Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire!
Abstract
:1. Introduction
1.1. Brain Cytokine Production and Action in Neurological Conditions: Immune Privilege Transformed
1.2. Brain Cytokine Production and Action in Physiology, Behavior, and Cognition
1.3. ‘Psychological Stress’—Associated Cytokine Production
2. Context-Dependent Neuroinflammation and Brain Cytokine Production
3. Novel Insights into Brain Cytokine Production and Action
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Derk, J.; Jones, H.E.; Como, C.; Pawlikowski, B.; Siegenthaler, J.A. Living on the edge of the cns: Meninges cell diversity in health and disease. Front. Cell Neurosci. 2021, 15, 703944. [Google Scholar] [CrossRef] [PubMed]
- Janvier, P. The brain in the early fossil jawless vertebrates: Evolutionary information from an empty nutshell. Brain Res. Bull. 2008, 75, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Richtsmeier, J.T.; Flaherty, K. Hand in glove: Brain and skull in development and dysmorphogenesis. Acta Neuropathol. 2013, 125, 469–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, H.E.; Goswami, A.; Tucker, A.S. The intertwined evolution and development of sutures and cranial morphology. Front. Cell Dev. Biol. 2021, 9, 653579. [Google Scholar] [CrossRef]
- van Sorge, N.M.; Doran, K.S. Defense at the border: The blood-brain barrier versus bacterial foreigners. Future Microbiol. 2012, 7, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Sharif, Y.; Jumah, F.; Coplan, L.; Krosser, A.; Sharif, K.; Tubbs, R.S. Blood brain barrier: A review of its anatomy and physiology in health and disease. Clin. Anat. 2018, 31, 812–823. [Google Scholar] [CrossRef]
- Abbott, N.J. Dynamics of cns barriers: Evolution, differentiation, and modulation. Cell Mol. Neurobiol. 2005, 25, 5–23. [Google Scholar] [CrossRef]
- Daneman, R.; Barres, B.A. The blood-brain barrier--lessons from moody flies. Cell 2005, 123, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Wu, V.M.; Schulte, J.; Hirschi, A.; Tepass, U.; Beitel, G.J. Sinuous is a drosophila claudin required for septate junction organization and epithelial tube size control. J. Cell Biol. 2004, 164, 313–323. [Google Scholar] [CrossRef]
- Mayer, F.; Mayer, N.; Chinn, L.; Pinsonneault, R.L.; Kroetz, D.; Bainton, R.J. Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in drosophila. J. Neurosci. 2009, 29, 3538–3550. [Google Scholar] [CrossRef]
- DeSalvo, M.K.; Hindle, S.J.; Rusan, Z.M.; Orng, S.; Eddison, M.; Halliwill, K.; Bainton, R.J. The drosophila surface glia transcriptome: Evolutionary conserved blood-brain barrier processes. Front. Neurosci. 2014, 8, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubick, N.; Klimovich, P.; Bienkowska, I.; Poznanski, P.; Lazarczyk, M.; Sacharczuk, M.; Mickael, M.E. Investigation of evolutionary history and origin of the tre1 family suggests a role in regulating hemocytes cells infiltration of the blood-brain barrier. Insects 2021, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Mickael, M.E.; Kubick, N.; Klimovich, P.; Flournoy, P.H.; Bienkowska, I.; Sacharczuk, M. Paracellular and transcellular leukocytes diapedesis are divergent but interconnected evolutionary events. Genes 2021, 12, 254. [Google Scholar] [CrossRef] [PubMed]
- Macmillan, M. Restoring phineas gage: A 150th retrospective. J. Hist. Neurosci. 2000, 9, 46–66. [Google Scholar] [CrossRef]
- Montenigro, P.H.; Corp, D.T.; Stein, T.D.; Cantu, R.C.; Stern, R.A. Chronic traumatic encephalopathy: Historical origins and current perspective. Annu. Rev. Clin. Psychol. 2015, 11, 309–330. [Google Scholar] [CrossRef]
- Verduyn, C.; Bjerke, M.; Duerinck, J.; Engelborghs, S.; Peers, K.; Versijpt, J.; D’Haeseleer, M. Csf and blood neurofilament levels in athletes participating in physical contact sports: A systematic review. Neurology 2021, 96, 705–715. [Google Scholar] [CrossRef]
- Ghanem, K.G. Review: Neurosyphilis: A historical perspective and review. CNS Neurosci. Ther. 2010, 16, e157–e168. [Google Scholar] [CrossRef]
- Abio, A.; Neal, K.R.; Beck, C.R. An epidemiological review of changes in meningococcal biology during the last 100 years. Pathog. Glob. Health 2013, 107, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Mogk, S.; Bosselmann, C.M.; Mudogo, C.N.; Stein, J.; Wolburg, H.; Duszenko, M. African trypanosomes and brain infection—the unsolved question. Biol. Rev. Camb. Philos. Soc. 2017, 92, 1675–1687. [Google Scholar] [CrossRef]
