New Pharmacokinetic and Microbiological Prediction Equations to Be Used as Models for the Search of Antibacterial Drugs
Abstract
:1. Introduction
2. Results
RFCL = 8981.08 + 1596.686χch − 109.481S>N- − 2637.68NI2 | (1) | |||
n = 12 | r = 0.95939 | F = 30.85 | p = 0.0001 | |
SEE = 65.42953 | r2 = 0.92043 | r2a = 0.89059 | r2cv = 0.79791 | |
RFMIC50Ea = 0.410929 − 0.123037S-CH2- + 0.0685818SaCa + 0.0569394S-NH- | (2) | |||
n = 13 | r = 0.95930 | F = 34.62 | p = 0.0000 | |
SEE = 0.033071 | r2 = 0.92025 | r2a = 0.89367 | r2cv = 0.83270 | |
RFMIC50Pm = 0.376001 + 27.66769χVch + 0.0650158S-CH3 − 0.0889109S>N- | (3) | |||
n = 16 | r = 0.91837 | F = 21.54 | p = 0.0000 | |
SEE = 0.076808 | r2 = 0.84340 | r2a = 0.80425 | r2cv = 0.70282 |
3. Discussion
4. Materials and Methods
4.1. Compound Selection
4.2. Topological Descriptors
4.3. Multilinear Regression
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tacconelli, E.; Magrini, N. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Archibald, L.K.; Jarvis, W.R. Health care-associated infection outbreak investigations by the centers for disease control and prevention, 1946–2005. Am. J. Epidemiol. 2011, 174, S47–S64. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Priority Pathogens List for R&D of New Antibiotics. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (accessed on 24 October 2021).
- Garrett, M.D.; Workman, P. Discovering novel chemotherapeutic drugs for the third millennium. Eur. J. Cancer 1999, 35, 2010–2030. [Google Scholar] [CrossRef]
- Morris, G.M.; Lim-Wilby, M. Molecular Docking. Methods Mol. Biol. 2008, 443, 365–382. [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Ridder, L.; Wang, H.; de Vlieg, J.; Wagener, M. Revisiting the rule of five on the basis of pharmacokinetic data from rat. ChemMedChem 2011, 6, 1967–1970. [Google Scholar] [CrossRef]
- Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today 2003, 8, 876–877. [Google Scholar] [CrossRef]
- Hughes, J.D.; Blagg, J.; Price, D.A.; Bailey, S.; Decrescenzo, G.A.; Devraj, R.V.; Ellsworth, E.; Fobian, Y.M.; Gibbs, M.E.; Gilles, R.W.; et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 2008, 18, 4872–4875. [Google Scholar] [CrossRef]
- Karelson, M. Molecular Descriptors in QSAR/QSPR; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Todeschini, R.; Consonni, V. Molecular Descriptors for Cheminformatics; Wiley: Weinheim, Germany, 2009. [Google Scholar]
- Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci. 2019, 20, 2783. [Google Scholar] [CrossRef] [Green Version]
- Tute, M.S. History and objectives of quantitative drug design. In Comprehensive Medicinal Chemistry; Hansch, C., Sammes, P.G., Taylor, J.B., Eds.; Pergamon Press: Oxford, UK, 2015; Volume 4, pp. 1–31. [Google Scholar]
- Roy, K.; Kar, S.; Das, R.N. A Primer on QSAR/QSPR Modeling: Fundamental Concepts; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kier, L.B.; Hall, L.H. Molecular Connectivity in Chemistry and Drug Research, 1st ed.; Academic Press: New York, NY, USA, 1976; pp. 41–80. [Google Scholar]
