
Agarista | Agarista populifolia (Lam.) Judd | Native | Florida Hobblebush; Pinestem | |
Bejaria | Bejaria racemosa Vent. | Native | Tarflower | Yes |
Ceratiola | Ceratiola ericoides Michx. | Native | Florida Rosemary; Sand Heath | Yes |
Chimaphila | Chimaphila maculata (L.) Pursh | Native | Spotted Wintergreen; Striped Prince’s Pine | |
Epigaea | Epigaea repens L. | Native; Endangered (State) | Trailing Arbutus | |
Eubotrys | Eubotrys racemosus (L.) Nutt. | Native | Swamp Doghobble | |
Gaylussacia | Gaylussacia dumosa (Andrews) A. Gray | Native | Dwarf Huckleberry | Yes |
Gaylussacia frondosa (L.) Torr. & A. Gray | Native | Blue Huckleberry | Yes | |
Gaylussacia mosieri Small | Native | Woolly Huckleberry | ||
Hypopitys | Hypopitys lanuginosa (Michx.) Raf. | Native; Endangered (State) | Pinesap; False Beechdrops | |
Kalmia | Kalmia hirsuta Walter | Native | Wicky; Hair Laurel | |
Kalmia latifolia L. | Native; Threatened (State) | Mountain Laurel | ||
Leucothoe | Leucothoe axillaris (Lam.) D.Don | Native | Coastal Doghobble | |
Lyonia ferruginea (Walter) Nutt. | Native | Rusty Staggerbush | ||
Lyonia fruticosa (Michx.) G.S. Torr. | Native | Coastalplain Staggerbush | Yes | |
Lyonia ligustrina (L.) DC. var. foliosiflora (Michx.) Fernald | Native | Maleberry | Yes | |
Lyonia lucida (Lam.) K.Koch | Native | Fetterbush | Yes | |
Lyonia mariana (L.) D.Don | Native | Piedmont Staggerbush | Yes | |
Monotropa | Monotropa uniflora L. | Native | Indianpipe | Yes |
Monotropsis | Monotropsis reynoldsiae (A. Gray) A. Heller | Native; Endangered (State) | Pigmypipes | |
Oxydendrum | Oxydendrum arboreum (L.) DC. | Native | Sourwood | |
Pieris | Pieris phyllyreifolia (Hook.) DC. | Native | Fetterbush | |
Rhododendron | Rhododendron alabamense Rehder | Native; Endangered (State) | Alabama Azalea | |
Rhododendron austrinum (Small) Rehder | Native; Endangered (State) | Florida Flame Azaela; Orange Azalea | ||
Rhododendron canescens (Michx.) Sweet | Native | Sweet Pinxter Azaela; Mountain Azalea | ||
Rhododendron minus Michaux var. chapmanii (A.Gray) W.H. Duncan & Pullen | Native; Endangered (State & National) | Chapmen’s Rhododendron | ||
Rhododendron viscosum (L.) Torr. | Native | Swamp Azalea | Yes | |
Vaccinium | Vaccinium arboreum Marshall | Native | Sparkleberry; Farkleberry | Yes |
Vaccinium corymbosum L. | Native | Highbush Blueberry | Yes | |
Vaccinium darrowii Camp | Native | Darrow’s Blueberry | Yes | |
Vaccinium myrsinites Lam. | Native | Shiny Blueberry | Yes | |
Vaccinium stamineum L. | Native | Deerberry | Yes |
ROSACEAE of Florida | ||||
---|---|---|---|---|
Genera | Species | Status | Common Name | Hillsborough Wild Population? |
Agrimonia | Agrimonia incisa Torr. & A. Gray | Native (Threatened) | Incised Agrimony | Yes |
Agrimonia microcarpa Wallr. | Native | Smallfruit Agrimony | Yes | |
Amelanchier | Amelanchier arborea (R.Michx.) Fernald | Native | Common Serviceberry | Y |
Aphanes | Aphanes australis Rydb. | Not Native | Slender Parsley Peirt | Y |
Aronia | Aronia arbutifolia (L.) Pers. | Native | Red Chokeberry | Yes |
Crataegus | Crataegus aestivalis (Walter) Torr. & A. Gray | Native | May Haw | Y |
Crataegus crus-galli L. | Native | Cockspur Hawthorn | Pinellas | |
Crataegus flava Aiton | Native | Yellowleaf Hawthorn | Y | |
Crataegus marshallii Eggl. | Native | Parsley Hawthorn | ||