- Bond, M.; Bechter, K.; Muller, N.; Tebartz van Elst, L.; Meier, U.C. A role for pathogen risk factors and autoimmunity in encephalitis lethargica? Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 109, 110276. [Google Scholar] [CrossRef]
- Stefano, G.B. Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med. Sci. Monit. 2021, 27, e931447. [Google Scholar] [CrossRef] [PubMed]
- Nassif, X.; Bourdoulous, S.; Eugene, E.; Couraud, P.O. How do extracellular pathogens cross the blood-brain barrier? Trends Microbiol. 2002, 10, 227–232. [Google Scholar] [CrossRef]
- Kim, K.S. Mechanisms of microbial traversal of the blood-brain barrier. Nat. Rev. Microbiol. 2008, 6, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coureuil, M.; Lecuyer, H.; Bourdoulous, S.; Nassif, X. A journey into the brain: Insight into how bacterial pathogens cross blood-brain barriers. Nat. Rev. Microbiol. 2017, 15, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.; Kristensen, F.; Dubs, R.; Gemsa, D.; Weber, E. Production of prostaglandin e and an interleukin-1 like factor by cultured astrocytes and c6 glioma cells. J. Immunol. 1982, 129, 2413–2419. [Google Scholar] [PubMed]
- Coceani, F.; Lees, J.; Dinarello, C.A. Occurrence of interleukin-1 in cerebrospinal fluid of the conscious cat. Brain Res. 1988, 446, 245–250. [Google Scholar] [CrossRef]
- Hetier, E.; Ayala, J.; Denefle, P.; Bousseau, A.; Rouget, P.; Mallat, M.; Prochiantz, A. Brain macrophages synthesize interleukin-1 and interleukin-1 mrnas in vitro. J. Neurosci. Res. 1988, 21, 391–397. [Google Scholar] [CrossRef]
- Andersson, P.B.; Perry, V.H.; Gordon, S. The acute inflammatory response to lipopolysaccharide in cns parenchyma differs from that in other body tissues. Neuroscience 1992, 48, 169–186. [Google Scholar] [CrossRef]
- Blond, D.; Campbell, S.J.; Butchart, A.G.; Perry, V.H.; Anthony, D.C. Differential induction of interleukin-1beta and tumour necrosis factor-alpha may account for specific patterns of leukocyte recruitment in the brain. Brain Res. 2002, 958, 89–99. [Google Scholar] [CrossRef]
- Murphy, J.B.; Sturm, E. Conditions determining the transplantability of tissues in the brain. J. Exp. Med. 1923, 38, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Medawar, P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 1948, 29, 58–69. [Google Scholar] [PubMed]
- Rambo, O.N., Jr.; Fuson, R.; Hattori, M.; Eichwald, E.J. Immune phenomena elicited by transplanted tumors. I. The participation of the eye and the brain. Cancer Res. 1954, 14, 169–172. [Google Scholar] [PubMed]
- Morantz, R.A.; Shain, W.; Cravioto, H. Immune surveillance and tumors of the nervous system. J. Neurosurg. 1978, 49, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Head, J.R.; Griffin, W.S. Functional capacity of solid tissue transplants in the brain: Evidence for immunological privilege. Proc. R Soc. Lond. B Biol. Sci. 1985, 224, 375–387. [Google Scholar]
- Roboz-Einstein, E. Allergic encephalomyelitis as an experimental model for multiple sclerosis. Calif. Med. 1959, 91, 204–206. [Google Scholar]
- Aarli, J.A. The immune system and the nervous system. J. Neurol. 1983, 229, 137–154. [Google Scholar] [CrossRef]
- Hickey, W.F.; Kimura, H. Graft-vs.-host disease elicits expression of class i and class ii histocompatibility antigens and the presence of scattered t lymphocytes in rat central nervous system. Proc. Natl. Acad. Sci. USA 1987, 84, 2082–2086. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, M.K.; Antel, J.P.; Stefansson, K.; Arnason, B.G. Rejection of fetal neocortical neural transplants by h-2 incompatible mice. J. Immunol. 1987, 139, 2275–2283. [Google Scholar]
- Streit, W.J.; Graeber, M.B.; Kreutzberg, G.W. Functional plasticity of microglia: A review. Glia 1988, 1, 301–307. [Google Scholar] [CrossRef]
- Pollack, I.F.; Lund, R.D. The blood-brain barrier protects foreign antigens in the brain from immune attack. Exp. Neurol. 1990, 108, 114–121. [Google Scholar] [CrossRef]
- Galea, I.; Bechmann, I.; Perry, V.H. What is immune privilege (not)? Trends Immunol. 2007, 28, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Rovaris, M.; Barnes, D.; Woodrofe, N.; du Boulay, G.H.; Thorpe, J.W.; Thompson, A.J.; McDonald, W.I.; Miller, D.H. Patterns of disease activity in multiple sclerosis patients: A study with quantitative gadolinium-enhanced brain mri and cytokine measurement in different clinical subgroups. J. Neurol. 1996, 243, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Seppi, D.; Puthenparampil, M.; Federle, L.; Ruggero, S.; Toffanin, E.; Rinaldi, F.; Perini, P.; Gallo, P. Cerebrospinal fluid il-1beta correlates with cortical pathology load in multiple sclerosis at clinical onset. J. Neuroimmunol. 2014, 270, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Prins, M.; Eriksson, C.; Wierinckx, A.; Bol, J.G.; Binnekade, R.; Tilders, F.J.; Van Dam, A.M. Interleukin-1beta and interleukin-1 receptor antagonist appear in grey matter additionally to white matter lesions during experimental multiple sclerosis. PLoS ONE 2013, 8, e83835. [Google Scholar] [CrossRef]