- Zheng, W.; Sun, W.; Simeonov, A. Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br. J. Pharmacol. 2017, 175, 181–191. [Google Scholar] [CrossRef]
- Bennett, J.W. What is an antibiotic? In Antibiotics: Current Innovations and Future Trends; Sánchez, S., Demain, A.L., Eds.; Caister Academic Press: Poole, UK, 2015; Chapter 1; pp. 1–18. [Google Scholar]
- Suay-Garcia, B.; Bueso-Bordils, J.I.; Falcó, A.; Pérez-Gracia, M.T.; Antón-Fos, G.; Alemán-López, P. Quantitative structure–activity relationship methods in the discovery and development of antibacterials. WIREs Comput. Mol. Sci. 2020, 10, e1472. [Google Scholar] [CrossRef]
- Von Graevenitz, A. The use of antimicrobial agents as tools in epidemiology, identification and selection of microorganisms. In Antibiotics in Laboratory Medicine; Victor Lorian, M.D., Ed.; Williams and Wilkins: Baltimore, MD, USA, 1991; pp. 810–824. [Google Scholar]
- Chen, C.Y.; Chen, Y.H.; Lu, P.L.; Lin, W.R.; Chen, T.C.; Lin, C.Y. Proteus mirabilis urinary tract infection and bacteremia: Risk factors, clinical presentation, and outcomes. J. Microbiol. Immunol. Infect. 2012, 45, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Davin-Regli, A.; Lavigne, J.P.; Pagès, J.M. Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev. 2019, 32, e00002. [Google Scholar] [CrossRef]
- Bueso-Bordils, J.I.; Aleman-López, P.A.; Costa-Piles, S.; Duart, M.J.; Lahuerta-Zamora, L.; Martin-Algarra, R.; Anton-Fos, G.M. Obtaining microbiological and pharmacokinetic highly predictive equations. Curr. Top. Med. Chem. 2018, 18, 908–916. [Google Scholar] [CrossRef]
- Suay-Garcia, B.; Falcó, A.; Bueso-Bordils, J.I.; Anton-Fos, G.M.; Pérez-Gracia, M.T.; Alemán-López, P.A. Tree-based QSAR model for drug repurposing in the discovery of new antibacterial compounds against Escherichia coli. Pharmaceuticals 2020, 13, 431. [Google Scholar] [CrossRef]
- Mitscher, L.A. Bacterial topoisomerase inhibitors: Quinolone and pyridone antibacterial agents. Chem. Rev. 2005, 105, 559–592. [Google Scholar] [CrossRef]
- Shimizu, M.; Nakamura, S.; Takase, Y.; Kurobe, N. Pipemidic acid: Absorption, distribution, and excretion. Antimicrob. Agents Chemother. 1975, 7, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Rohlfing, S.R.; Gerster, J.F.; Kvam, D.C. Bioevaluation of the antibacterial flumequine for urinary tract use. Antimicrob. Agents Chemother. 1976, 10, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Emami, S.; Shafiee, A.; Foroumadi, A. Structural features of new quinolones and relationship to antibacterial activity against gram-positive bacteria. Mini Rev. Med. Chem. 2006, 6, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Emmerson, A.M.; Jones, A.M. The quinolones: Decades of development and use. J. Antimicrob. Chemother. 2003, 51, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bambeke, F.; Michot, J.M.; Van Eldere, J.; Tulkens, P.M. Quinolones in 2005: An update. Clin. Microbiol. Infect. 2005, 11, 256–280. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, J.A.; Gelone, S.P. The newer fluoroquinolones. Infect. Dis. Clin. N. Am. 2004, 18, 691–716. [Google Scholar] [CrossRef]