Crataegus michauxii Pers. | Native | Michaux’s Hawthorn | Yes | |
Crataegus opaca Hook. & Arn. | Native | Riverflat Hawthorn | Yes | |
Crataegus phaenopyrum (L.f.) Medik. | Native | Washington Hawthorn | ||
Crataegus spathulata Michx. | Native | Littlehip Hawthorn | ||
Crataegus uniflora Münchh. | Native | Dwarf Hawthorn | ||
Crataegus viridis L. | Native | Green Hawthorn | ||
Eriobotryto | Eriobotrya japonica (Thunb.) Lindl. | Not Native | Loquat | Y |
Fragaria | Fragaria virginiana Duchesne | Native | Virginia Strawberry | |
Malus | Malus angustifolia (Aiton) Michx. | Native | Southern Crabapple | |
Physocarpus | Physocarpus opulifolius (L.) Maxim. | Native | Common Ninebark | |
Potentilla | Potentilla indica (Andrews) T. Wolf | Not Native | Indian Strawberry | Yes |
Potentilla recta L. | Not Native | Sulphur Cinquefoil | ||
Potentilla reptans L. | Not Native | Creeping Cinquefoil | ||
Potentilla simplex Michx. | Native | Common Cinquefoil | ||
Prunus | Prunus americana Marshall | Native | American Plum | |
Prunus angustifolia Marshall | Native | Chicksaw Plum | Yes | |
Prunus caroliniana (Mill.) Aiton | Native | Carolina Laurelcherry | Yes | |
Prunus geniculata R.M. Harper | Native | Scrub Palm | ||
Prunus myrtifolia (L.) Urb. | Native | West Indian Cherry | ||
Prunus persica (L.) Batsch | Not Native | Peach | ||
Prunus serotina Ehrh. | Native | Black Cherry | Yes | |
Prunus subhirtella Miq. | Not Native | Winter-Flowering Cheery | ||
Prunus umbellata Elliott | Native | Flatwoods Plum | Yes | |
Pyracantha | Pyracantha fortuneana (Maxim.) H.L.Li | Not Native | Chinese Firethorn | |
Pyracantha koidzumii (Hayata) Rehder | Not Native | Formose Firethorn | Yes | |
Pyrus | Pyrus calleryana Decne. | Not Native | Callery Pear | |
Pyrus communis L. | Not Native | Common Pear | ||
Rosa | Rosa bracteata J.C. Wendl. | Not Native | Macartney Rose | |
Rosa carolina L. | Native | Carolina Rose | ||
Rosa laevigata Michx. | Not Native | Cherokee Rose | Yes | |
Rosa lucieae Franch. & Rochsebr. ex Crép. | Not Native | Memorial Rose | ||
Rosa multiflora Thunb. | Not Native | Multiflora Rose | ||
Rosa palustris Marshall | Native | Swamp Rose | Yes | |
Rosa setigera Michx. | Native | Climbing Rose | ||
Rubus | Rubus cuneifolius Pursh | Native | Sand Blackberry | Yes |
Rubus flagellaris Willd. | Native | Northern Dewberry | ||
Rubus niveus Thunb. | Not Native | Snowpeaks Rasberry | ||
Rubus pensilvanicus Poir. | Native | Sawtooth Blackberry | Yes | |
Rubus trivalis Michx. | Native | Southern Dewberry | Yes |
Effects on the Cytoskeleton | ||
---|---|---|
Cucurbitaceae | ||
Plant Metabolite | Associated Disease Model | References |
CuB | Blood Cancers | [20,21,22] |
Solid Tumors | [23,24,25,26,27,28] | |
CuE | Blood Cancers | [29] |
Solid Tumors | [30,31,32,33] | |
Other (In Vitro) | [34] | |
CuI | Solid Tumors | [35] |
CuIIa | Solid Tumors | [36] |
DHCF | Solid Tumors | [37] |
IsoD | Solid Tumors | [38] |
Ericaceae | ||
Plant Metabolite | Associated Disease Model | References |
Cranberry proanthocyanidin extract (CPAC) from Vaccinium macrocarpon | Solid Tumors | [39] |
Extract from capsule-form of billberry | Solid Tumors | [40] |
Pterostilbene | Solid Tumors | [41] |
Rosaceae | ||
Plant Metabolite | Associated Disease Model | References |