- Furlan, R.; Bergami, A.; Brambilla, E.; Butti, E.; De Simoni, M.G.; Campagnoli, M.; Marconi, P.; Comi, G.; Martino, G. Hsv-1-mediated il-1 receptor antagonist gene therapy ameliorates mog(35-55)-induced experimental autoimmune encephalomyelitis in c57bl/6 mice. Gene Ther. 2007, 14, 93–98. [Google Scholar] [CrossRef]
- McCandless, E.E.; Budde, M.; Lees, J.R.; Dorsey, D.; Lyng, E.; Klein, R.S. Il-1r signaling within the central nervous system regulates cxcl12 expression at the blood-brain barrier and disease severity during experimental autoimmune encephalomyelitis. J. Immunol. 2009, 183, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Powell, N.; Zhang, H.; Belevych, N.; Ching, S.; Chen, Q.; Sheridan, J.; Whitacre, C.; Quan, N. Endothelial il-1r1 is a critical mediator of eae pathogenesis. Brain Behav. Immun. 2011, 25, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Hauptmann, J.; Johann, L.; Marini, F.; Kitic, M.; Colombo, E.; Mufazalov, I.A.; Krueger, M.; Karram, K.; Moos, S.; Wanke, F.; et al. Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier. Acta Neuropathol. 2020, 140, 549–567. [Google Scholar] [CrossRef]
- Cacabelos, R.; Barquero, M.; García, P.; Alvarez, X.A.; Varela de Seijas, E. Cerebrospinal fluid interleukin-1 beta (il-1 beta) in alzheimer’s disease and neurological disorders. Methods Find. Exp. Clin. Pharm. 1991, 13, 455–458. [Google Scholar]
- Griffin, W.S.; Stanley, L.C.; Ling, C.; White, L.; MacLeod, V.; Perrot, L.J.; White, C.L.; Araoz, C. Brain interleukin 1 and s-100 immunoreactivity are elevated in down syndrome and alzheimer disease. Proc. Natl. Acad. Sci. USA 1989, 86, 7611–7615. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.G.; Sheng, J.G.; Jones, R.A.; Brewer, M.M.; Zhou, X.Q.; Mrak, R.E.; Griffin, W.S. Increased interleukin-1beta converting enzyme expression and activity in alzheimer disease. J. Neuropathol. Exp. Neurol. 1999, 58, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Mehlhorn, G.; Hollborn, M.; Schliebs, R. Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic tg2576 mice with alzheimer pathology. Int. J. Dev. Neurosci. 2000, 18, 423–431. [Google Scholar] [CrossRef]
- Apelt, J.; Schliebs, R. Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic tg2576 mice with alzheimer plaque pathology. Brain Res. 2001, 894, 21–30. [Google Scholar] [CrossRef]
- Shaftel, S.S.; Kyrkanides, S.; Olschowka, J.A.; Miller, J.N.; Johnson, R.E.; O’Banion, M.K. Sustained hippocampal il-1 beta overexpression mediates chronic neuroinflammation and ameliorates alzheimer plaque pathology. J. Clin. Investig. 2007, 117, 1595–1604. [Google Scholar] [CrossRef]
- Matousek, S.B.; Ghosh, S.; Shaftel, S.S.; Kyrkanides, S.; Olschowka, J.A.; O’Banion, M.K. Chronic il-1beta-mediated neuroinflammation mitigates amyloid pathology in a mouse model of alzheimer’s disease without inducing overt neurodegeneration. J. Neuroimmune Pharmacol. 2012, 7, 156–164. [Google Scholar] [CrossRef]
- Ghosh, S.; Wu, M.D.; Shaftel, S.S.; Kyrkanides, S.; LaFerla, F.M.; Olschowka, J.A.; O’Banion, M.K. Sustained interleukin-1beta overexpression exacerbates tau pathology despite reduced amyloid burden in an alzheimer’s mouse model. J. Neurosci. 2013, 33, 5053–5064. [Google Scholar] [CrossRef]
- Ben-Menachem-Zidon, O.; Ben-Menahem, Y.; Ben-Hur, T.; Yirmiya, R. Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of il-1 receptor antagonist rescues memory and neurogenesis impairments in an alzheimer’s disease model. Neuropsychopharmacology 2014, 39, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Fontana, A.; Weber, E.; Dayer, J.M. Synthesis of interleukin 1/endogenous pyrogen in the brain of endotoxin-treated mice: A step in fever induction? J. Immunol. 1984, 133, 1696–1698. [Google Scholar]
- Hooghe-Peters, E.; Velkeniers, B.; Vanhaelst, L.; Hooghe, R. Interleukin-1, interleukin-6: Messengers in the neuroendocrine immune system? Pathol. Res. Pract. 1991, 187, 622–625. [Google Scholar] [CrossRef]