- Boteva, A.A.; Krasnykh, O.P. The methods of synthesis, modification, and biological activity of 4-quinolones. Chem. Heterocycl. Compd. 2009, 45, 757–785. [Google Scholar] [CrossRef]
- Fung-Tomc, J.C.; Minassian, B.; Kolek, B.; Huczko, E.; Aleksunes, L.; Stickle, T.; Washo, T.; Gradelski, E.; Valera, L.; Bonner, D.P. Antibacterial spectrum of a novel des-fluoro (6) quinolone, BMS-284756. Antimicrob. Agents Chemother 2000, 44, 3351–3356. [Google Scholar] [CrossRef] [Green Version]
- Fujikawa, K.; Chiba, M.; Tanaka, M.; Sato, K. In vitro antibacterial activity of DX-619, a novel des-fluoro (6) quinolone. Antimicrob. Agents Chemother. 2005, 49, 3040–3045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotschafer, J.C.; Ullman, M.A.; Sullivan, C.J. Optimal use of fluoroquinolones in the intensive care unit setting. Crit. Care Clin. 2011, 27, 95–106. [Google Scholar] [CrossRef]
- Andersson, M.I.; MacGowan, A.P. Development of the quinolones. J. Antimicrob. Chemother. 2003, 51, 1–11. [Google Scholar] [CrossRef]
- López-Malo, D.; Bueso-Bordils, J.I.; Duart, M.J.; Alemán-López, P.A.; Martín-Algarra, R.V.; Antón-Fos, G.M.; Lahuerta-Zamora, L.; Martínez-Calatayud, J. QSPR studies on the photoinduced-fluorescence behavior of pharmaceuticals and pesticides. SAR QSAR Environ. Res. 2017, 28, 609–620. [Google Scholar] [CrossRef]
- Zanni, R.; Galvez-Llompart, M.; Morell, C.; Rodríguez-Henche, N.; Díaz-Laviada, I.; Recio-Iglesias, M.C.; Garcia-Domenech, R.; Galvez, J. Novel cancer chemotherapy hits by molecular topology: Dual Akt and Beta-catenin inhibitors. PLoS ONE 2015, 10, e0124244. [Google Scholar] [CrossRef] [PubMed]
- Hdoufane, I.; Bjij, I.; Soliman, M.; Tadjer, A.; Villemin, D.; Bogdanov, J.; Cherqaoui, D. In silico SAR studies of HIV-1 inhibitors. Pharmaceuticals 2018, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.W.; Fosso, M.; Kawasaki, Y.; Shrestha, S.; Bensaci, M.F.; Wang, J.; Evans, C.K.; Takemoto, J.Y. Antibacterial to antifungal conversion of neamine aminoglycosides through alkyl modification. Strategy for reviving old drugs into agrofungicides. J. Antibiot. 2010, 63, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bueso-Bordils, J.I.; Perez-Gracia, M.T.; Suay-Garcia, B.; Duart, M.J.; Algarra, R.V.M.; Zamora, L.L.; Anton-Fos, G.M.; Lopez, P.A.A. Topological pattern for the search of new active drugs against methicillin resistant Staphylococcus aureus. Eur. J. Med. Chem. 2017, 138, 807–815. [Google Scholar] [CrossRef]
- Mor, S.; Nagoria, S.; Kumar, A.; Kumar, A.; Kaushik, C.P. QSAR studies and design of some tetracyclic 1, 4-benzothiazines as antimicrobial agents. Drug Res. 2016, 66, 436–443. [Google Scholar] [CrossRef]
