Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 1100 KiB  
Review
Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications
by Roberto Bava, Fabio Castagna, Carmine Lupia, Giusi Poerio, Giovanna Liguori, Renato Lombardi, Maria Diana Naturale, Rosa Maria Bulotta, Vito Biondi, Annamaria Passantino, Domenico Britti, Giancarlo Statti and Ernesto Palma
Pharmaceuticals 2024, 17(5), 646; https://doi.org/10.3390/ph17050646 - 16 May 2024
Cited by 2 | Viewed by 3798
Abstract
Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of [...] Read more.
Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy. Full article
(This article belongs to the Special Issue Therapeutic Effects of Natural Products and Their Clinical Research)
Show Figures

Figure 1

36 pages, 7182 KiB  
Review
Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer
by Mihaela Boța, Lavinia Vlaia, Alex-Robert Jîjie, Iasmina Marcovici, Flavia Crişan, Cristian Oancea, Cristina Adriana Dehelean, Tudor Mateescu and Elena-Alina Moacă
Pharmaceuticals 2024, 17(5), 598; https://doi.org/10.3390/ph17050598 - 8 May 2024
Cited by 7 | Viewed by 3666
Abstract
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds [...] Read more.
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects. Full article
Show Figures

Figure 1

15 pages, 769 KiB  
Review
Change in Neurocognitive Function in Patients Who Receive CAR-T Cell Therapies: A Steep Hill to Climb
by Evlampia Strongyli, Paschalis Evangelidis, Ioanna Sakellari, Maria Gavriilaki and Eleni Gavriilaki
Pharmaceuticals 2024, 17(5), 591; https://doi.org/10.3390/ph17050591 - 6 May 2024
Cited by 1 | Viewed by 2956
Abstract
Immunotherapy with chimeric antigen receptor T (CAR-T) cell therapies has brought substantial improvement in clinical outcomes in patients with relapsed/refractory B cell neoplasms. However, complications such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) limit the therapeutic efficacy of [...] Read more.
Immunotherapy with chimeric antigen receptor T (CAR-T) cell therapies has brought substantial improvement in clinical outcomes in patients with relapsed/refractory B cell neoplasms. However, complications such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) limit the therapeutic efficacy of this treatment approach. ICANS can have a broad range of clinical manifestations, while various scoring systems have been developed for its grading. Cognitive decline is prevalent in CAR-T therapy recipients including impaired attention, difficulty in item naming, and writing, agraphia, and executive dysfunction. In this review, we aim to present the diagnostic methods and tests that have been used for the recognition of cognitive impairment in these patients. Moreover, up-to-date data about the duration of cognitive impairment symptoms after the infusion are presented. More research on the risk factors, pathogenesis, preventive measures, and therapy of neurocognitive impairment is crucial for better outcomes for our patients. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

26 pages, 1052 KiB  
Review
Melanin Biopolymers in Pharmacology and Medicine—Skin Pigmentation Disorders, Implications for Drug Action, Adverse Effects and Therapy
by Marta Karkoszka, Jakub Rok and Dorota Wrześniok
Pharmaceuticals 2024, 17(4), 521; https://doi.org/10.3390/ph17040521 - 18 Apr 2024
Cited by 8 | Viewed by 2247
Abstract
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their [...] Read more.
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their perinuclear localization to protect DNA, but their ability to scavenge metal ions and antioxidant properties has also been noted. Interactions between drugs and melanins are of clinical relevance. The formation of drug–melanin complexes can affect both the efficacy of pharmacotherapy and the occurrence of adverse effects such as phototoxic reactions and discoloration. Because the amount and type of melanin synthesized in the body is subject to multifactorial regulation—determined by both internal factors such as genetic predisposition, inflammation, and hormonal balance and external factors such as contact with allergens or exposure to UV radiation—different effects on the melanogenesis process can be observed. These factors can directly influence skin pigmentation disorders, resulting in hypopigmentation or hyperpigmentation of a genetic or acquired nature. In this review, we will present information on melanocyte biology, melanogenesis, and the multifactorial influence of melanin on pharmacological parameters during pharmacotherapy. In addition, the types of skin color disorders, with special emphasis on the process of their development, symptoms, and methods of treatment, are presented in this article. Full article
(This article belongs to the Special Issue Novel Therapies for the Treatment of Skin Diseases)
Show Figures

Figure 1

15 pages, 3395 KiB  
Article
Biopolymeric Nanogel as a Drug Delivery System for Doxorubicin—Improved Drug Stability and Enhanced Antineoplastic Activity in Skin Cancer Cells
by Lyubomira Radeva, Maya M. Zaharieva, Ivanka Spassova, Daniela Kovacheva, Ivanka Pencheva-El Tibi, Hristo Najdenski and Krassimira Yoncheva
Pharmaceuticals 2024, 17(2), 186; https://doi.org/10.3390/ph17020186 - 31 Jan 2024
Cited by 5 | Viewed by 2224
Abstract
In this study, doxorubicin was loaded in a chitosan–albumin nanogel with the aim of improving its stability and exploring the potential of the system in the treatment of skin cancer. Infrared spectroscopy and X-ray diffraction confirmed the encapsulation of the drug. Transmission electron [...] Read more.
In this study, doxorubicin was loaded in a chitosan–albumin nanogel with the aim of improving its stability and exploring the potential of the system in the treatment of skin cancer. Infrared spectroscopy and X-ray diffraction confirmed the encapsulation of the drug. Transmission electron microscopy revealed the spherical shape of the nanogel particles. The drug-loaded nanogel was characterized with a small diameter of 29 nm, narrow polydispersity (0.223) and positive zeta potential (+34 mV). The exposure of encapsulated doxorubicin to light (including UV irradiation and daylight) did not provoke any degradation, whereas the nonencapsulated drug was significantly degraded. In vitro studies on keratinocytes (HaCaT) and epidermoid squamous skin carcinoma cells (A-431) disclosed that the encapsulated doxorubicin was more cytotoxic on both cell lines than the pure drug was. More importantly, the cytotoxic concentration of encapsulated doxorubicin in carcinoma cells was approximately two times lower than that in keratinocytes, indicating that it would not affect them. Thus, the loading of doxorubicin into the developed chitosan–albumin nanogel definitely stabilized the drug against photodegradation and increased its antineoplastic effect on the skin cancer cell line. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

16 pages, 2754 KiB  
Article
Topical Delivery of Tofacitinib in Dermatology: The Promise of a Novel Therapeutic Class Using Biodegradable Dendritic Polyglycerol Sulfates
by Fatemeh Zabihi, Mariam Cherri, Xiao Guo, Fiorenza Rancan, Fabian Schumacher, Ehsan Mohammadifar, Burkhard Kleuser, Wolfgang Bäumer, Michael Schirner, Annika Vogt and Rainer Haag
Pharmaceuticals 2024, 17(1), 77; https://doi.org/10.3390/ph17010077 - 8 Jan 2024
Cited by 1 | Viewed by 3977
Abstract
Inflammatory skin diseases, such as psoriasis, atopic dermatitis, and alopecia areata, occur when the regulatory tolerance of the innate immune system is disrupted, resulting in the activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) inflammatory signaling pathway by interleukin 6 [...] Read more.
Inflammatory skin diseases, such as psoriasis, atopic dermatitis, and alopecia areata, occur when the regulatory tolerance of the innate immune system is disrupted, resulting in the activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) inflammatory signaling pathway by interleukin 6 (IL-6) and other key inflammatory cytokines. JAK inhibitors, such as tofacitinib, bind to these enzymes which are coupled to receptors on cell surfaces and block the transcription of inflammatory cytokine-induced genes. The first topical applications are being marketed, yet insufficient effects regarding indications, such as alopecia areata, suggest that improved delivery technologies could help increase the efficacy. In this study, we used sulfated dendritic polyglycerol with caprolactone segments integrated in its backbone (dPGS-PCL), with a molecular weight of 54 kDa, as a degradable carrier to load and solubilize the hydrophobic drug tofacitinib (TFB). TFB loaded in dPGS-PCL (dPGS-PCL@TFB), at a 11 w/w% loading capacity in aqueous solution, showed in an ex-vivo human skin model better penetration than free TFB in a 30:70 (v/v) ethanol/water mixture. We also investigated the anti-inflammatory efficacy of dPGS-PCL@TFB (0.5 w/w%), dPGS-PCL, and free TFB in the water/ethanol mixture by measuring their effects on IL-6 and IL-8 release, and STAT3 and STAT5 activation in ex vivo skin models of simulated inflamed human skin. Our results suggest that dPGS-PCL@TFB reduces the activation of STAT3 and STAT5 by increasing the penetration of the tofacitinib. However, no statistically significant differences with respect to the inhibition of IL-6 and IL-8 were observed in this short incubation time. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

26 pages, 17665 KiB  
Article
A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro–In Silico Characterization, and Cell Line Evaluation
by Heba Banat, Ildikó Csóka, Dóra Paróczai, Katalin Burian, Árpád Farkas and Rita Ambrus
Pharmaceuticals 2024, 17(1), 75; https://doi.org/10.3390/ph17010075 - 7 Jan 2024
Cited by 3 | Viewed by 3211
Abstract
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering [...] Read more.
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4–4.5 µm), fine particle fraction (56–71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

17 pages, 5445 KiB  
Article
Assessing Nasal Epithelial Dynamics: Impact of the Natural Nasal Cycle on Intranasal Spray Deposition
by Amr Seifelnasr, Xiuhua Si and Jinxiang Xi
Pharmaceuticals 2024, 17(1), 73; https://doi.org/10.3390/ph17010073 - 6 Jan 2024
Cited by 2 | Viewed by 2079
Abstract
This study investigated the intricate dynamics of intranasal spray deposition within nasal models, considering variations in head orientation and stages of the nasal cycle. Employing controlled delivery conditions, we compared the deposition patterns of saline nasal sprays in models representing congestion (N1), normal [...] Read more.
This study investigated the intricate dynamics of intranasal spray deposition within nasal models, considering variations in head orientation and stages of the nasal cycle. Employing controlled delivery conditions, we compared the deposition patterns of saline nasal sprays in models representing congestion (N1), normal (N0), and decongestion (P1, P2) during one nasal cycle. The results highlighted the impact of the nasal cycle on spray distribution, with congestion leading to confined deposition and decongestion allowing for broader dispersion of spray droplets and increased sedimentation towards the posterior turbinate. In particular, the progressive nasal dilation from N1 to P2 decreased the spray deposition in the middle turbinate. The head angle, in conjunction with the nasal cycle, significantly influenced the nasal spray deposition distribution, affecting targeted drug delivery within the nasal cavity. Despite controlled parameters, a notable variance in deposition was observed, emphasizing the complex interplay of gravity, flow shear, nasal cycle, and nasal morphology. The magnitude of variance increased as the head tilt angle increased backward from upright to 22.5° to 45° due to increasing gravity and liquid film destabilization, especially under decongestion conditions (P1, P2). This study’s findings underscore the importance of considering both natural physiological variations and head orientation in optimizing intranasal drug delivery. Full article
Show Figures