- van Dam, A.M.; Brouns, M.; Louisse, S.; Berkenbosch, F. Appearance of interleukin-1 in macrophages and in ramified microglia in the brain of endotoxin-treated rats: A pathway for the induction of non-specific symptoms of sickness? Brain Res. 1992, 588, 291–296. [Google Scholar] [CrossRef]
- Quan, N.; Sundar, S.K.; Weiss, J.M. Induction of interleukin-1 in various brain regions after peripheral and central injections of lipopolysaccharide. J. Neuroimmunol. 1994, 49, 125–134. [Google Scholar] [CrossRef]
- Konsman, J.P.; Kelley, K.; Dantzer, R. Temporal and spatial relationships between lipopolysaccharide-induced expression of fos, interleukin-1beta and inducible nitric oxide synthase in rat brain. Neuroscience 1999, 89, 535–548. [Google Scholar] [CrossRef]
- Meyer, T.A.; Wang, J.J.; Tiao, G.M.; Ogle, C.K.; Fischer, J.E.; Hasselgren, P.O. Sepsis and endotoxaemia in mice stimulate the expression of interleukin-i and interleukin-6 in the central nervous system. Clin. Sci. 1997, 92, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Biff, D.; Petronilho, F.; Constantino, L.; Vuolo, F.; Zamora-Berridi, G.J.; Dall’Igna, D.M.; Comim, C.M.; Quevedo, J.; Kapczinski, F.; Dal-Pizzol, F. Correlation of acute phase inflammatory and oxidative markers with long-term cognitive impairment in sepsis survivors rats. Shock 2013, 40, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Armah, H.; Dodoo, A.K.; Wiredu, E.K.; Stiles, J.K.; Adjei, A.A.; Gyasi, R.K.; Tettey, Y. High-level cerebellar expression of cytokines and adhesion molecules in fatal, paediatric, cerebral malaria. Ann. Trop. Med. Parasitol. 2005, 99, 629–647. [Google Scholar] [CrossRef]
- Basu, S.; Agarwal, P.; Anupurba, S.; Shukla, R.; Kumar, A. Elevated plasma and cerebrospinal fluid interleukin-1 beta and tumor necrosis factor-alpha concentration and combined outcome of death or abnormal neuroimaging in preterm neonates with early-onset clinical sepsis. J. Perinatol. 2015, 35, 855–861. [Google Scholar] [CrossRef]
- Imeri, L.; Opp, M.R.; Krueger, J.M. An il-1 receptor and an il-1 receptor antagonist attenuate muramyl dipeptide- and il-1-induced sleep and fever. Am. J. Physiol. 1993, 265, R907–R913. [Google Scholar] [CrossRef]
- Takahashi, S.; Kapás, L.; Fang, J.; Seyer, J.M.; Wang, Y.; Krueger, J.M. An interleukin-1 receptor fragment inhibits spontaneous sleep and muramyl dipeptide-induced sleep in rabbits. Am. J. Physiol. 1996, 271, R101–R108. [Google Scholar] [CrossRef]
- Luheshi, G.; Miller, A.J.; Brouwer, S.; Dascombe, M.J.; Rothwell, N.J.; Hopkins, S.J. Interleukin-1 receptor antagonist inhibits endotoxin fever and systemic interleukin-6 induction in the rat. Am. J. Physiol. 1996, 270, E91–E95. [Google Scholar] [CrossRef]
- Gourine, A.V.; Rudolph, K.; Tesfaigzi, J.; Kluger, M.J. Role of hypothalamic interleukin-1beta in fever induced by cecal ligation and puncture in rats. Am. J. Physiol. 1998, 275, R754–R761. [Google Scholar]
- Layé, S.; Gheusi, G.; Cremona, S.; Combe, C.; Kelley, K.; Dantzer, R.; Parnet, P. Endogenous brain il-1 mediates lps-induced anorexia and hypothalamic cytokine expression. Am. J. Physiol. 2000, 179, R93–R98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konsman, J.P.; Veeneman, J.; Combe, C.; Poole, S.; Luheshi, G.N.; Dantzer, R. Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide. Eur. J. Neurosci. 2008, 28, 2499–2510. [Google Scholar] [CrossRef] [PubMed]
- Sylvia, K.E.; Demas, G.E. A return to wisdom: Using sickness behaviors to integrate ecological and translational research. Integr. Comp. Biol. 2017, 57, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.; Sanderson, D.J. Malaise in the water maze: Untangling the effects of lps and il-1beta on learning and memory. Brain Behav. Immun. 2008, 22, 1117–1127. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.A. Neuroinflammatory changes negatively impact on ltp: A focus on il-1beta. Brain Res. 2015, 1621, 197–204. [Google Scholar] [CrossRef]
- Pacheco-Lopez, G.; Niemi, M.B.; Kou, W.; Baum, S.; Hoffman, M.; Altenburger, P.; del Rey, A.; Besedovsky, H.O.; Schedlowski, M. Central blockade of il-1 does not impair taste-lps associative learning. Neuroimmunomodulation 2007, 14, 150–156. [Google Scholar] [CrossRef]
- Mina, F.; Comim, C.M.; Dominguini, D.; Cassol, O.J., Jr.; Dall Igna, D.M.; Ferreira, G.K.; Silva, M.C.; Galant, L.S.; Streck, E.L.; Quevedo, J.; et al. Il1-beta involvement in cognitive impairment after sepsis. Mol. Neurobiol. 2014, 49, 1069–1076. [Google Scholar] [CrossRef]