- Randic, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Kier, L.B.; Hall, L.H. The E-state as an extended free valence. J. Chem. Inf. Comput. Sci. 1997, 37, 548–552. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Vogt, M.; Wassermann, A.M.; Bajorath, J. Application of information-theoretic concepts in chemoinformatics. Information 2010, 1, 60–73. [Google Scholar] [CrossRef] [Green Version]
- Kier, L.B.; Hall, L.H. General definition of valence delta-values for molecular connectivity. J. Pharm. Sci. 1983, 72, 1170–1173. [Google Scholar] [CrossRef] [PubMed]
- Domagala, J.M.; Hagen, S.E. Structure-activity relationships of the quinolone antibacterials in the new millenium: Some things change and some do not. In Quinolone Antimicrobial Agents; Hooper, D.C., Rubinstein, E., Eds.; ASM Press: Washington, WA, USA, 2003; pp. 3–18. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement; CLSI Document M100-S22; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32. [Google Scholar]
- DESMOL13 Software. Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular; Facultad de Farmacia, Universitat de València: Valencia, Spain, 2000. [Google Scholar]
- Hall, L.H. MOLCONN-Z Software; Eastern Nazarene College: Quincy, MA, USA, 1995. [Google Scholar]
- Dixon, W.J. BMDP Statistical Software; University of California: Berkeley, CA, USA, 1990. [Google Scholar]
- Furnival, G.M.; Wilson, R.W. Regressions by leaps and bounds. Technometrics 1974, 16, 499–511. [Google Scholar] [CrossRef]
- Hocking, R. Criteria for selection of a subset regression: Which one should be used? Technometrics 1972, 14, 967–970. [Google Scholar] [CrossRef]
- Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef]
Compound | 6χch | S>N- | NI2 | ExpCL a | CalcCL b | Res c |
---|---|---|---|---|---|---|
Moxifloxacin | 0.1741 | 3.803 | 3.319 | 14.8 | 88.2486 | −73.4486 |
Amifloxacin | 0.1842 | 5.5294 | 3.262 | 31.0 | 65.715 | −34.715 |
Garenoxacin | 0.169 | 1.6095 | 3.408 | 86.1 | 85.4983 | 0.6017 |
Pefloxacin | 0.1842 | 5.8196 | 3.262 | 106.716 | 33.9436 | 72.7724 |
Trovafloxacin | 0.2245 | 2.731 | 3.392 | 106.8132 | 93.5342 | 36.2154 |
Fleroxacin | 0.1741 | 4.5829 | 3.265 | 127.126 | 145.2989 | 23.0078 |
Levofloxacin | 0.2296 | 5.8165 | 3.219 | 198.0 | 220.1923 | 38.148 |
Temafloxacin | 0.2523 | 2.9448 | 3.352 | 206.6 | 220.0219 | 38.5829 |
Sitafloxacin | 0.0907 | 3.1603 | 3.261 | 263.0 | 178.4345 | 42.066 |
Clinafloxacin | 0.0907 | 3.4961 | 3.146 | 368.857 | 445.0039 | −76.1469 |
Enoxacin | 0.203 | 3.3811 | 3.166 | 562.875 | 584.1476 | −21.2727 |
Ciprofloxacin | 0.203 | 3.7812 | 3.17 | 617.945 | 529.7932 | 88.1518 |
Compound | S-CH2 | SaCa | S-NH- | ExpMIC50Ea a | CalcMIC50Ea b | Res c |
---|---|---|---|---|---|---|
Clinafloxacin | 3.5533 | 0.1483 | 0 | 0.019 | −0.0161 | 0.0351 |
Ciprofloxacin | 4.8443 | 0.7434 | 3.2252 | 0.0351 | 0.0495 | −0.0145 |
Tosufloxacin | 1.5749 | −2.6064 | 0 | 0.045 | 0.0384 | 0.0066 |
Gemifloxacin | 2.7854 | −0.3502 | 0 | 0.0465 | 0.0442 | 0.0023 |