Figure 1

27 pages, 11971 KiB  
Article
Novel Anthranilic Acid Hybrids—An Alternative Weapon against Inflammatory Diseases
by Miglena Milusheva, Mina Todorova, Vera Gledacheva, Iliyana Stefanova, Mehran Feizi-Dehnayebi, Mina Pencheva, Paraskev Nedialkov, Yulian Tumbarski, Velichka Yanakieva, Slava Tsoneva and Stoyanka Nikolova
Pharmaceuticals 2023, 16(12), 1660; https://doi.org/10.3390/ph16121660 - 29 Nov 2023
Cited by 26 | Viewed by 2816
Abstract
Anti-inflammatory drugs are used to relieve pain, fever, and inflammation while protecting the cardiovascular system. However, the side effects of currently available medications have limited their usage. Due to these adverse effects, there is a significant need for new drugs. The current trend [...] Read more.
Anti-inflammatory drugs are used to relieve pain, fever, and inflammation while protecting the cardiovascular system. However, the side effects of currently available medications have limited their usage. Due to these adverse effects, there is a significant need for new drugs. The current trend of research has shifted towards the synthesis of novel anthranilic acid hybrids as anti-inflammatory agents. Phenyl- or benzyl-substituted hybrids exerted very good anti-inflammatory effects in preventing albumin denaturation. To confirm their anti-inflammatory effects, additional ex vivo tests were conducted. These immunohistochemical studies explicated the same compounds with better anti-inflammatory potential. To determine the binding affinity and interaction mode, as well as to explain the anti-inflammatory activities, the molecular docking simulation of the compounds was investigated against human serum albumin. The biological evaluation of the compounds was completed, assessing their antimicrobial activity and spasmolytic effect. Based on the experimental data, we can conclude that a collection of novel hybrids was successfully synthesized, and they can be considered anti-inflammatory drug candidates—alternatives to current therapeutics. Full article
Show Figures

Figure 1

19 pages, 3773 KiB  
Review
A Scoping Review and Meta-Analysis of Anti-CGRP Monoclonal Antibodies: Predicting Response
by Ja Bin Hong, Kristin Sophie Lange, Lucas Hendrik Overeem, Paul Triller, Bianca Raffaelli and Uwe Reuter
Pharmaceuticals 2023, 16(7), 934; https://doi.org/10.3390/ph16070934 - 27 Jun 2023
Cited by 31 | Viewed by 8477
Abstract
Calcitonin gene-related peptide-targeted monoclonal antibodies (CGRP mAbs) are increasingly being used as preventive treatments for migraine. Their effectiveness and safety were established through numerous randomized placebo-controlled trials and real-world studies, yet a significant proportion of patients do not respond to this treatment, and [...] Read more.
Calcitonin gene-related peptide-targeted monoclonal antibodies (CGRP mAbs) are increasingly being used as preventive treatments for migraine. Their effectiveness and safety were established through numerous randomized placebo-controlled trials and real-world studies, yet a significant proportion of patients do not respond to this treatment, and currently, there is a lack of accepted predictors of response to guide expectations, as data from studies so far are lacking and inconsistent. We searched Embase and MEDLINE databases for studies reporting on predictors of response to CGRP and/or CGRP-receptor (CGRP-R) mAbs, defined as a 30% or 50% reduction in monthly headache or migraine days at varying durations of follow-up. Quantitative synthesis was performed where applicable. We found 38 real-world studies that investigated the association between various predictors and response rates. Based on these studies, good response to triptans and unilateral pain with or without unilateral autonomic symptoms are predictors of a good response to CGRP(-R) mAbs. Conversely, obesity, interictal allodynia, the presence of daily headaches, a higher number of non-successful previous prophylactic medications, and psychiatric comorbidities including depression are predictive of a poor response to CGRP(-R) mAbs. Future studies should confirm these results and help to generate more tailored treatment strategies in patients with migraine. Full article
(This article belongs to the Special Issue Migraine: Experimental Models and Novel Therapeutic Target)
Show Figures

Figure 1

11 pages, 912 KiB  
Review
The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies
by Alexandre Blanco-González, Alfonso Cabezón, Alejandro Seco-González, Daniel Conde-Torres, Paula Antelo-Riveiro, Ángel Piñeiro and Rebeca Garcia-Fandino
Pharmaceuticals 2023, 16(6), 891; https://doi.org/10.3390/ph16060891 - 18 Jun 2023
Cited by 129 | Viewed by 44806
Abstract
Artificial intelligence (AI) has the potential to revolutionize the drug discovery process, offering improved efficiency, accuracy, and speed. However, the successful application of AI is dependent on the availability of high-quality data, the addressing of ethical concerns, and the recognition of the limitations [...] Read more.
Artificial intelligence (AI) has the potential to revolutionize the drug discovery process, offering improved efficiency, accuracy, and speed. However, the successful application of AI is dependent on the availability of high-quality data, the addressing of ethical concerns, and the recognition of the limitations of AI-based approaches. In this article, the benefits, challenges, and drawbacks of AI in this field are reviewed, and possible strategies and approaches for overcoming the present obstacles are proposed. The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods, as well as the potential advantages of AI in pharmaceutical research, are also discussed. Overall, this review highlights the potential of AI in drug discovery and provides insights into the challenges and opportunities for realizing its potential in this field. Note from the human authors: This article was created to test the ability of ChatGPT, a chatbot based on the GPT-3.5 language model, in terms of assisting human authors in writing review articles. The text generated by the AI following our instructions (see Supporting Information) was used as a starting point, and its ability to automatically generate content was evaluated. After conducting a thorough review, the human authors practically rewrote the manuscript, striving to maintain a balance between the original proposal and the scientific criteria. The advantages and limitations of using AI for this purpose are discussed in the last section. Full article
(This article belongs to the Special Issue Structural and Computational-Driven Molecule Design in Drug Discovery)
Show Figures

Graphical abstract

32 pages, 2384 KiB  
Review
Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting
by Jihoon Lee, Min-Koo Choi and Im-Sook Song
Pharmaceuticals 2023, 16(6), 802; https://doi.org/10.3390/ph16060802 - 29 May 2023
Cited by 32 | Viewed by 9766
Abstract
Doxorubicin (DOX), a widely used drug in cancer chemotherapy, induces cell death via multiple intracellular interactions, generating reactive oxygen species and DNA-adducted configurations that induce apoptosis, topoisomerase II inhibition, and histone eviction. Despite its wide therapeutic efficacy in solid tumors, DOX often induces [...] Read more.
Doxorubicin (DOX), a widely used drug in cancer chemotherapy, induces cell death via multiple intracellular interactions, generating reactive oxygen species and DNA-adducted configurations that induce apoptosis, topoisomerase II inhibition, and histone eviction. Despite its wide therapeutic efficacy in solid tumors, DOX often induces drug resistance and cardiotoxicity. It shows limited intestinal absorption because of low paracellular permeability and P-glycoprotein (P-gp)-mediated efflux. We reviewed various parenteral DOX formulations, such as liposomes, polymeric micelles, polymeric nanoparticles, and polymer-drug conjugates, under clinical use or trials to increase its therapeutic efficacy. To improve the bioavailability of DOX in intravenous and oral cancer treatment, studies have proposed a pH- or redox-sensitive and receptor-targeted system for overcoming DOX resistance and increasing therapeutic efficacy without causing DOX-induced toxicity. Multifunctional formulations of DOX with mucoadhesiveness and increased intestinal permeability through tight-junction modulation and P-gp inhibition have also been used as orally bioavailable DOX in the preclinical stage. The increasing trends of developing oral formulations from intravenous formulations, the application of mucoadhesive technology, permeation-enhancing technology, and pharmacokinetic modulation with functional excipients might facilitate the further development of oral DOX. Full article
(This article belongs to the Special Issue Feature Reviews in Pharmaceutical Technology)
Show Figures

Figure 1

26 pages, 940 KiB  
Article
Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life
by Luca Cegolon, Riccardo Pol, Omar Simonetti, Francesca Larese Filon and Roberto Luzzati
Pharmaceuticals 2023, 16(5), 721; https://doi.org/10.3390/ph16050721 - 9 May 2023
Cited by 28 | Viewed by 5625
Abstract
Background. Several drugs which are easy to administer in outpatient settings have been authorized and endorsed for high-risk COVID-19 patients with mild–moderate disease to prevent hospital admission and death, complementing COVID-19 vaccines. However, the evidence on the efficacy of COVID-19 antivirals during [...] Read more.
Background. Several drugs which are easy to administer in outpatient settings have been authorized and endorsed for high-risk COVID-19 patients with mild–moderate disease to prevent hospital admission and death, complementing COVID-19 vaccines. However, the evidence on the efficacy of COVID-19 antivirals during the Omicron wave is scanty or conflicting. Methods. This retrospective controlled study investigated the efficacy of Molnupiravir or Nirmatrelvir/Ritonavir (Paxlovid®) or Sotrovimab against standard of care (controls) on three different endpoints among 386 high-risk COVID-19 outpatients: hospital admission at 30 days; death at 30 days; and time between COVID-19 diagnosis and first negative swab test result. Multivariable logistic regression was employed to investigate the determinants of hospitalization due to COVID-19-associated pneumonia, whereas time to first negative swab test result was investigated by means of multinomial logistic analysis as well as Cox regression analysis. Results. Only 11 patients (overall rate of 2.8%) developed severe COVID-19-associated pneumonia requiring admission to hospital: 8 controls (7.2%); 2 patients on Nirmatrelvir/Ritonavir (2.0%); and 1 on Sotrovimab (1.8%). No patient on Molnupiravir was institutionalized. Compared to controls, hospitalization was less likely for patients on Nirmatrelvir/Ritonavir (aOR = 0.16; 95% CI: 0.03; 0.89) or Molnupiravir (omitted estimate); drug efficacy was 84% for Nirmatrelvir/Ritonavir against 100% for Molnupiravir. Only two patients died of COVID-19 (rate of 0.5%), both were controls, one (a woman aged 96 years) was unvaccinated and the other (a woman aged 72 years) had adequate vaccination status. At Cox regression analysis, the negativization rate was significantly higher in patients treated with both antivirals—Nirmatrelvir/Ritonavir (aHR = 1.68; 95% CI: 1.25; 2.26) or Molnupiravir (aHR = 1.45; 95% CI: 1.08; 1.94). However, COVID-19 vaccination with three (aHR = 2.03; 95% CI: 1.51; 2.73) or four (aHR = 2.48; 95% CI: 1.32; 4.68) doses had a slightly stronger effect size on viral clearance. In contrast, the negativization rate reduced significantly in patients who were immune-depressed (aHR = 0.70; 95% CI: 0.52; 0.93) or those with a Charlson index ≥5 (aHR = 0.63; 0.41; 0.95) or those who had started the respective treatment course 3+ days after COVID-19 diagnosis (aOR = 0.56; 95% CI: 0.38; 0.82). Likewise, at internal analysis (excluding patients on standard of care), patients on Molnupiravir (aHR = 1.74; 95% CI: 1.21; 2.50) or Nirmatrelvir/Ritonavir (aHR = 1.96; 95% CI: 1.32; 2.93) were more likely to turn negative earlier than those on Sotrovimab (reference category). Nonetheless, three (aHR = 1.91; 95% CI: 1.33; 2.74) or four (aHR = 2.20; 95% CI: 1.06; 4.59) doses of COVID-19 vaccine were again associated with a faster negativization rate. Again, the negativization rate was significantly lower if treatment started 3+ days after COVID-19 diagnosis (aHR = 0.54; 95% CI: 0.32; 0.92). Conclusions. Molnupiravir, Nirmatrelvir/Ritonavir, and Sotrovimab were all effective in preventing hospital admission and/or mortality attributable to COVID-19. However, hospitalizations also decreased with higher number of doses of COVID-19 vaccines. Although they are effective against severe disease and mortality, the prescription of COVID-19 antivirals should be carefully scrutinized by double opinion, not only to contain health care costs but also to reduce the risk of generating resistant SARS-CoV-2 strains. Only 64.7% of patients were in fact immunized with 3+ doses of COVID-19 vaccines in the present study. High-risk patients should prioritize COVID-19 vaccination, which is a more cost-effective approach than antivirals against severe SARS-CoV-2 pneumonia. Likewise, although both antivirals, especially Nirmatrelvir/Ritonavir, were more likely than standard of care and Sotrovimab to reduce viral shedding time (VST) in high-risk SARS-CoV-2 patients, vaccination had an independent and stronger effect on viral clearance. However, the effect of antivirals or COVID-19 vaccination on VST should be considered a secondary benefit. Indeed, recommending Nirmatrelvir/Ritonavir in order to control VST in high-risk COVID-19 patients is rather questionable since other cheap, large spectrum and harmless nasal disinfectants such as hypertonic saline solutions are available on the market with proven efficacy in containing VST. Full article
(This article belongs to the Special Issue Nanoparticulate Delivery Systems for Antiviral Drugs)
Show Figures