- Lue, F.A.; Bail, M.; Jephthah-Ochola, J.; Carayanniotis, K.; Gorczynski, R.; Moldofsky, H. Sleep and cerebrospinal fluid interleukin-1-like activity in the cat. Int. J. Neurosci. 1988, 42, 179–183. [Google Scholar]
- Taishi, P.; Chen, Z.; Obál, F.E.R.E.N.C., Jr.; Hansen, M.K.; Zhang, J.; Fang, J.; Krueger, J.M. Sleep-associated changes in interleukin-1beta mrna in the brain. J. Interferon Cytokine Res. 1998, 18, 793–798. [Google Scholar] [CrossRef]
- Opp, M.R.; Krueger, J.M. Anti-interleukin-1 beta reduces sleep and sleep rebound after sleep deprivation in rats. Am. J. Physiol. 1994, 266, R688–R695. [Google Scholar] [CrossRef]
- Takahashi, S.; Fang, J.; Kapás, L.; Wang, Y.; Krueger, J.M. Inhibition of brain interleukin-1 attenuates sleep rebound after sleep deprivation in rabbits. Am. J. Physiol. 1997, 273, R677–R682. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Pitossi, F.; Balschun, D.; Wagner, A.; del Rey, A.; Besedovsky, H.O. A neuromodulatory role of interleukin-1beta in the hippocampus. Proc. Natl. Acad. Sci. USA 1998, 95, 7778–7783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balschun, D.; Wetzel, W.; Del Rey, A.; Pitossi, F.; Schneider, H.; Zuschratter, W.; Besedovsky, H.O. Interleukin-6: A cytokine to forget. FASEB J. 2004, 18, 1788–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depino, A.M.; Alonso, M.; Ferrari, C.; del Rey, A.; Anthony, D.; Besedovsky, H.; Medina, J.H.; Pitossi, F. Learning modulation by endogenous hippocampal il-1: Blockade of endogenous il-1 facilitates memory formation. Hippocampus 2004, 14, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Goshen, I.; Kreisel, T.; Ounallah-Saad, H.; Renbaum, P.; Zalzstein, Y.; Ben-Hur, T.; Levy-Lahad, E.; Yirmiya, R. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 2007, 32, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.A. Interleukin-1 beta exerts a myriad of effects in the brain and in particular in the hippocampus: Analysis of some of these actions. Vitam. Horm. 2002, 64, 185–219. [Google Scholar]
- Derecki, N.C.; Cardani, A.N.; Yang, C.H.; Quinnies, K.M.; Crihfield, A.; Lynch, K.R.; Kipnis, J. Regulation of learning and memory by meningeal immunity: A key role for il-4. J. Exp. Med. 2010, 207, 1067–1080. [Google Scholar] [CrossRef] [Green Version]
- Brombacher, T.M.; Nono, J.K.; De Gouveia, K.S.; Makena, N.; Darby, M.; Womersley, J.; Tamgue, O.; Brombacher, F. Il-13-mediated regulation of learning and memory. J. Immunol. 2017, 198, 2681–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, G.E.; Chen, E.; Sze, J.; Marin, T.; Arevalo, J.M.; Doll, R.; Ma, R.; Cole, S.W. A functional genomic fingerprint of chronic stress in humans: Blunted glucocorticoid and increased nf-kappab signaling. Biol. Psychiatry 2008, 64, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Rohleder, N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom. Med. 2014, 76, 181–189. [Google Scholar] [CrossRef]
- Lopez-Lopez, A.L.; Jaime, H.B.; Escobar Villanueva, M.D.C.; Padilla, M.B.; Palacios, G.V.; Aguilar, F.J.A. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats. Physiol. Behav. 2016, 161, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Hodes, G.E.; Pfau, M.L.; Leboeuf, M.; Golden, S.A.; Christoffel, D.J.; Bregman, D.; Rebusi, N.; Heshmati, M.; Aleyasin, H.; Warren, B.L.; et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA 2014, 111, 16136–16141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, A.M.; Roy, S.; Wong, K.; Gaikwad, S.; Chung, K.M.; Kalueff, A.V. Cytokine and endocrine parameters in mouse chronic social defeat: Implications for translational ’cross-domain’ modeling of stress-related brain disorders. Behav. Brain Res. 2015, 276, 84–91. [Google Scholar] [CrossRef]
- Hueston, C.M.; Barnum, C.J.; Eberle, J.A.; Ferraioli, F.J.; Buck, H.M.; Deak, T. Stress-dependent changes in neuroinflammatory markers observed after common laboratory stressors are not seen following acute social defeat of the sprague dawley rat. Physiol. Behav. 2011, 104, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Estes, M.L.; McAllister, A.K. Alterations in immune cells and mediators in the brain: It’s not always neuroinflammation! Brain Pathol. 2014, 24, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konsman, J.P. Inflammation and depression: A nervous plea for psychiatry to not become immune to interpretation. Pharmaceuticals 2019, 12, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodburn, S.C.; Bollinger, J.L.; Wohleb, E.S. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. J. Neuroinflamm. 2021, 18, 258. [Google Scholar] [CrossRef]