Extract derived from Crataegus spp hawthorn (WS1442) | Endothelial Permeability, Neovascularization | [42,43] |
Red raspberry extract (RBE) | Hepatic Fibrosis | [44] |
Stem and cortex extracts from Sorbus commixta Hedl (SC) | Solid Tumors | [45] |
Extracts from Crataegus berries, leaves, and flowers from 6 species | Solid Tumors | [46] |
Extract from Pygeum africanum (PA) | Solid Tumors | [47] |
Raspberry extract from Rubus idaeus L (RIE) | Solid Tumors | [48] |
Leaf extracts from Duchesna indica (DIE) | Solid Tumors | [49] |
Selenium-enriched polysaccharides from Pyracantha fortuneana (Se-PFPs) | Solid Tumors | [50] |
Extracts from roots from Sanguisorba officinalis L (DY) | Solid Tumors | [51] |
Aruncin B | Blood Cancers | [52] |
Phloretin | Solid Tumors | [53] |
Ellagic acid (EA) | Solid Tumors | [54] |
Urolithin A (UA) | Solid Tumors | |
Protocatechuic acid (PCA) | Solid Tumors | |
Kaempferol | Solid Tumors | [55] |
Effects on Protein Trafficking Dynamics | ||
---|---|---|
Cucurbitaceae | ||
Plant Metabolite | Associated Disease Model | References |
CuB | Solid Tumors | [58] |
CuE | Rheumatoid Arthritis | [59] |
Ericaceae | ||
Plant Metabolite | Associated Disease Model | References |
Blueberry powder | Solid Tumors | [60] |
Rhododendron luteum extract (RLE) | Solid Tumors | [61] |
(Poly)phenol-digested metabolites from leaves of Arbutus unedo (LPDMs) | Neurodegenerative Disease | [62] |
Malvidin-3-glucoside (Mv-3-Gc) and Malvidin-3-galactoside (Mv-3-Gal) | Inflammation | [63] |
Rosaceae | ||
Plant Metabolite | Associated Disease Model | References |
Raspberry seed powder (RSF) | Obesity | [64] |
Raspberry ketone (RK) | Obesity | [65] |
Saskatoon berry powder (SBp) | Obesity | [66] |
Strawberry tree honey from Arubutus unedo L (STH) | Solid Tumors | [67] |
Methanol extract from Rosa canina (RCME) | Inflammation | [68] |
Polyphenol extract from pulp of Malus micromalus Makino (MMPE) | Heavy Metal Toxicity | [69] |
Saskatoon berry (SB) | Cardiovascular Disease | [70] |
Cyanidin-3-galactoside (C3Ga) | Cardiovascular Disease | |
Cyanidin-3-glucoside (C3G) | Cardiovascular Disease | |
Asiatic acid (AAPC) | Liver Disease | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, A.; Rasheed, A.; Reilly, I.; Pareek, Z.; Hansen, M.; Haque, Z.; Simon-Fajardo, D.; Davies, C.; Tummala, A.; Reinhardt, K.; et al. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals 2022, 15, 1380. https://doi.org/10.3390/ph15111380
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, et al. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals. 2022; 15(11):1380. https://doi.org/10.3390/ph15111380
Chicago/Turabian StylePatel, Ankit, Aliyah Rasheed, Isiah Reilly, Zil Pareek, Mattia Hansen, Zayn Haque, Daniela Simon-Fajardo, Chloe Davies, Akash Tummala, Karlyn Reinhardt, and et al. 2022. "Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families" Pharmaceuticals 15, no. 11: 1380. https://doi.org/10.3390/ph15111380
APA StylePatel, A., Rasheed, A., Reilly, I., Pareek, Z., Hansen, M., Haque, Z., Simon-Fajardo, D., Davies, C., Tummala, A., Reinhardt, K., Bustabad, A., Shaw, M., Robins, J., Vera Gomez, K., Suphakorn, T., Camacho Gemelgo, M., Law, A., Lin, K., Hospedales, E., ... Nanjundan, M. (2022). Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals, 15(11), 1380. https://doi.org/10.3390/ph15111380