Figure 1

26 pages, 15042 KiB  
Review
Antioxidant Activity of Coumarins and Their Metal Complexes
by Lozan Todorov, Luciano Saso and Irena Kostova
Pharmaceuticals 2023, 16(5), 651; https://doi.org/10.3390/ph16050651 - 26 Apr 2023
Cited by 34 | Viewed by 4600
Abstract
Ubiquitously present in plant life, coumarins, as a class of phenolic compounds, have multiple applications—in everyday life, in organic synthesis, in medicine and many others. Coumarins are well known for their broad spectrum of physiological effects. The specific structure of the coumarin scaffold [...] Read more.
Ubiquitously present in plant life, coumarins, as a class of phenolic compounds, have multiple applications—in everyday life, in organic synthesis, in medicine and many others. Coumarins are well known for their broad spectrum of physiological effects. The specific structure of the coumarin scaffold involves a conjugated system with excellent charge and electron transport properties. The antioxidant activity of natural coumarins has been a subject of intense study for at least two decades. Significant research into the antioxidant behavior of natural/semi-synthetic coumarins and their complexes has been carried out and published in scientific literature. The authors of this review have noted that, during the past five years, research efforts seem to have been focused on the synthesis and examination of synthetic coumarin derivatives with the aim to produce potential drugs with enhanced, modified or entirely novel effects. As many pathologies are associated with oxidative stress, coumarin-based compounds could be excellent candidates for novel medicinal molecules. The present review aims to inform the reader on some prominent results from investigations into the antioxidant properties of novel coumarin compounds over the past five years. Full article
Show Figures

Graphical abstract

11 pages, 730 KiB  
Article
Effectiveness and Safety Profile of Dupilumab in Chronic Rhinosinusitis with Nasal Polyps: Real-Life Data in Tertiary Care
by Cosimo Galletti, Maria Antonietta Barbieri, Francesco Ciodaro, Francesco Freni, Francesco Galletti, Edoardo Spina and Bruno Galletti
Pharmaceuticals 2023, 16(4), 630; https://doi.org/10.3390/ph16040630 - 21 Apr 2023
Cited by 18 | Viewed by 4155
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by a type 2 pattern of inflammation resulting in the production of some cytokines. Dupilumab radically changes the treatment of CRSwNP, but, considering its recent approval, it may be useful to evaluate its safety profile [...] Read more.
Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by a type 2 pattern of inflammation resulting in the production of some cytokines. Dupilumab radically changes the treatment of CRSwNP, but, considering its recent approval, it may be useful to evaluate its safety profile in a real-world setting. This work aimed to prospectively highlight the effectiveness and safety profile of dupilumab in patients with CRSwNP enrolled in the Otorhinolaryngology Unit of the University Hospital of Messina. An observational cohort study was carried out considering all patients treated with dupilumab. A descriptive analysis was conducted reporting all demographic characteristics, endoscopic evaluations, and symptom conditions. A total of 66 patients were treated with dupilumab, but three patients were excluded due to a lack of adherence during the observational period. A statistically significant reduction in the Sino-Nasal Outcome Test 22 (SNOT-22) and nasal polyps score (NPS) was shown at the 6th and 12th months compared to baseline values (SNOT-22, −37 and −50, p < 0.001 for both comparisons; NPS, −3 and −4, p < 0.001 for both comparisons). During the follow-up, eight patients (12.7%) had a reaction at the site of injection, and seven (11.1%) had transient hypereosinophilia. Given the optimal treatment response and the minimal adverse effects observed, clinicians should consider dupilumab a safe and effective treatment. Further studies are necessary to better understand the long-term effects. Full article
(This article belongs to the Special Issue Drug Safety and Relevant Issues in the Real-World)
Show Figures

Figure 1

24 pages, 1363 KiB  
Review
Agnostic Approvals in Oncology: Getting the Right Drug to the Right Patient with the Right Genomics
by Valentina Tateo, Paola Valeria Marchese, Veronica Mollica, Francesco Massari, Razelle Kurzrock and Jacob J. Adashek
Pharmaceuticals 2023, 16(4), 614; https://doi.org/10.3390/ph16040614 - 19 Apr 2023
Cited by 34 | Viewed by 10610
Abstract
(1) Background: The oncology field has drastically changed with the advent of precision medicine, led by the discovery of druggable genes or immune targets assessed through next-generation sequencing. Biomarker-based treatments are increasingly emerging, and currently, six tissue-agnostic therapies are FDA-approved. (2) Methods: We [...] Read more.
(1) Background: The oncology field has drastically changed with the advent of precision medicine, led by the discovery of druggable genes or immune targets assessed through next-generation sequencing. Biomarker-based treatments are increasingly emerging, and currently, six tissue-agnostic therapies are FDA-approved. (2) Methods: We performed a review of the literature and reported the trials that led to the approval of tissue-agnostic treatments and ongoing clinical trials currently investigating novel biomarker-based approaches. (3) Results: We discussed the approval of agnostic treatments: pembrolizumab and dostarlimab for MMRd/MSI-H, pembrolizumab for TMB-H, larotrectinib and entrectinib for NTRK-fusions, dabrafenib plus trametinib for BRAF V600E mutation, and selpercatinib for RET fusions. In addition, we reported novel clinical trials of biomarker-based approaches, including ALK, HER2, FGFR, and NRG1. (4) Conclusions: Precision medicine is constantly evolving, and with the improvement of diagnostic tools that allow a wider genomic definition of the tumor, tissue-agnostic targeted therapies are a promising treatment strategy tailored to the specific tumor genomic profile, leading to improved survival outcomes. Full article
(This article belongs to the Special Issue Immune Checkpoint Inhibitor in Cancer Therapy: Recent Advances)
Show Figures

Figure 1

34 pages, 2681 KiB  
Review
Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications
by Raquel Fernandes, Joana Campos, Mónica Serra, Javier Fidalgo, Hugo Almeida, Ana Casas, Duarte Toubarro and Ana I. R. N. A. Barros
Pharmaceuticals 2023, 16(4), 592; https://doi.org/10.3390/ph16040592 - 14 Apr 2023
Cited by 53 | Viewed by 17125
Abstract
Large-scale production of microalgae and their bioactive compounds has steadily increased in response to global demand for natural compounds. Spirulina, in particular, has been used due to its high nutritional value, especially its high protein content. Promising biological functions have been associated with [...] Read more.
Large-scale production of microalgae and their bioactive compounds has steadily increased in response to global demand for natural compounds. Spirulina, in particular, has been used due to its high nutritional value, especially its high protein content. Promising biological functions have been associated with Spirulina extracts, mainly related to its high value added blue pigment, phycocyanin. Phycocyanin is used in several industries such as food, cosmetics, and pharmaceuticals, which increases its market value. Due to the worldwide interest and the need to replace synthetic compounds with natural ones, efforts have been made to optimize large-scale production processes and maintain phycocyanin stability, which is a highly unstable protein. The aim of this review is to update the scientific knowledge on phycocyanin applications and to describe the reported production, extraction, and purification methods, including the main physical and chemical parameters that may affect the purity, recovery, and stability of phycocyanin. By implementing different techniques such as complete cell disruption, extraction at temperatures below 45 °C and a pH of 5.5–6.0, purification through ammonium sulfate, and filtration and chromatography, both the purity and stability of phycocyanin have been significantly improved. Moreover, the use of saccharides, crosslinkers, or natural polymers as preservatives has contributed to the increased market value of phycocyanin. Full article
Show Figures

Graphical abstract

46 pages, 24845 KiB  
Review
Technologies for Direct Detection of Covalent Protein–Drug Adducts
by Elma Mons, Robbert Q. Kim and Monique P. C. Mulder
Pharmaceuticals 2023, 16(4), 547; https://doi.org/10.3390/ph16040547 - 5 Apr 2023
Cited by 10 | Viewed by 6911
Abstract
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and [...] Read more.
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein–drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein–drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery. Full article
Show Figures

Figure 1

19 pages, 705 KiB  
Review
Efficacy, Tolerability, and Safety of Toludesvenlafaxine for the Treatment of Major Depressive Disorder—A Narrative Review
by Octavian Vasiliu
Pharmaceuticals 2023, 16(3), 411; https://doi.org/10.3390/ph16030411 - 8 Mar 2023
Cited by 9 | Viewed by 6321
Abstract
The estimated rate of treatment-resistant major depressive disorder (TRD) remains higher than 30%, even after the discovery of multiple classes of antidepressants in the last 7 decades. Toludesvenlafaxine (ansofaxine, LY03005, or LPM570065) is a first-in-class triple monoaminergic reuptake inhibitor (TRI) that has reached [...] Read more.
The estimated rate of treatment-resistant major depressive disorder (TRD) remains higher than 30%, even after the discovery of multiple classes of antidepressants in the last 7 decades. Toludesvenlafaxine (ansofaxine, LY03005, or LPM570065) is a first-in-class triple monoaminergic reuptake inhibitor (TRI) that has reached clinical use. The objective of this narrative review was to summarize clinical and preclinical evidence about the efficacy, tolerability, and safety of toludesvenlafaxine. Based on the results of 17 reports retrieved in the literature, the safety and tolerability profiles of toludesvenlafaxine were good in all clinical trials, and the pharmacokinetic parameters were well described in the phase 1 trials. The efficacy of toludesvenlafaxine was demonstrated in one phase 2 and one phase 3 trial, both on primary and secondary outcomes. In conclusion, this review highlights the favorable clinical results of toludesvenlafaxine in only two short-term trials that enrolled patients with major depressive disorder (MDD) (efficacy and tolerability were good for up to eight weeks), indicating the need for more good quality, larger-sample, and longer-term trials. Exploring new antidepressants, such as TRI, can be considered a priority for clinical research due to the high rates of TRD, but also due to the significant percentages of relapse in patients with MDD. Full article
Show Figures

Graphical abstract

16 pages, 1221 KiB  
Review
Current Trends in Neoantigen-Based Cancer Vaccines
by Szu-Ying Ho, Che-Mai Chang, Hsin-Ni Liao, Wan-Hsuan Chou, Chin-Lin Guo, Yun Yen, Yusuke Nakamura and Wei-Chiao Chang
Pharmaceuticals 2023, 16(3), 392; https://doi.org/10.3390/ph16030392 - 5 Mar 2023
Cited by 12 | Viewed by 5957
Abstract
Cancer immunotherapies are treatments that use drugs or cells to activate patients’ own immune systems against cancer cells. Among them, cancer vaccines have recently been rapidly developed. Based on tumor-specific antigens referred to as neoantigens, these vaccines can be in various forms such [...] Read more.
Cancer immunotherapies are treatments that use drugs or cells to activate patients’ own immune systems against cancer cells. Among them, cancer vaccines have recently been rapidly developed. Based on tumor-specific antigens referred to as neoantigens, these vaccines can be in various forms such as messenger (m)RNA and synthetic peptides to activate cytotoxic T cells and act with or without dendritic cells. Growing evidence suggests that neoantigen-based cancer vaccines possess a very promising future, yet the processes of immune recognition and activation to relay identification of a neoantigen through the histocompatibility complex (MHC) and T-cell receptor (TCR) remain unclear. Here, we describe features of neoantigens and the biological process of validating neoantigens, along with a discussion of recent progress in the scientific development and clinical applications of neoantigen-based cancer vaccines. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