- Hoogland, I.C.; Houbolt, C.; van Westerloo, D.J.; van Gool, W.A.; van de Beek, D. Systemic inflammation and microglial activation: Systematic review of animal experiments. J. Neuroinflamm. 2015, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Hoogland, I.C.M.; Westhoff, D.; Engelen-Lee, J.Y.; Melief, J.; Valls Seron, M.; Houben-Weerts, J.; Huitinga, I.; van Westerloo, D.J.; van der Poll, T.; van Gool, W.A.; et al. Microglial activation after systemic stimulation with lipopolysaccharide and escherichia coli. Front. Cell Neurosci. 2018, 12, 110. [Google Scholar] [CrossRef] [Green Version]
- Griton, M.; Dhaya, I.; Nicolas, R.; Raffard, G.; Periot, O.; Hiba, B.; Konsman, J.P. Experimental sepsis-associated encephalopathy is accompanied by altered cerebral blood perfusion and water diffusion and related to changes in cyclooxygenase-2 expression and glial cell morphology but not to blood-brain barrier breakdown. Brain Behav. Immun. 2020, 83, 200–213. [Google Scholar] [CrossRef]
- Rummel, C.; Inoue, W.; Poole, S.; Luheshi, G.N. Leptin regulates leukocyte recruitment into the brain following systemic lps-induced inflammation. Mol. Psychiatry 2010, 15, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Cazareth, J.; Guyon, A.; Heurteaux, C.; Chabry, J.; Petit-Paitel, A. Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: Importance of ccr2/ccl2 signaling. J. Neuroinflamm. 2014, 11, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, Y.; Chen, T.; Fujisawa, T.; Kobashi, S.; Ohno, K.; Yoshida, S.; Tago, Y.; Komai, Y.; Hata, Y.; Yoshioka, Y. From cartoon to real time mri: In vivo monitoring of phagocyte migration in mouse brain. Sci. Rep. 2014, 4, 6997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denstaedt, S.J.; Spencer-Segal, J.L.; Newstead, M.; Laborc, K.; Zeng, X.; Standiford, T.J.; Singer, B.H. Persistent neuroinflammation and brain-specific immune priming in a novel survival model of murine pneumosepsis. Shock 2020, 54, 78–86. [Google Scholar] [CrossRef]
- Saito, M.; Fujinami, Y.; Ono, Y.; Ohyama, S.; Fujioka, K.; Yamashita, K.; Inoue, S.; Kotani, J. Infiltrated regulatory t cells and th2 cells in the brain contribute to attenuation of sepsis-associated encephalopathy and alleviation of mental impairments in mice with polymicrobial sepsis. Brain Behav. Immun. 2021, 92, 25–38. [Google Scholar] [CrossRef]
- Ghazanfari, N.; Gregory, J.L.; Devi, S.; Fernandez-Ruiz, D.; Beattie, L.; Mueller, S.N.; Heath, W.R. Cd8(+) and cd4(+) t cells infiltrate into the brain during plasmodium berghei anka infection and form long-term resident memory. J. Immunol. 2021, 207, 1578–1590. [Google Scholar] [CrossRef]
- Eckman, P.L.; King, W.M.; Brunson, J.G. Studies on the blood brain barrier. I. Effects produced by a single injection of gramnegative endotoxin on the permeability of the cerebral vessels. Am. J. Pathol. 1958, 34, 631–643. [Google Scholar]
- Galea, I. The blood-brain barrier in systemic infection and inflammation. Cell Mol. Immunol. 2021, 18, 2489–2501. [Google Scholar] [CrossRef]
- Morimoto, A.; Murakami, N.; Nakamori, T.; Watanabe, T. Fever induced in rabbits by intraventricular injection of rabbit and human serum albumin. J. Physiol. 1987, 390, 137–144. [Google Scholar] [CrossRef]
- Steiner, A.A.; Ivanov, A.I.; Serrats, J.; Hosokawa, H.; Phayre, A.N.; Robbins, J.R.; Roberts, J.L.; Kobayashi, S.; Matsumura, K.; Sawchenko, P.E.; et al. Cellular and molecular bases of the initiation of fever. PLoS Biol. 2006, 4, e284. [Google Scholar] [CrossRef] [Green Version]
- Dhaya, I.; Griton, M.; Raffard, G.; Amri, M.; Hiba, B.; Konsman, J.P. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown? J. Neuroimmunol. 2018, 314, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Dhaya, I.; Griton, M.; Konsman, J.P. Magnetic resonance imaging under isoflurane anesthesia alters cortical cyclooxygenase-2 expression and glial cell morphology during sepsis-associated neurological dysfunction in rats. Anim. Model. Exp. Med. 2021, 4, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, M.C.; Lamb, F.J.; Moss, R.F.; Davies, D.C.; Tighe, D.; Bennett, E.D. Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin. Sci. 1999, 96, 461–466. [Google Scholar] [CrossRef]
- Sharshar, T.; Gray, F.; Poron, F.; Raphael, J.C.; Gajdos, P.; Annane, D. Multifocal necrotizing leukoencephalopathy in septic shock. Crit. Care Med. 2002, 30, 2371–2375. [Google Scholar] [CrossRef]