Trovafloxacin | 1.0072 | −3.2996 | 0 | 0.048 | 0.0607 | −0.0127 |
Levofloxacin | 3.2033 | 0.6381 | 0 | 0.06 | 0.0606 | −0.0006 |
Sparfloxacin | 2.2119 | −3.1814 | 3.3 | 0.084 | 0.1085 | −0.0245 |
Fleroxacin | 0.7962 | −2.8908 | 0 | 0.09 | 0.1147 | −0.0247 |
Norfloxacin | 3.4104 | 0.6027 | 3.2081 | 0.1633 | 0.2153 | −0.052 |
Enoxacin | 3.1429 | −0.1195 | 3.1803 | 0.2083 | 0.1971 | 0.0112 |
Amifloxacin | 3.0361 | 0.3878 | 2.8144 | 0.25 | 0.2242 | 0.0258 |
Lomefloxacin | 1.7121 | −2.1985 | 3.2023 | 0.29 | 0.2318 | 0.0582 |
WIN-57273 | 1.8278 | 1.6636 | 0 | 0.29 | 0.3001 | −0.0101 |
Compound | 9χVch | S-CH3 | S>N- | ExpMIC50Pm a | CalcMIC50Pm b | Res c |
---|---|---|---|---|---|---|
Clinafloxacin | 0 | 0 | 3.4961 | 0.0225 | 0.0652 | −0.0427 |
Sitafloxacin | 0 | 0 | 3.1603 | 0.03 | 0.095 | −0.065 |
Ciprofloxacin | 0 | 0 | 3.7812 | 0.0426 | 0.0398 | 0.0028 |
Levofloxacin | 0 | 3.8877 | 5.8165 | 0.06 | 0.1116 | −0.0516 |
Flerofloxacin | 0 | 1.8996 | 4.5829 | 0.12 | 0.092 | 0.028 |
Tosufloxacin | 0 | 0 | 2.8277 | 0.12 | 0.1246 | −0.0046 |
Gemifloxacin | 0 | 1.437 | 3.3757 | 0.165 | 0.1693 | −0.0043 |
Gatifloxacin | 0 | 3.4792 | 3.6897 | 0.198 | 0.2741 | −0.0761 |
Trovafloxacin | 0 | 0 | 2.731 | 0.199 | 0.1332 | 0.0658 |
Amifloxacin | 0 | 3.6197 | 5.5294 | 0.25 | 0.1197 | 0.1303 |
Enoxacin | 0 | 1.8106 | 3.3811 | 0.25 | 0.1931 | 0.0569 |
Sparfloxacin | 0 | 3.8376 | 3.0307 | 0.25 | 0.356 | −0.1060 |
Lomefloxacin | 0 | 3.6201 | 2.9493 | 0.29 | 0.3491 | −0.0591 |
Garenoxacin | 0.0049 | 2.0568 | 1.6095 | 0.5 | 0.5022 | −0.0022 |
Moxifloxacin | 0.0132 | 1.4781 | 3.803 | 0.5 | 0.4992 | 0.0008 |
WIN-57273 | 0 | 3.684 | 1.7957 | 0.583 | 0.4559 | 0.1271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueso-Bordils, J.I.; Antón-Fos, G.M.; Falcó, A.; Duart, M.J.; Martín-Algarra, R.; Alemán-López, P.A. New Pharmacokinetic and Microbiological Prediction Equations to Be Used as Models for the Search of Antibacterial Drugs. Pharmaceuticals 2022, 15, 122. https://doi.org/10.3390/ph15020122
Bueso-Bordils JI, Antón-Fos GM, Falcó A, Duart MJ, Martín-Algarra R, Alemán-López PA. New Pharmacokinetic and Microbiological Prediction Equations to Be Used as Models for the Search of Antibacterial Drugs. Pharmaceuticals. 2022; 15(2):122. https://doi.org/10.3390/ph15020122
Chicago/Turabian StyleBueso-Bordils, Jose I., Gerardo M. Antón-Fos, Antonio Falcó, Maria J. Duart, Rafael Martín-Algarra, and Pedro A. Alemán-López. 2022. "New Pharmacokinetic and Microbiological Prediction Equations to Be Used as Models for the Search of Antibacterial Drugs" Pharmaceuticals 15, no. 2: 122. https://doi.org/10.3390/ph15020122
APA StyleBueso-Bordils, J. I., Antón-Fos, G. M., Falcó, A., Duart, M. J., Martín-Algarra, R., & Alemán-López, P. A. (2022). New Pharmacokinetic and Microbiological Prediction Equations to Be Used as Models for the Search of Antibacterial Drugs. Pharmaceuticals, 15(2), 122. https://doi.org/10.3390/ph15020122