49 pages, 23991 KiB  
Review
Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems
by Nikolai I. Georgiev, Ventsislav V. Bakov, Kameliya K. Anichina and Vladimir B. Bojinov
Pharmaceuticals 2023, 16(3), 381; https://doi.org/10.3390/ph16030381 - 1 Mar 2023
Cited by 32 | Viewed by 8271
Abstract
Over the last few years, the development of fluorescent probes has received considerable attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great spectral resolution in living objects, which is extremely useful for modern biomedical applications. This review presents the basic photophysical [...] Read more.
Over the last few years, the development of fluorescent probes has received considerable attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great spectral resolution in living objects, which is extremely useful for modern biomedical applications. This review presents the basic photophysical principles and strategies for the rational design of fluorescent probes as visualization agents in medical diagnosis and drug delivery systems. Common photophysical phenomena, such as Intramolecular Charge Transfer (ICT), Twisted Intramolecular Charge Transfer (TICT), Photoinduced Electron Transfer (PET), Excited-State Intramolecular Proton Transfer (ESIPT), Fluorescent Resonance Energy Transfer (FRET), and Aggregation-Induced Emission (AIE), are described as platforms for fluorescence sensing and imaging in vivo and in vitro. The presented examples are focused on the visualization of pH, biologically important cations and anions, reactive oxygen species (ROS), viscosity, biomolecules, and enzymes that find application for diagnostic purposes. The general strategies regarding fluorescence probes as molecular logic devices and fluorescence–drug conjugates for theranostic and drug delivery systems are discussed. This work could be of help for researchers working in the field of fluorescence sensing compounds, molecular logic gates, and drug delivery. Full article
(This article belongs to the Special Issue Fluorescence Approaches in Drug Delivery)
Show Figures

Figure 1

61 pages, 15468 KiB  
Review
Asymmetric Synthesis of US-FDA Approved Drugs over Five Years (2016–2020): A Recapitulation of Chirality
by Rekha Tamatam and Dongyun Shin
Pharmaceuticals 2023, 16(3), 339; https://doi.org/10.3390/ph16030339 - 22 Feb 2023
Cited by 12 | Viewed by 8485
Abstract
Chirality is a major theme in the design, discovery, and development of new drugs. Historically, pharmaceuticals have been synthesized as racemic mixtures. However, the enantiomeric forms of drug molecules have distinct biological properties. One enantiomer may be responsible for the desired therapeutic effect [...] Read more.
Chirality is a major theme in the design, discovery, and development of new drugs. Historically, pharmaceuticals have been synthesized as racemic mixtures. However, the enantiomeric forms of drug molecules have distinct biological properties. One enantiomer may be responsible for the desired therapeutic effect (eutomer), whereas the other may be inactive, interfere with the therapeutic form, or exhibit toxicity (distomer). Classical chemical synthesis usually leads to a racemic mixture unless stereospecific synthesis is employed. To meet the requirements of single-enantiomeric drugs, asymmetric synthesis has evolved at the forefront of drug discovery. Asymmetric synthesis involves the conversion of an achiral starting material into a chiral product. This review emphasizes the methods used for synthesizing FDA-approved chiral drugs during 2016–2020, with a special focus on asymmetric synthesis by means of chiral induction, resolution, or chiral pool. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

19 pages, 3755 KiB  
Review
Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development
by Chia-Ju Hsieh, Sam Giannakoulias, E. James Petersson and Robert H. Mach
Pharmaceuticals 2023, 16(2), 317; https://doi.org/10.3390/ph16020317 - 18 Feb 2023
Cited by 11 | Viewed by 6118
Abstract
The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted [...] Read more.
The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted throughout this review. First, we discuss the use of virtual screening for hit identification at the beginning of drug discovery programs. This is followed by an analysis of how the hits derived from virtual screening can be filtered and culled to highly probable candidates to test in in vitro assays. We then illustrate how CADD can be used to optimize the potency of experimentally validated hit compounds from virtual screening for use in positron emission tomography (PET). Finally, we conclude with a survey of the newest techniques in CADD employing machine learning (ML). Full article
Show Figures

Graphical abstract

21 pages, 1640 KiB  
Review
Introducing HDAC-Targeting Radiopharmaceuticals for Glioblastoma Imaging and Therapy
by Liesbeth Everix, Elsie Neo Seane, Thomas Ebenhan, Ingeborg Goethals and Julie Bolcaen
Pharmaceuticals 2023, 16(2), 227; https://doi.org/10.3390/ph16020227 - 1 Feb 2023
Cited by 11 | Viewed by 3504
Abstract
Despite recent advances in multimodality therapy for glioblastoma (GB) incorporating surgery, radiotherapy, chemotherapy and targeted therapy, the overall prognosis remains poor. One of the interesting targets for GB therapy is the histone deacetylase family (HDAC). Due to their pleiotropic effects on, e.g., DNA [...] Read more.
Despite recent advances in multimodality therapy for glioblastoma (GB) incorporating surgery, radiotherapy, chemotherapy and targeted therapy, the overall prognosis remains poor. One of the interesting targets for GB therapy is the histone deacetylase family (HDAC). Due to their pleiotropic effects on, e.g., DNA repair, cell proliferation, differentiation, apoptosis and cell cycle, HDAC inhibitors have gained a lot of attention in the last decade as anti-cancer agents. Despite their known underlying mechanism, their therapeutic activity is not well-defined. In this review, an extensive overview is given of the current status of HDAC inhibitors for GB therapy, followed by an overview of current HDAC-targeting radiopharmaceuticals. Imaging HDAC expression or activity could provide key insights regarding the role of HDAC enzymes in gliomagenesis, thus identifying patients likely to benefit from HDACi-targeted therapy. Full article
(This article belongs to the Special Issue Targeted Radionuclide Therapy (TRNT) in Modern Cancer Management)
Show Figures

Graphical abstract

23 pages, 1132 KiB  
Review
Recombinant Endostatin as a Potential Radiosensitizer in the Treatment of Non-Small Cell Lung Cancer
by Charnay Cunningham, Julie Bolcaen, Alessandra Bisio, Amanda Genis, Hans Strijdom and Charlot Vandevoorde
Pharmaceuticals 2023, 16(2), 219; https://doi.org/10.3390/ph16020219 - 31 Jan 2023
Cited by 4 | Viewed by 4504
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer, which is the leading cause of cancer-related deaths worldwide. Over the past decades, tumour angiogenesis has been intensely studied in the treatment of NSCLC due to its fundamental role in [...] Read more.
Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer, which is the leading cause of cancer-related deaths worldwide. Over the past decades, tumour angiogenesis has been intensely studied in the treatment of NSCLC due to its fundamental role in cancer progression. Several anti-angiogenic drugs, such as recombinant endostatin (RE), have been evaluated in several preclinical and clinical trials, with mixed and often disappointing results. However, there is currently an emerging interest in RE due to its ability to create a vascular normalization window, which could further improve treatment efficacy of the standard NSCLC treatment. This review provides an overview of preclinical and clinical studies that combined RE and radiotherapy for NSCLC treatment. Furthermore, it highlights the ongoing challenges that have to be overcome in order to maximize the benefit; as well as the potential advantage of combinations with particle therapy and immunotherapy, which are rapidly gaining momentum in the treatment landscape of NSCLC. Different angiogenic and immunosuppressive effects are observed between particle therapy and conventional X-ray radiotherapy. The combination of RE, particle therapy and immunotherapy presents a promising future therapeutic triad for NSCLC. Full article
Show Figures

Graphical abstract

22 pages, 1691 KiB  
Review
Role and Mechanisms of Phytochemicals in Hair Growth and Health
by Periyanaina Kesika, Bhagavathi Sundaram Sivamaruthi, Subramanian Thangaleela, Muruganantham Bharathi and Chaiyavat Chaiyasut
Pharmaceuticals 2023, 16(2), 206; https://doi.org/10.3390/ph16020206 - 30 Jan 2023
Cited by 10 | Viewed by 24389
Abstract
Hair health is associated with personal distress and psychological well-being. Even though hair loss (alopecia) does not affect humans’ biological health, it affects an individual’s social well-being. So, treatment for hair problems and improving hair health are obligatory. Several pharmacological and cosmeceutical treatment [...] Read more.
Hair health is associated with personal distress and psychological well-being. Even though hair loss (alopecia) does not affect humans’ biological health, it affects an individual’s social well-being. So, treatment for hair problems and improving hair health are obligatory. Several pharmacological and cosmeceutical treatment procedures are available to manage hair loss and promote growth. Several factors associated with hair health include genetics, disease or disorder, drugs, lifestyle, chemical exposure, and unhealthy habits such as smoking, diet, and stress. Synthetic and chemical formulations have side effects, so people are moving towards natural compounds-based remedies for their hair problems. The history of using phytochemicals for hair health has been documented anciently. However, scientific studies on hair loss have accelerated in recent decades. The current review summarizes the type of alopecia, the factor affecting hair health, alopecia treatments, phytochemicals’ role in managing hair loss, and the mechanisms of hair growth-stimulating properties of phytochemicals. The literature survey suggested that phytochemicals are potent candidates for developing treatment procedures for different hair problems. Further detailed studies are needed to bring the scientific evidence to market. Full article
(This article belongs to the Special Issue Feature Reviews in Natural Products)
Show Figures

Figure 1

25 pages, 1640 KiB  
Review
Potential of Lactoferrin in the Treatment of Lung Diseases
by Katarzyna Kaczyńska, Monika Jampolska, Piotr Wojciechowski, Dorota Sulejczak, Kryspin Andrzejewski and Dominika Zając
Pharmaceuticals 2023, 16(2), 192; https://doi.org/10.3390/ph16020192 - 28 Jan 2023
Cited by 7 | Viewed by 5010
Abstract
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of [...] Read more.
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Lactoferrin)
Show Figures

Graphical abstract

13 pages, 2515 KiB  
Article
Cytotoxic and Antileishmanial Effects of the Monoterpene β-Ocimene
by Julyanne Maria Saraiva de Sousa, Thaís Amanda de Lima Nunes, Raiza Raianne Luz Rodrigues, João Paulo Araújo de Sousa, Maria da Conceição Albuquerque Val, Francisco Alex da Rocha Coelho, Airton Lucas Sousa dos Santos, Nicolle Barreira Maciel, Vanessa Maria Rodrigues de Souza, Yasmim Alves Aires Machado, Paulo Sérgio de Araújo Sousa, Alyne Rodrigues de Araújo, Jefferson Almeida Rocha, Damião Pergentino de Sousa, Marcos Vinicius da Silva, Daniel Dias Rufino Arcanjo and Klinger Antônio da Franca Rodrigues
Pharmaceuticals 2023, 16(2), 183; https://doi.org/10.3390/ph16020183 - 26 Jan 2023
Cited by 15 | Viewed by 3882
Abstract
Leishmaniasis is a group of infectious-parasitic diseases with high mortality rates, and endemic in many regions of the globe. The currently available drugs present serious problems such as high toxicity, costs, and the emergence of drug resistance. This has stimulated research into new [...] Read more.
Leishmaniasis is a group of infectious-parasitic diseases with high mortality rates, and endemic in many regions of the globe. The currently available drugs present serious problems such as high toxicity, costs, and the emergence of drug resistance. This has stimulated research into new antileishmania drugs based on natural products and their derivatives. β-Ocimene is a monoterpene found naturally in the essential oils of many plant species which presents antileishmanial activity, and which has not yet been evaluated for its potential to inhibit the etiological agent of leishmaniasis. The aim of this work was to evaluate the activity of β-ocimene against Leishmania amazonensis, its cytotoxicity, and potential mechanisms of action. β-Ocimene presented direct activity against the parasite, with excellent growth inhibition of promastigotes (IC50 = 2.78 μM) and axenic amastigotes (EC50 = 1.12 μM) at concentrations non-toxic to RAW 264.7 macrophages (CC50 = 114.5 µM). The effect is related to changes in membrane permeability and resulting abnormalities in the parasitic cell shape. These were, respectively, observed in membrane integrity and atomic force microscopy assays. β-Ocimene was also shown to act indirectly, with greater activity against intra-macrophagic amastigotes (EC50 = 0.89 μM), increasing TNF-α, nitric oxide (NO), and reactive oxygen species (ROS), with lysosomal effects, as well as promoting decreases in IL-10 and IL-6. Against intra-macrophagic amastigote forms the selectivity index was higher than the reference drugs, being 469.52 times more selective than meglumine antimoniate, and 42.88 times more selective than amphotericin B. Our results suggest that β-ocimene possesses promising in vitro antileishmania activity and is a potential candidate for investigation in in vivo assays. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