- Semmler, A.; Okulla, T.; Sastre, M.; Dumitrescu-Ozimek, L.; Heneka, M.T. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J. Chem. Neuroanat. 2005, 30, 144–157. [Google Scholar] [CrossRef]
- Cunningham, C.; Wilcockson, D.C.; Campion, S.; Lunnon, K.; Perry, V.H. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 2005, 25, 9275–9284. [Google Scholar] [CrossRef] [Green Version]
- Calcia, M.A.; Bonsall, D.R.; Bloomfield, P.S.; Selvaraj, S.; Barichello, T.; Howes, O.D. Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology 2016, 233, 1637–1650. [Google Scholar] [CrossRef] [Green Version]
- Chaaya, N.; Jacques, A.; Belmer, A.; Beecher, K.; Ali, S.A.; Chehrehasa, F.; Battle, A.R.; Johnson, L.R.; Bartlett, S.E. Contextual fear conditioning alter microglia number and morphology in the rat dorsal hippocampus. Front. Cell Neurosci. 2019, 13, 214. [Google Scholar] [CrossRef]
- Weber, M.D.; Godbout, J.P.; Sheridan, J.F. Repeated social defeat, neuroinflammation, and behavior: Monocytes carry the signal. Neuropsychopharmacology 2017, 42, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Gallagher, N.R.; Sawicki, C.M.; McKim, D.B.; Godbout, J.P.; Sheridan, J.F. Repeated social defeat in female mice induces anxiety-like behavior associated with enhanced myelopoiesis and increased monocyte accumulation in the brain. Brain Behav. Immun. 2019, 78, 131–142. [Google Scholar] [CrossRef]
- Menard, C.; Pfau, M.L.; Hodes, G.E.; Kana, V.; Wang, V.X.; Bouchard, S.; Takahashi, A.; Flanigan, M.E.; Aleyasin, H.; LeClair, K.B.; et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 2017, 20, 1752–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markoullis, K.; Sargiannidou, I.; Schiza, N.; Hadjisavvas, A.; Roncaroli, F.; Reynolds, R.; Kleopa, K.A. Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol. 2012, 123, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Bergoffen, J.; Scherer, S.S.; Wang, S.; Scott, M.O.; Bone, L.J.; Paul, D.L.; Chen, K.; Lensch, M.W.; Chance, P.F.; Fischbeck, K.H. Connexin mutations in x-linked charcot-marie-tooth disease. Science 1993, 262, 2039–2042. [Google Scholar] [CrossRef] [PubMed]
- Nelles, E.; Butzler, C.; Jung, D.; Temme, A.; Gabriel, H.D.; Dahl, U.; Traub, O.; Stumpel, F.; Jungermann, K.; Zielasek, J.; et al. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc. Natl. Acad. Sci. USA 1996, 93, 9565–9570. [Google Scholar] [CrossRef] [Green Version]
- Menichella, D.M.; Goodenough, D.A.; Sirkowski, E.; Scherer, S.S.; Paul, D.L. Connexins are critical for normal myelination in the cns. J. Neurosci. 2003, 23, 5963–5973. [Google Scholar] [CrossRef]
- Papaneophytou, C.P.; Georgiou, E.; Karaiskos, C.; Sargiannidou, I.; Markoullis, K.; Freidin, M.M.; Abrams, C.K.; Kleopa, K.A. Regulatory role of oligodendrocyte gap junctions in inflammatory demyelination. Glia 2018, 66, 2589–2603. [Google Scholar] [CrossRef]
- Stavropoulos, F.; Georgiou, E.; Sargiannidou, I.; Kleopa, K.A. Dysregulation of blood-brain barrier and exacerbated inflammatory response in cx47-deficient mice after induction of eae. Pharmaceuticals 2021, 14, 621. [Google Scholar] [CrossRef]
- Bohmwald, K.; Andrade, C.A.; Kalergis, A.M. Contribution of pro-inflammatory molecules induced by respiratory virus infections to neurological disorders. Pharmaceuticals 2021, 14, 340. [Google Scholar] [CrossRef]
- Lemstra, A.W.; Groen in’t Woud, J.C.; Hoozemans, J.J.; van Haastert, E.S.; Rozemuller, A.J.; Eikelenboom, P.; van Gool, W.A. Microglia activation in sepsis: A case-control study. J. Neuroinflamm. 2007, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Munster, B.C.; Aronica, E.; Zwinderman, A.H.; Eikelenboom, P.; Cunningham, C.; Rooij, S.E. Neuroinflammation in delirium: A postmortem case-control study. Rejuvenation Res. 2011, 14, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Polito, A.; Brouland, J.P.; Porcher, R.; Sonneville, R.; Siami, S.; Stevens, R.D.; Guidoux, C.; Maxime, V.; de la Grandmaison, G.L.; Chretien, F.C.; et al. Hyperglycaemia and apoptosis of microglial cells in human septic shock. Crit. Care 2011, 15, R131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, C.A.; Zaverucha-do-Valle, C.; Fleurance, R.; Sharshar, T.; Bozza, F.A.; d’Avila, J.C. Neuroinflammation in sepsis: Molecular pathways of microglia activation. Pharmaceuticals 2021, 14, 416. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M. The clinical relevance of endotoxin in human sepsis: A critical analysis. J. Endotoxin Res. 2002, 8, 473–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Wang, H.; Andersson, U. Targeting inflammation driven by hmgb1. Front. Immunol. 2020, 11, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunden-Cullberg, J.; Norrby-Teglund, A.; Rouhiainen, A.; Rauvala, H.; Herman, G.; Tracey, K.J.; Lee, M.L.; Andersson, J.; Tokics, L.; Treutiger, C.J. Persistent elevation of high mobility group box-1 protein (hmgb1) in patients with severe sepsis and septic shock. Crit. Care Med. 2005, 33, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; et al. Hmg-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285, 248–251. [Google Scholar] [CrossRef]