21 pages, 2706 KiB  
Article
Differential Effects of Cytokine Versus Hypoxic Preconditioning of Human Mesenchymal Stromal Cells in Pulmonary Sepsis Induced by Antimicrobial-Resistant Klebsiella pneumoniae
by Declan Byrnes, Claire H. Masterson, Jack Brady, Senthilkumar Alagesan, Hector E. Gonzalez, Sean D. McCarthy, Juan Fandiño, Daniel P. O’Toole and John G. Laffey
Pharmaceuticals 2023, 16(2), 149; https://doi.org/10.3390/ph16020149 - 19 Jan 2023
Cited by 2 | Viewed by 3503
Abstract
Background: Pulmonary sepsis is a leading cause of hospital mortality, and sepses arising from antimicrobial-resistant (AMR) bacterial strains are particularly difficult to treat. Here we investigated the potential of mesenchymal stromal cells (MSCs) to combat established Klebsiella pneumoniae pneumosepsis and further evaluated [...] Read more.
Background: Pulmonary sepsis is a leading cause of hospital mortality, and sepses arising from antimicrobial-resistant (AMR) bacterial strains are particularly difficult to treat. Here we investigated the potential of mesenchymal stromal cells (MSCs) to combat established Klebsiella pneumoniae pneumosepsis and further evaluated MSC preconditioning and pre-activation methods. Methods: The potential for naïve and preconditioned MSCs to enhance wound healing, reduce inflammation, preserve metabolic activity, and enhance bacterial killing was assessed in vitro. Rats were subjected to intratracheal K. pneumoniae followed by the intravenous administration of MSCs. Physiological indices, blood, bronchoalveolar lavage (BAL), and tissues were obtained 72 h later. Results: In vitro assays confirmed that preconditioning enhances MSC function, accelerating pulmonary epithelial wound closure, reducing inflammation, attenuating cell death, and increasing bacterial killing. Cytomix-pre-activated MSCs are superior to naïve and hypoxia-exposed MSCs in attenuating Klebsiella pneumosepsis, improving lung compliance and oxygenation, reducing bacteria, and attenuating histologic injuries in lungs. BAL inflammatory cytokines were reduced, correlating with decreases in polymorphonuclear (PMN) cells. MSCs increased PMN apoptosis and the CD4:CD8 ratio in BAL. Systemically, granulocytes, classical monocytes, and the CD4:CD8 ratio were reduced, and nonclassical monocytes were increased. Conclusions: Preconditioning with cytokines, but not hypoxia, enhances the therapeutic potential of MSCs in clinically relevant models of K. pneumoniae-induced pneumosepsis. Full article
(This article belongs to the Special Issue New Advances in Mesenchymal Stromal Cells as Therapeutic Tools)
Show Figures

Figure 1

23 pages, 3179 KiB  
Article
N-Derivatives of (Z)-Methyl 3-(4-Oxo-2-thioxothiazolidin-5-ylidene)methyl)-1H-indole-2-carboxylates as Antimicrobial Agents—In Silico and In Vitro Evaluation
by Anthi Petrou, Athina Geronikaki, Victor Kartsev, Antonios Kousaxidis, Aliki Papadimitriou-Tsantarliotou, Marina Kostic, Marija Ivanov, Marina Sokovic, Ioannis Nicolaou and Ioannis S. Vizirianakis
Pharmaceuticals 2023, 16(1), 131; https://doi.org/10.3390/ph16010131 - 16 Jan 2023
Cited by 7 | Viewed by 2598
Abstract
Herein, we report the experimental evaluation of the antimicrobial activity of seventeen new (Z)-methyl 3-(4-oxo-2-thioxothiazolidin-5-ylidene)methyl)-1H-indole-2-carboxylate derivatives. All tested compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin as well as streptomycin by [...] Read more.
Herein, we report the experimental evaluation of the antimicrobial activity of seventeen new (Z)-methyl 3-(4-oxo-2-thioxothiazolidin-5-ylidene)methyl)-1H-indole-2-carboxylate derivatives. All tested compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin as well as streptomycin by 10–50 fold. The most sensitive bacterium was En. Cloacae, while E. coli was the most resistant one, followed by M. flavus. The most active compound appeared to be compound 8 with MIC at 0.004–0.03 mg/mL and MBC at 0.008–0.06 mg/mL. The antifungal activity of tested compounds was good to excellent with MIC in the range of 0.004–0.06 mg/mL, with compound 15 being the most potent. T. viride was the most sensitive fungal, while A. fumigatus was the most resistant one. Docking studies revealed that the inhibition of E. coli MurB is probably responsible for their antibacterial activity, while 14a–lanosterol demethylase of CYP51Ca is involved in the mechanism of antifungal activity. Furthermore, drug-likeness and ADMET profile prediction were performed. Finally, the cytotoxicity studies were performed for the most active compounds using MTT assay against normal MRC5 cells. Full article
(This article belongs to the Special Issue Novel Antibacterial Agents 2022)
Show Figures

Figure 1

17 pages, 1181 KiB  
Review
Prolactin Relationship with Fertility and In Vitro Fertilization Outcomes—A Review of the Literature
by Mirela E. Iancu, Alice I. Albu and Dragoș N. Albu
Pharmaceuticals 2023, 16(1), 122; https://doi.org/10.3390/ph16010122 - 13 Jan 2023
Cited by 7 | Viewed by 11053
Abstract
Hyperprolactinemia is a known cause of amenorrhea and infertility. However, there is an increasing body of evidence suggesting that prolactin is involved in multiple physiological aspects of normal reproduction. Thus, the present paper aims to review the current literature regarding the relationship between [...] Read more.
Hyperprolactinemia is a known cause of amenorrhea and infertility. However, there is an increasing body of evidence suggesting that prolactin is involved in multiple physiological aspects of normal reproduction. Thus, the present paper aims to review the current literature regarding the relationship between serum prolactin level and in vitro fertilization (IVF)/intracytoplasmic sperm injection outcome and the role of dopamine agonists treatment in IVF success. Moreover, the mechanisms by which prolactin may exert its role in fertility and infertility were summarized. Although not all studies agree, the available evidence suggests that higher prolactin levels in follicular fluid are associated with increased oocytes competence, but also with positive effects on corpus luteum formation and survival, endometrial receptivity, blastocyst implantation potential and survival of low-motile sperm. Transient hyperprolactinemia found in IVF cycles was reported in most of the studies not to be related to IVF outcome, although a few reports suggested that it may be associated with higher implantation and pregnancy rates, and better-cumulated pregnancy outcomes. Administration of dopamine agonists for hyperprolactinemia preceding IVF treatment does not seem to negatively impact the IVF results, while treatment of transient hyperprolactinemia during IVF might be beneficial in terms of fertilization rates and conception rates. Due to limited available evidence, future studies are necessary to clarify the optimal level of circulating prolactin in patients performing IVF and the role of dopamine agonist treatment. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 3550 KiB  
Article
Numerical and Machine Learning Analysis of the Parameters Affecting the Regionally Delivered Nasal Dose of Nano- and Micro-Sized Aerosolized Drugs
by Ali Farnoud, Hesam Tofighian, Ingo Baumann, Kaveh Ahookhosh, Oveis Pourmehran, Xinguang Cui, Vincent Heuveline, Chen Song, Sarah Vreugde, Peter-John Wormald, Michael P. Menden and Otmar Schmid
Pharmaceuticals 2023, 16(1), 81; https://doi.org/10.3390/ph16010081 - 6 Jan 2023
Cited by 6 | Viewed by 4380
Abstract
The nasal epithelium is an important target for drug delivery to the nose and secondary organs such as the brain via the olfactory bulb. For both topical and brain delivery, the targeting of specific nasal regions such as the olfactory epithelium (brain) is [...] Read more.
The nasal epithelium is an important target for drug delivery to the nose and secondary organs such as the brain via the olfactory bulb. For both topical and brain delivery, the targeting of specific nasal regions such as the olfactory epithelium (brain) is essential, yet challenging. In this study, a numerical model was developed to predict the regional dose as mass per surface area (for an inhaled mass of 2.5 mg), which is the biologically most relevant dose metric for drug delivery in the respiratory system. The role of aerosol diameter (particle diameter: 1 nm to 30 µm) and inhalation flow rate (4, 15 and 30 L/min) in optimal drug delivery to the vestibule, nasal valve, olfactory and nasopharynx is assessed. To obtain the highest doses in the olfactory region, we suggest aerosols with a diameter of 20 µm and a medium inlet air flow rate of 15 L/min. High deposition on the olfactory epithelium was also observed for nanoparticles below 1 nm, as was high residence time (slow flow rate of 4 L/min), but the very low mass of 1 nm nanoparticles is prohibitive for most therapeutic applications. Moreover, high flow rates (30 L/min) and larger micro-aerosols lead to highest doses in the vestibule and nasal valve regions. On the other hand, the highest drug doses in the nasopharynx are observed for nano-aerosol (1 nm) and fine microparticles (1–20 µm) with a relatively weak dependence on flow rate. Furthermore, using the 45 different inhalation scenarios generated by numerical models, different machine learning models with five-fold cross-validation are trained to predict the delivered dose and avoid partial differential equation solvers for future predictions. Random forest and gradient boosting models resulted in R2 scores of 0.89 and 0.96, respectively. The aerosol diameter and region of interest are the most important features affecting delivered dose, with an approximate importance of 42% and 47%, respectively. Full article
(This article belongs to the Special Issue Recent Advances on Acoustic, Ultrasonic, and Magnetic Drug Delivery)
Show Figures

Figure 1

17 pages, 2339 KiB  
Article
Identification of Novel Small Molecule Ligands for JAK2 Pseudokinase Domain
by Anniina T. Virtanen, Teemu Haikarainen, Parthasarathy Sampathkumar, Maaria Palmroth, Sanna Liukkonen, Jianping Liu, Natalia Nekhotiaeva, Stevan R. Hubbard and Olli Silvennoinen
Pharmaceuticals 2023, 16(1), 75; https://doi.org/10.3390/ph16010075 - 4 Jan 2023
Cited by 8 | Viewed by 7736
Abstract
Hyperactive mutation V617F in the JAK2 regulatory pseudokinase domain (JH2) is prevalent in patients with myeloproliferative neoplasms. Here, we identified novel small molecules that target JH2 of JAK2 V617F and characterized binding via biochemical and structural approaches. Screening of 107,600 small molecules resulted [...] Read more.
Hyperactive mutation V617F in the JAK2 regulatory pseudokinase domain (JH2) is prevalent in patients with myeloproliferative neoplasms. Here, we identified novel small molecules that target JH2 of JAK2 V617F and characterized binding via biochemical and structural approaches. Screening of 107,600 small molecules resulted in identification of 55 binders to the ATP-binding pocket of recombinant JAK2 JH2 V617F protein at a low hit rate of 0.05%, which indicates unique structural characteristics of the JAK2 JH2 ATP-binding pocket. Selected hits and structural analogs were further assessed for binding to JH2 and JH1 (kinase) domains of JAK family members (JAK1-3, TYK2) and for effects on MPN model cell viability. Crystal structures were determined with JAK2 JH2 wild-type and V617F. The JH2-selective binders were identified in diaminotriazole, diaminotriazine, and phenylpyrazolo-pyrimidone chemical entities, but they showed low-affinity, and no inhibition of MPN cells was detected, while compounds binding to both JAK2 JH1 and JH2 domains inhibited MPN cell viability. X-ray crystal structures of protein-ligand complexes indicated generally similar binding modes between the ligands and V617F or wild-type JAK2. Ligands of JAK2 JH2 V617F are applicable as probes in JAK-STAT research, and SAR optimization combined with structural insights may yield higher-affinity inhibitors with biological activity. Full article
(This article belongs to the Special Issue The Regulation of JAKs in Health and in Disease)
Show Figures

Figure 1

15 pages, 1852 KiB  
Article
Development and Validation of a Non-Targeted Screening Method for Most Psychoactive, Analgesic, Anaesthetic, Anti-Diabetic, Anti-Coagulant and Anti-Hypertensive Drugs in Human Whole Blood and Plasma Using High-Resolution Mass Spectrometry
by Catherine Feliu, Celine Konecki, Yoann Cazaubon, Laurent Binet, Damien Vautier, Aurélie Fouley, Claire Gozalo and Zoubir Djerada
Pharmaceuticals 2023, 16(1), 76; https://doi.org/10.3390/ph16010076 - 4 Jan 2023
Cited by 4 | Viewed by 4419
Abstract
(1) Background: In toxicological laboratories, various screening methods can be used to identify compounds involved in intoxication. High-resolution mass spectrometry has been increasingly used in this context for the last years, because of its sensitivity and reliability. Here, we present the development and [...] Read more.
(1) Background: In toxicological laboratories, various screening methods can be used to identify compounds involved in intoxication. High-resolution mass spectrometry has been increasingly used in this context for the last years, because of its sensitivity and reliability. Here, we present the development and validation of a screening method that uses liquid chromatography coupled with a high-resolution mass spectrometer. (2) Methods: This method required only 100 µL of whole blood or plasma sample. Pretreatment consisted of a rapid and simple deproteinisation with methanol/acetonitrile and zinc sulphate. This new assay was validated according to international guidelines. (3) Results: To perform the method validation, 53 compounds were selected. The selection criteria were as follows: various chemical structures and therapeutic families (>15), large m/z distribution, positive or negative ionisation mode, and various elution times. The assays showed high selectivity and specificity, with optimal process efficiency. The identification limits, determined using predefined criteria, were established at sub-therapeutic or therapeutic concentrations. Applicability was evaluated using spiked plasma controls and external quality controls. (4) Conclusions: The new method was then successfully applied to routine clinical and forensic samples. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

16 pages, 3527 KiB  
Article
Hydroxysafflor Yellow A Phytosomes Administered via Intervaginal Space Injection Ameliorate Pulmonary Fibrosis in Mice
by Tingting Li, Dong Han, Zhongxian Li, Mengqi Qiu, Yuting Zhu, Kai Li, Jiawei Xiang, Huizhen Sun, Yahong Shi, Tun Yan, Xiaoli Shi and Qiang Zhang
Pharmaceuticals 2022, 15(11), 1394; https://doi.org/10.3390/ph15111394 - 12 Nov 2022
Cited by 3 | Viewed by 1888
Abstract
Idiopathic pulmonary fibrosis is a fatal interstitial disease characterized by fibroblast proliferation and differentiation and abnormal accumulation of extracellular matrix, with high mortality and an increasing annual incidence. Since few drugs are available for the treatment of pulmonary fibrosis, there is an urgent [...] Read more.
Idiopathic pulmonary fibrosis is a fatal interstitial disease characterized by fibroblast proliferation and differentiation and abnormal accumulation of extracellular matrix, with high mortality and an increasing annual incidence. Since few drugs are available for the treatment of pulmonary fibrosis, there is an urgent need for high-efficiency therapeutic drugs and treatment methods to reduce the mortality associated with pulmonary fibrosis. The interstitium, a highly efficient transportation system that pervades the body, plays an important role in the occurrence and development of disease, and can be used as a new route for disease diagnosis and treatment. In this study, we evaluated the administration of hydroxysafflor yellow A phytosomes via intervaginal space injection (ISI) as an anti-pulmonary fibrosis treatment. Our results show that this therapeutic strategy blocked the activation of p38 protein in the MAPK-p38 signaling pathway and inhibited the expression of Smad3 protein in the TGF-β/Smad signaling pathway, thereby reducing secretion of related inflammatory factors, deposition of collagen in the lungs of mice, and destruction of the alveolar structure. Use of ISI in the treatment of pulmonary fibrosis provides a potential novel therapeutic modality for the disease. Full article
(This article belongs to the Special Issue Drug Delivery to the Lungs: Challenges and Opportunities)
Show Figures

Figure 1

15 pages, 2312 KiB  
Article
Association between Migraines and Prior Proton Pump Inhibitor Use: A Nested Case-Control Study Using a National Health Screening Cohort
by Ho Suk Kang, So Young Kim, Ji Hee Kim, Eun Soo Kim, Hyo Geun Choi, Hyun Lim, Joo-Hee Kim, Ha Young Park, Nan Young Kim, Sangkyoon Hong, Kyung Chan Choi and Mi Jung Kwon
Pharmaceuticals 2022, 15(11), 1385; https://doi.org/10.3390/ph15111385 - 10 Nov 2022
Cited by 4 | Viewed by 2787
Abstract
The effect of proton pump inhibitor (PPI) use on migraine risk remains controversial. We explored the odds of migraines in relation to prior PPI use and treatment duration. Data from the Korean National Health Insurance Service-Health Screening Cohort (2002–2015) were analyzed in this [...] Read more.
The effect of proton pump inhibitor (PPI) use on migraine risk remains controversial. We explored the odds of migraines in relation to prior PPI use and treatment duration. Data from the Korean National Health Insurance Service-Health Screening Cohort (2002–2015) were analyzed in this nested case-control study involving 28,159 participants with incident migraines and 112,636 controls (1:4 matched by sex, age, income, and residential region). The baseline covariates were balanced by performing propensity score overlap weighting-based adjustments, and the effect of prior PPI use (past vs. current) and treatment duration (<30 and 30–365 days vs. ≥365 days) on incident migraines was evaluated using logistic regression. In past and current PPI users, prior PPI use raised the likelihood of migraines (adjusted odds ratio [95% confidence interval]: 2.56 [2.36–2.79] and 4.66 [4.29–5.06], respectively). Participants who used PPI for <30, 30–365, or ≥365 days exhibited high odds of migraines (2.49 [2.29–2.72], 4.41 [4.05–4.79], and 4.14 [3.77–4.54], respectively). Incident migraines with or without aura also increased independently of PPI use history or duration. In summary, prior PPI use, irrespective of the elapsed time since use and the duration of use, is possibly associated with incident migraines with or without aura. Full article
(This article belongs to the Special Issue Effects of Drugs on Ion Channels)
Show Figures

Graphical abstract

22 pages, 1485 KiB  
Review
Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery
by Kirsten McAulay, Alan Bilsland and Marta Bon
Pharmaceuticals 2022, 15(11), 1366; https://doi.org/10.3390/ph15111366 - 8 Nov 2022
Cited by 16 | Viewed by 8202
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising [...] Read more.
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be ‘undruggable’. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined. Full article
Show Figures

Figure 1

15 pages, 1324 KiB  
Review
Synthesis and Biological Activities of Dehydrodiisoeugenol: A Review
by Beatriz Godínez-Chaparro, Salud Pérez-Gutiérrez, Julia Pérez-Ramos, Ivo Heyerdahl-Viau and Liliana Hernández-Vázquez
Pharmaceuticals 2022, 15(11), 1351; https://doi.org/10.3390/ph15111351 - 31 Oct 2022
Cited by 7 | Viewed by 2386
Abstract
Dehydrodiisoeugenol (DHIE) is a neolignan found in more than 17 plant species, including herbs, fruit, and root. DHIE was, for the first time, isolated from Myristica fragrans bark in 1973. Since then, many methodologies have been used for the obtention of DHIE, including [...] Read more.
Dehydrodiisoeugenol (DHIE) is a neolignan found in more than 17 plant species, including herbs, fruit, and root. DHIE was, for the first time, isolated from Myristica fragrans bark in 1973. Since then, many methodologies have been used for the obtention of DHIE, including classical chemistry synthesis using metal catalysts and biocatalytic synthesis; employing horseradish peroxidase; peroxidase from Cocos nucifera; laccase; culture cells of plants; and microorganisms. Increasing evidence has indicated that DHIE has a wide range of biological activities: anti-inflammatory, anti-oxidant, anti-cancerogenic, and anti-microbial properties. However, evidence in vivo and in human beings is still lacking to support the usefulness potential of DHIE as a therapeutic agent. This study’s review was created by searching for relevant DHIE material on websites such as Google Scholar, PubMed, SciFinder, Scholar, Science Direct, and others. This reviews the current state of knowledge regarding the different synthetical routes and biological applications of DHIE. Full article
Show Figures

Figure 1

18 pages, 968 KiB  
Review
Recent Advances in Hepatocellular Carcinoma Treatment with Radionuclides
by Ruiqi Liu, Hong Li, Yihua Qiu, Hongguang Liu and Zhen Cheng
Pharmaceuticals 2022, 15(11), 1339; https://doi.org/10.3390/ph15111339 - 28 Oct 2022
Cited by 3 | Viewed by 2469
Abstract
As the third leading cause of cancer death worldwide, hepatocellular carcinoma (HCC) is characterized by late detection, difficult diagnosis and treatment, rapid progression, and poor prognosis. Current treatments for liver cancer include surgical resection, radiofrequency ablation, liver transplantation, chemotherapy, external radiation therapy, and [...] Read more.
As the third leading cause of cancer death worldwide, hepatocellular carcinoma (HCC) is characterized by late detection, difficult diagnosis and treatment, rapid progression, and poor prognosis. Current treatments for liver cancer include surgical resection, radiofrequency ablation, liver transplantation, chemotherapy, external radiation therapy, and internal radionuclide therapy. Radionuclide therapy is the use of high-energy radiation emitted by radionuclides to eradicate tumor cells, thus achieving the therapeutic effect. Recently, with the continuous development of biomedical technology, the application of radionuclides in treatment of HCC has progressed steadily. This review focuses on three types of radionuclide-based treatment regimens, including transarterial radioembolization (TARE), radioactive seed implantation, and radioimmunotherapy. Their research progress and clinical applications are summarized. The advantages, limitations, and clinical potential of radionuclide treatment of HCC are discussed. Full article
Show Figures

Figure 1

14 pages, 4262 KiB  
Article
Investigation of the Mechanisms of Tramadol-Induced Seizures in Overdose in the Rat
by Camille Lagard, Dominique Vodovar, Lucie Chevillard, Jacques Callebert, Fabien Caillé, Géraldine Pottier, Hao Liang, Patricia Risède, Nicolas Tournier and Bruno Mégarbane
Pharmaceuticals 2022, 15(10), 1254; https://doi.org/10.3390/ph15101254 - 12 Oct 2022
Cited by 6 | Viewed by 4656
Abstract
Tramadol overdose is frequently associated with the onset of seizures, usually considered as serotonin syndrome manifestations. Recently, the serotoninergic mechanism of tramadol-attributed seizures has been questioned. This study’s aim was to identify the mechanisms involved in tramadol-induced seizures in overdose in rats. The [...] Read more.
Tramadol overdose is frequently associated with the onset of seizures, usually considered as serotonin syndrome manifestations. Recently, the serotoninergic mechanism of tramadol-attributed seizures has been questioned. This study’s aim was to identify the mechanisms involved in tramadol-induced seizures in overdose in rats. The investigations included (1) the effects of specific pretreatments on tramadol-induced seizure onset and brain monoamine concentrations, (2) the interaction between tramadol and γ-aminobutyric acid (GABA)A receptors in vivo in the brain using positron emission tomography (PET) imaging and 11C-flumazenil. Diazepam abolished tramadol-induced seizures, in contrast to naloxone, cyproheptadine and fexofenadine pretreatments. Despite seizure abolishment, diazepam significantly enhanced tramadol-induced increase in the brain serotonin (p < 0.01), histamine (p < 0.01), dopamine (p < 0.05) and norepinephrine (p < 0.05). No displacement of 11C-flumazenil brain kinetics was observed following tramadol administration in contrast to diazepam, suggesting that the observed interaction was not related to a competitive mechanism between tramadol and flumazenil at the benzodiazepine-binding site. Our findings do not support the involvement of serotoninergic, histaminergic, dopaminergic, norepinephrine or opioidergic pathways in tramadol-induced seizures in overdose, but they strongly suggest a tramadol-induced allosteric change of the benzodiazepine-binding site of GABAA receptors. Management of tramadol-poisoned patients should take into account that tramadol-induced seizures are mainly related to a GABAergic pathway. Full article
(This article belongs to the Special Issue Psychoactive Substances: Pharmacology and Toxicology)
Show Figures