- Laflamme, N.; Rivest, S. Toll-like receptor 4: The missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. 2001, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Peek, V.; Harden, L.M.; Damm, J.; Aslani, F.; Leisengang, S.; Roth, J.; Gerstberger, R.; Meurer, M.; von Kockritz-Blickwede, M.; Schulz, S.; et al. Lps primes brain responsiveness to high mobility group box-1 protein. Pharmaceuticals 2021, 14, 558. [Google Scholar] [CrossRef]
- Stenken, J.A.; Poschenrieder, A.J. Bioanalytical chemistry of cytokines--a review. Anal. Chim. Acta 2015, 853, 95–115. [Google Scholar] [CrossRef]
- Kvivik, I.; Jonsson, G.; Omdal, R.; Brede, C. Sample preparation strategies for antibody-free quantitative analysis of high mobility group box 1 protein. Pharmaceuticals 2021, 14, 537. [Google Scholar] [CrossRef]
- Chaskiel, L.; Bristow, A.D.; Bluthe, R.M.; Dantzer, R.; Blomqvist, A.; Konsman, J.P. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain Behav. Immun. 2019, 81, 560–573. [Google Scholar] [CrossRef] [PubMed]
- Konsman, J.P.; Vigues, S.; Mackerlova, L.; Bristow, A.; Blomqvist, A. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: Relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J. Comp. Neurol. 2004, 472, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Chaskiel, L.; Dantzer, R.; Konsman, J.P. Brain perivascular macrophages do not mediate interleukin-1-induced sickness behavior in rats. Pharmaceuticals 2021, 14, 1030. [Google Scholar] [CrossRef] [PubMed]
- Rankin, S.M.; Conroy, D.M.; Williams, T.J. Eotaxin and eosinophil recruitment: Implications for human disease. Mol. Med. Today 2000, 6, 20–27. [Google Scholar] [CrossRef]
- Chang, E.E.; Chung, L.Y.; Yen, C.M. Kinetics of change in the eotaxin concentration in serum and cerebrospinal fluid of mice infected with angiostrongylus cantonensis. Parasitol. Res. 2004, 92, 137–141. [Google Scholar] [CrossRef]
- Intapan, P.M.; Niwattayakul, K.; Sawanyawisuth, K.; Chotmongkol, V.; Maleewong, W. Cerebrospinal fluid eotaxin and eotaxin-2 levels in human eosinophilic meningitis associated with angiostrongyliasis. Cytokine 2007, 39, 138–141. [Google Scholar] [CrossRef]
- Shurin, G.V.; Yurkovetsky, Z.R.; Chatta, G.S.; Tourkova, I.L.; Shurin, M.R.; Lokshin, A.E. Dynamic alteration of soluble serum biomarkers in healthy aging. Cytokine 2007, 39, 123–129. [Google Scholar] [CrossRef]
- Erickson, M.A.; Morofuji, Y.; Owen, J.B.; Banks, W.A. Rapid transport of ccl11 across the blood-brain barrier: Regional variation and importance of blood cells. J. Pharmacol. Exp. Ther. 2014, 349, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Ivanovska, M.; Abdi, Z.; Murdjeva, M.; Macedo, D.; Maes, A.; Maes, M. Ccl-11 or eotaxin-1: An immune marker for ageing and accelerated ageing in neuro-psychiatric disorders. Pharmaceuticals 2020, 13, 230. [Google Scholar] [CrossRef]
- Teixeira, A.L.; Gama, C.S.; Rocha, N.P.; Teixeira, M.M. Revisiting the role of eotaxin-1/ccl11 in psychiatric disorders. Front. Psychiatry 2018, 9, 241. [Google Scholar] [CrossRef]
- Burgener, I.; Van Ham, L.; Jaggy, A.; Vandevelde, M.; Tipold, A. Chemotactic activity and il-8 levels in the cerebrospinal fluid in canine steroid responsive meningitis-arteriitis. J. Neuroimmunol. 1998, 89, 182–190. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konsman, J.P. Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire! Pharmaceuticals 2022, 15, 140. https://doi.org/10.3390/ph15020140
Konsman JP. Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire! Pharmaceuticals. 2022; 15(2):140. https://doi.org/10.3390/ph15020140
Chicago/Turabian StyleKonsman, Jan Pieter. 2022. "Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire!" Pharmaceuticals 15, no. 2: 140. https://doi.org/10.3390/ph15020140
APA StyleKonsman, J. P. (2022). Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire! Pharmaceuticals, 15(2), 140. https://doi.org/10.3390/ph15020140