Figure 1

14 pages, 2130 KiB  
Article
Reservoir-Style Polymeric Drug Delivery Systems: Empirical and Predictive Models for Implant Design
by Linying Li, Chanhwa Lee, Daniela F. Cruz, Sai Archana Krovi, Michael G. Hudgens, Mackenzie L. Cottrell and Leah M. Johnson
Pharmaceuticals 2022, 15(10), 1226; https://doi.org/10.3390/ph15101226 - 3 Oct 2022
Cited by 1 | Viewed by 3246
Abstract
Controlled drug delivery systems can provide sustained release profiles, favorable pharmacokinetics, and improved patient adherence. Here, a reservoir-style implant comprising a biodegradable polymer, poly(ε-caprolactone) (PCL), was developed to deliver drugs subcutaneously. This work addresses a key challenge when designing these implantable drug delivery [...] Read more.
Controlled drug delivery systems can provide sustained release profiles, favorable pharmacokinetics, and improved patient adherence. Here, a reservoir-style implant comprising a biodegradable polymer, poly(ε-caprolactone) (PCL), was developed to deliver drugs subcutaneously. This work addresses a key challenge when designing these implantable drug delivery systems, namely the accurate prediction of drug release profiles when using different formulations or form factors of the implant. The ability to model and predict the release behavior of drugs from an implant based on their physicochemical properties enables rational design and optimization without extensive and laborious in vitro testing. By leveraging experimental observations, we propose a mathematical model that predicts the empirical parameters describing the drug diffusion and partitioning processes based on the physicochemical properties of the drug. We demonstrate that the model enables an adequate fit predicting empirical parameters close to experimental values for various drugs. The model was further used to predict the release performance of new drug formulations from the implant, which aligned with experimental results for implants exhibiting zero-order release kinetics. Thus, the proposed empirical models provide useful tools to inform the implant design to achieve a target release profile. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

29 pages, 7356 KiB  
Article
Biocompatible, Multi-Mode, Fluorescent, T2 MRI Contrast Magnetoelectric-Silica Nanoparticles (MagSiNs), for On-Demand Doxorubicin Delivery to Metastatic Cancer Cells
by Margo Waters, Juliane Hopf, Emma Tam, Stephanie Wallace, Jordan Chang, Zach Bennett, Hadrian Aquino, Ryan K. Roeder, Paul Helquist, M. Sharon Stack and Prakash D. Nallathamby
Pharmaceuticals 2022, 15(10), 1216; https://doi.org/10.3390/ph15101216 - 30 Sep 2022
Cited by 7 | Viewed by 2916
Abstract
There is a need to improve current cancer treatment regimens to reduce systemic toxicity, to positively impact the quality-of-life post-treatment. We hypothesized the negation of off-target toxicity of anthracyclines (e.g., Doxorubicin) by delivering Doxorubicin on magneto-electric silica nanoparticles (Dox-MagSiNs) to cancer cells. Dox-MagSiNs [...] Read more.
There is a need to improve current cancer treatment regimens to reduce systemic toxicity, to positively impact the quality-of-life post-treatment. We hypothesized the negation of off-target toxicity of anthracyclines (e.g., Doxorubicin) by delivering Doxorubicin on magneto-electric silica nanoparticles (Dox-MagSiNs) to cancer cells. Dox-MagSiNs were completely biocompatible with all cell types and are therapeutically inert till the release of Doxorubicin from the MagSiNs at the cancer cells location. The MagSiNs themselves are comprised of biocompatible components with a magnetostrictive cobalt ferrite core (4–6 nm) surrounded by a piezoelectric fused silica shell of 1.5 nm to 2 nm thickness. The MagSiNs possess T2-MRI contrast properties on par with RESOVIST™ due to their cobalt ferrite core. Additionally, the silica shell surrounding the core was volume loaded with green or red fluorophores to fluorescently track the MagSiNs in vitro. This makes the MagSiNs a suitable candidate for trackable, drug nanocarriers. We used metastatic triple-negative breast cancer cells (MDAMB231), ovarian cancer cells (A2780), and prostate cancer cells (PC3) as our model cancer cell lines. Human umbilical vein endothelial cells (HUVEC) were used as control cell lines to represent blood-vessel cells that suffer from the systemic toxicity of Doxorubicin. In the presence of an external magnetic field that is 300× times lower than an MRI field, we successfully nanoporated the cancer cells, then triggered the release of 500 nM of doxorubicin from Dox-MagSiNs to successfully kill >50% PC3, >50% A2780 cells, and killed 125% more MDAMB231 cells than free Dox.HCl. In control HUVECs, the Dox-MagSiNs did not nanoporate into the HUVECS and did not exhibited any cytotoxicity at all when there was no triggered release of Dox.HCl. Currently, the major advantages of our approach are, (i) the MagSiNs are biocompatible in vitro and in vivo; (ii) the label-free nanoporation of Dox-MagSiNs into cancer cells and not the model blood vessel cell line; (iii) the complete cancellation of the cytotoxicity of Doxorubicin in the Dox-MagSiNs form; (iv) the clinical impact of such a nanocarrier will be that it will be possible to increase the current upper limit for cumulative-dosages of anthracyclines through multiple dosing, which in turn will improve the anti-cancer efficacy of anthracyclines. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

24 pages, 3517 KiB  
Article
Steviol Glycoside, L-Arginine, and Chromium(III) Supplementation Attenuates Abnormalities in Glucose Metabolism in Streptozotocin-Induced Mildly Diabetic Rats Fed a High-Fat Diet
by Jakub Michał Kurek, Ewelina Król, Halina Staniek and Zbigniew Krejpcio
Pharmaceuticals 2022, 15(10), 1200; https://doi.org/10.3390/ph15101200 - 28 Sep 2022
Cited by 7 | Viewed by 3207
Abstract
Stevia rebaudiana Bertoni and its glycosides are believed to exhibit several health-promoting properties. Recently, the mechanisms of the anti-diabetic effects of steviol glycosides (SG) have been the subject of intense research. The following study aims to evaluate the results of SG (stevioside (ST) [...] Read more.
Stevia rebaudiana Bertoni and its glycosides are believed to exhibit several health-promoting properties. Recently, the mechanisms of the anti-diabetic effects of steviol glycosides (SG) have been the subject of intense research. The following study aims to evaluate the results of SG (stevioside (ST) and rebaudioside A (RA)) combined with L-arginine (L-Arg) and chromium(III) (CrIII) supplementation in streptozotocin- (STZ) induced mild type 2 diabetic rats fed a high-fat diet (HFD), with particular emphasis on carbohydrate and lipid metabolisms. The experiment was carried out on 110 male Wistar rats, 100 of which were fed an HFD to induce insulin resistance, followed by an intraperitoneal injection of streptozotocin to induce mild type 2 diabetes. After confirmation of hyperglycemia, the rats were divided into groups. Three groups served as controls: diabetic untreated, diabetic treated with metformin (300 mg/kg BW), and healthy group. Eight groups were fed an HFD enriched with stevioside or rebaudioside A (2500 mg/kg BW) combined with L-arginine (2000 or 4000 mg/kg BW) and Cr(III) (1 or 5 mg/kg BW) for six weeks. The results showed that supplementation with SG (ST and RA) combined with L-arg and Cr(III) could improve blood glucose levels in rats with mild type 2 diabetes. Furthermore, ST was more effective in improving blood glucose levels, insulin resistance indices, and very low-density lipoprotein cholesterol (VLDL-C) concentrations than RA. Although L-arg and Cr(III) supplementation did not independently affect most blood carbohydrate and lipid indices, it further improved some biomarkers when combined, particularly with ST. Notably, the beneficial impact of ST on the homeostatic model assessment–insulin resistance (HOMA-IR) and on the quantitative insulin-sensitivity check index (QUICKI) was strengthened when mixed with a high dose of L-arg, while its impact on antioxidant status was improved when combined with a high dose of Cr(III) in rats with mild type 2 diabetes. In conclusion, these results suggest that supplementary stevioside combined with L-arginine and Cr(III) has therapeutic potential for mild type 2 diabetes. However, further studies are warranted to confirm these effects in other experimental models and humans. Full article
(This article belongs to the Special Issue Therapeutic Mechanisms of Nature Products against Insulin Resistance)
Show Figures

Graphical abstract

11 pages, 2622 KiB  
Article
Efficient Production of the PET Radionuclide 133La for Theranostic Purposes in Targeted Alpha Therapy Using the 134Ba(p,2n)133La Reaction
by Santiago Andrés Brühlmann, Martin Kreller, Hans-Jürgen Pietzsch, Klaus Kopka, Constantin Mamat, Martin Walther and Falco Reissig
Pharmaceuticals 2022, 15(10), 1167; https://doi.org/10.3390/ph15101167 - 21 Sep 2022
Cited by 11 | Viewed by 3324
Abstract
Targeted Alpha Therapy is a research field of highest interest in specialized radionuclide therapy. Over the last decades, several alpha-emitting radionuclides have entered and left research topics towards their clinical translation. Especially, 225Ac provides all necessary physical and chemical properties for a [...] Read more.
Targeted Alpha Therapy is a research field of highest interest in specialized radionuclide therapy. Over the last decades, several alpha-emitting radionuclides have entered and left research topics towards their clinical translation. Especially, 225Ac provides all necessary physical and chemical properties for a successful clinical application, which has already been shown by [225Ac]Ac-PSMA-617. While PSMA-617 carries the DOTA moiety as the complexing agent, the chelator macropa as a macrocyclic alternative provides even more beneficial properties regarding labeling and complex stability in vivo. Lanthanum-133 is an excellent positron-emitting diagnostic lanthanide to radiolabel macropa-functionalized therapeutics since 133La forms a perfectly matched theranostic pair of radionuclides with the therapeutic radionuclide 225Ac, which itself can optimally be complexed by macropa as well. 133La was thus produced by cyclotron-based proton irradiation of an enriched 134Ba target. The target (30 mg of [134Ba]BaCO3) was irradiated for 60 min at 22 MeV and 10–15 µA beam current. Irradiation side products in the raw target solution were identified and quantified: 135La (0.4%), 135mBa (0.03%), 133mBa (0.01%), and 133Ba (0.0004%). The subsequent workup and anion-exchange-based product purification process took approx. 30 min and led to a total amount of (1.2–1.8) GBq (decay-corrected to end of bombardment) of 133La, formulated as [133La]LaCl3. After the complete decay of 133La, a remainder of ca. 4 kBq of long-lived 133Ba per 100 MBq of 133La was detected and rated as uncritical regarding personal dose and waste management. Subsequent radiolabeling was successfully performed with previously published macropa-derived PSMA inhibitors at a micromolar range (quantitative labeling at 1 µM) and evaluated by radio-TLC and radio-HPLC analyses. The scale-up to radioactivity amounts that are needed for clinical application purposes would be easy to achieve by increasing target mass, beam current, and irradiation time to produce 133La of high radionuclide purity (>99.5%) regarding labeling properties and side products. Full article
Show Figures

Figure 1

11 pages, 2419 KiB  
Article
The Synthetic Cannabinoid URB447 Exerts Antitumor and Antimetastatic Effect in Melanoma and Colon Cancer
by Aitor Benedicto, Beatriz Arteta, Andrea Duranti and Daniel Alonso-Alconada
Pharmaceuticals 2022, 15(10), 1166; https://doi.org/10.3390/ph15101166 - 20 Sep 2022
Cited by 9 | Viewed by 2608
Abstract
The endocannabinoid system is widespread through the body and carries out a wide variety of functions. However, its involvement in other pathologies, such as cancer, still needs further attention. We aim to investigate the role of CB2 receptor during melanoma and colorectal cancer [...] Read more.
The endocannabinoid system is widespread through the body and carries out a wide variety of functions. However, its involvement in other pathologies, such as cancer, still needs further attention. We aim to investigate the role of CB2 receptor during melanoma and colorectal cancer (CRC) aggressiveness and metastatic growth in the liver. We used the synthetic cannabinoid URB447, a known CB2 agonist and CB1 antagonist drug, and studied prometastatic ability of mouse B16 melanoma and MCA38 CRC cells, by means of proliferation, apoptosis, cell cycle, migration and matrix degradation in vitro upon URB447 treatment. We reported a dose-dependent viability decrease in both tumor types. This result is partly mediated by apoptotic cell death and cell cycle arrest in G1/G0 phase, as observed through flow cytometry. Melanoma and CRC cell migration was affected in a dose-dependent fashion as observed through scratch assay, whereas the secretion of matrix degrading proteins metalloprotease 2 (MMP2) and 9 (MMP9) in tumor cells did not significantly change. Moreover, daily treatment of tumor bearing mice with URB447 decreased the development of liver metastasis in a melanoma model in vivo. This proof of concept study points out to the synthetic cannabinoid URB447 as a potential candidate for deeper studies to confirm its potential as antitumor therapy and liver metastasis treatment for CRC and melanoma. Full article
Show Figures

Figure 1

12 pages, 2372 KiB  
Article
Applications of the Novel Quantitative Pharmacophore Activity Relationship Method QPhAR in Virtual Screening and Lead-Optimisation
by Stefan Michael Kohlbacher, Matthias Schmid, Thomas Seidel and Thierry Langer
Pharmaceuticals 2022, 15(9), 1122; https://doi.org/10.3390/ph15091122 - 8 Sep 2022
Cited by 5 | Viewed by 2207
Abstract
Pharmacophores are an established concept for the modelling of ligand–receptor interactions based on the abstract representations of stereoelectronic molecular features. They became widely popular as filters for the fast virtual screening of large compound libraries. A lot of effort has been put into [...] Read more.
Pharmacophores are an established concept for the modelling of ligand–receptor interactions based on the abstract representations of stereoelectronic molecular features. They became widely popular as filters for the fast virtual screening of large compound libraries. A lot of effort has been put into the development of sophisticated algorithms and strategies to increase the computational efficiency of the screening process. However, hardly any focus has been put on the development of automated procedures that optimise pharmacophores towards higher discriminatory power, which still has to be done manually by a human expert. In the age of machine learning, the researcher has become the decision-maker at the top level, outsourcing analysis tasks and recurrent work to advanced algorithms and automation workflows. Here, we propose an algorithm for the automated selection of features driving pharmacophore model quality using SAR information extracted from validated QPhAR models. By integrating the developed method into an end-to-end workflow, we present a fully automated method that is able to derive best-quality pharmacophores from a given input dataset. Finally, we show how the QPhAR-generated models can be used to guide the researcher with insights regarding (un-)favourable interactions for compounds of interest. Full article
Show Figures

Figure 1

17 pages, 3489 KiB  
Article
Modulation of Intestinal Corticotropin-Releasing Hormone Signaling by the Herbal Preparation STW 5-II: Possible Mechanisms for Irritable Bowel Syndrome Management
by Mohamed Elbadawi, Ramy M. Ammar, Sabine Rabini, Sabine M. Klauck and Thomas Efferth
Pharmaceuticals 2022, 15(9), 1121; https://doi.org/10.3390/ph15091121 - 8 Sep 2022
Cited by 4 | Viewed by 3018
Abstract
Corticotropin-releasing factor (CRF) mediates stress responses and alters the gut-brain axis, contributing to the pathogenesis of irritable bowel syndrome (IBS), which is recognized by abdominal pain accompanied by bowel habit disturbance. STW 5-II, a mixture of six herbal extracts, is clinically effective in [...] Read more.
Corticotropin-releasing factor (CRF) mediates stress responses and alters the gut-brain axis, contributing to the pathogenesis of irritable bowel syndrome (IBS), which is recognized by abdominal pain accompanied by bowel habit disturbance. STW 5-II, a mixture of six herbal extracts, is clinically effective in functional dyspepsia and IBS. Here we aimed to establish an organoid-based stress-induced IBS-like model to investigate the mechanisms of action of STW 5-II. STW 5-II (10, 20, and 30 g/mL) was applied to intestinal organoids for 24 h before being treated with CRF (100 nM) for 48 h. The effects of STW 5-II on CRF signaling were investigated using several in vitro and in silico approaches. STW 5-II activities were further explored by in silico PyRx screening followed by molecular docking of the main 52 identified compounds in STW 5-II with both CRF receptors CRFR1 and CRFR2. CRF exposure stimulated inflammation and increased proinflammatory mediators, while STW 5-II dose-dependently counteracted these effects. STW 5-II inhibited CRF-induced claudin-2 overexpression and serotonin release. Docking of the STW 5-II constituents oleanolic acid and licorice saponin G2 to CRFR1 and CRFR2, respectively, showed a good affinity. These multi-target activities support and elucidate the clinically proven efficacy of STW 5-II in disorders of gut-brain interaction. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

14 pages, 2154 KiB  
Article
A High-Affinity 64Cu-Labeled Ligand for PET Imaging of Hepsin: Design, Synthesis, and Characterization
by Ji-Hun Park, Xuran Zhang, Hyunsoo Ha, Jung Young Kim, Joon Young Choi, Kyung-Han Lee, Youngjoo Byun and Yearn Seong Choe
Pharmaceuticals 2022, 15(9), 1109; https://doi.org/10.3390/ph15091109 - 5 Sep 2022
Viewed by 1962
Abstract
Hepsin, a cell surface serine protease, is a potential biomarker for the detection of prostate cancer due to its high expression in prostate cancer but not in normal prostate. This study aimed to develop a radioligand for positron emission tomography (PET) imaging of [...] Read more.
Hepsin, a cell surface serine protease, is a potential biomarker for the detection of prostate cancer due to its high expression in prostate cancer but not in normal prostate. This study aimed to develop a radioligand for positron emission tomography (PET) imaging of hepsin. Six leucine–arginine (Leu–Arg) dipeptide derivatives (two diastereomers for each of three ligands) were synthesized and evaluated for their binding affinities and selectivity for hepsin. Based on the binding assay, a natCu-1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid (DOTA)-conjugated ligand (3B) was selected for the development of a PET radioligand. [64Cu]3B was synthesized by labeling the DOTA-conjugated compound 11B with [64Cu]CuCl2 at 80 °C for 20 min. The radioligand was evaluated for prostate cancer cell binding and PET imaging in a prostate tumor mouse model. The results demonstrated that [64Cu]3B exhibited high binding to LNCaP cells, intermediate binding to 22Rv1 cells, and low binding to PC3 cells. PET studies of [64Cu]3B in mice, implanted with 22Rv1 and PC3 cells on each flank, revealed that the radioligand uptake was high and persistent in the 22Rv1 tumors over time, whereas it was low in PC3 tumors. The results of this study suggest that [64Cu]3B is a promising PET radioligand for hepsin imaging. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Graphical abstract

20 pages, 2772 KiB  
Article
Cu and Zn Interactions with Peptides Revealed by High-Resolution Mass Spectrometry
by Monica Iavorschi, Ancuța-Veronica Lupăescu, Laura Darie-Ion, Maria Indeykina, Gabriela Elena Hitruc and Brîndușa Alina Petre
Pharmaceuticals 2022, 15(9), 1096; https://doi.org/10.3390/ph15091096 - 31 Aug 2022
Cited by 4 | Viewed by 3652
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by abnormal extracellular amyloid-beta (Aβ) peptide depositions in the brain. Among amorphous aggregates, altered metal homeostasis is considered a common risk factor for neurodegeneration known to accelerate plaque formation. Recently, peptide-based drugs capable of [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by abnormal extracellular amyloid-beta (Aβ) peptide depositions in the brain. Among amorphous aggregates, altered metal homeostasis is considered a common risk factor for neurodegeneration known to accelerate plaque formation. Recently, peptide-based drugs capable of inhibiting amyloid aggregation have achieved unprecedented scientific and pharmaceutical interest. In response to metal ions binding to Aβ peptide, metal chelation was also proposed as a therapy in AD. The present study analyzes the interactions formed between NAP octapeptide, derived from activity-dependent neuroprotective protein (ADNP), amyloid Aβ(9–16) fragment and divalent metal ions such as Cu and Zn. The binding affinity studies for Cu and Zn ions of synthetic NAP peptide and Aβ(9–16) fragment were investigated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), electrospray ion trap mass spectrometry (ESI-MS) and atomic force microscopy (AFM). Both mass spectrometric methods confirmed the formation of metal–peptide complexes while the AFM technique provided morphological and topographic information regarding the influence of metal ions upon peptide crystallization. Our findings showed that due to a rich histidine center, the Aβ(9–16) fragment is capable of binding metal ions, thus becoming stiff and promoting aggregation of the entire amyloid peptide. Apart from this, the protective effect of the NAP peptide was found to rely on the ability of this octapeptide to generate both chelating properties with metals and interactions with Aβ peptide, thus stopping its folding process. Full article
(This article belongs to the Special Issue New Applications and Developments in Synthetic Peptide Chemistry)
Show Figures

Figure 1

13 pages, 1186 KiB  
Review
The Role of Pharmaceutical Compounding in Promoting Medication Adherence
by Maria Carvalho and Isabel F. Almeida
Pharmaceuticals 2022, 15(9), 1091; https://doi.org/10.3390/ph15091091 - 31 Aug 2022
Cited by 19 | Viewed by 7301
Abstract
Pharmaceutical compounding is an important component of pharmacy practice despite its low prevalence. Several therapeutic needs can be met by a compounded medicine such as dosing adjusted for pediatric patients, special drug combinations, medicines for patients allergic to a given excipient, and medicines [...] Read more.
Pharmaceutical compounding is an important component of pharmacy practice despite its low prevalence. Several therapeutic needs can be met by a compounded medicine such as dosing adjusted for pediatric patients, special drug combinations, medicines for patients allergic to a given excipient, and medicines for orphan drugs not provided by the pharmaceutical industry. Examples of such applications are provided in this review. Adherence to medication is a critical public health issue as nonadherence to pharmacotherapy has been associated with adverse outcomes and higher costs of patient care. Adherence to therapy represents a key factor in the reduction in morbidity and mortality and optimization of the use of financial resources. The role of pharmaceutical compounding in promoting medication adherence is underexploited. The customization might represent a positive reinforcement of the initiation of the treatment, while implementation and persistence might also be favored in a pharmacy setting. However, studies addressing the influence of compounding in adherence promotion are lacking in the literature. The results of such studies could support health policies including proper regulatory framework, pharmacist training, and information to health care practitioners. Full article
(This article belongs to the Special Issue Development of Medicines for Rare Pediatric Diseases)
Show Figures

Figure 1

Back to TopTop