The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies
Abstract
:1. Methods for Writing this Paper
2. Introduction to AI and Its Potential for Use in Drug Discovery
3. Limitations of the Current Methods in Drug Discovery
4. The Role of ML in Predicting Drug Efficacy and Toxicity
5. The Impact of AI on the Drug Discovery Process and Potential Cost Savings
6. Case Studies of Successful AI-Aided Drug Discovery Efforts
7. The Role of Collaboration between AI Researchers and Pharmaceutical Scientists
8. Challenges and Limitations of Using AI in Drug Discovery
9. Ethical Considerations Regarding the Use of AI in the Pharmaceutical Industry
10. Conclusions and Summary of the Potential of AI for Revolutionizing Drug Discovery
11. Expert Opinions from the Human Authors about ChatGPT and AI-Based Tools for Scientific Writing
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OpenAI. ChatGPT (Dec 6 Version) [Large Language Model]. 2022. Available online: https://chat.openai.com/chat (accessed on 6 December 2022).
- Plagiarism Detector Software|Anti-Plagiarism Tools|Copyleaks. Available online: https://copyleaks.com (accessed on 6 December 2022).
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, D.; Ibrahim, A.K. Deep learning for drug discovery: A study of identifying high efficacy drug compounds using a cascade transfer learning approach. Appl. Sci. 2021, 11, 7772. [Google Scholar] [CrossRef]
- Pu, L.; Naderi, M.; Liu, T.; Wu, H.C.; Mukhopadhyay, S.; Brylinski, M. EToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol. 2019, 20, 2. [Google Scholar] [CrossRef] [Green Version]
- Rees, C. The Ethics of Artificial Intelligence. In IFIP Advances in Information and Communication Technology, 1st ed.; Chapman and Hall/CRC; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2020; Volume 555, pp. 55–69. ISBN 9781351251389. [Google Scholar]
- Wess, G.; Urmann, M.; Sickenberger, B. Medicinal Chemistry: Challenges and Opportunities. Angew. Chem. Int. Ed. 2001, 40, 3341–3350. [Google Scholar] [CrossRef]
- Chen, R.; Liu, X.; Jin, S.; Lin, J.; Liu, J. Machine learning for drug-target interaction prediction. Molecules 2018, 23, 2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Sci. 2018, 4, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.; Biegler, F.; Ramakrishnan, R.; Pronobis, W.; Von Lilienfeld, O.A.; Müller, K.R.; Tkatchenko, A. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 2015, 6, 2326–2331. [Google Scholar] [CrossRef] [Green Version]
- Gawehn, E.; Hiss, J.A.; Schneider, G. Deep Learning in Drug Discovery. Mol. Inform. 2016, 35, 3–14. [Google Scholar] [CrossRef]
- Lysenko, A.; Sharma, A.; Boroevich, K.A.; Tsunoda, T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci. Alliance 2018, 1, e201800098. [Google Scholar] [CrossRef] [Green Version]
- You, J.; McLeod, R.D.; Hu, P. Predicting drug-target interaction network using deep learning model. Comput. Biol. Chem. 2019, 80, 90–101. [Google Scholar] [CrossRef]
- Liu, X.; IJzerman, A.P.; van Westen, G.J.P. Computational Approaches for De Novo Drug Design: Past, Present, and Future. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2021; Volume 2190, pp. 139–165. [Google Scholar]
- Bannigan, P.; Aldeghi, M.; Bao, Z.; Häse, F.; Aspuru-Guzik, A.; Allen, C. Machine learning directed drug formulation development. Adv. Drug Deliv. Rev. 2021, 175, 113806. [Google Scholar] [CrossRef]
- Santín, E.P.; Solana, R.R.; García, M.G.; Suárez, M.D.M.G.; Díaz, G.D.B.; Cabal, M.D.C.; Rojas, J.M.M.; Sánchez, J.I.L. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1516. [Google Scholar] [CrossRef]
- Jang, H.Y.; Song, J.; Kim, J.H.; Lee, H.; Kim, I.W.; Moon, B.; Oh, J.M. Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information. npj Digit. Med. 2022, 5, 100. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Zhang, M.; Liu, Y.; Jang, H. AlphaFold, Artificial Intelligence (AI), and Allostery. J. Phys. Chem. B 2022, 126, 6372–6383. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Liu, S.; Tian, Y.; Xu, T.; Banegas-Luna, A.J.; Pérez-Sánchez, H.; Huang, J.; Liu, H.; Yao, X. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1581. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, J.; Wang, X.; Gao, M.; Guo, B.; Gao, M.; Liu, J.; Yu, Y.; Wang, L.; Kong, W.; et al. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat. Biotechnol. 2021, 39, 1444–1452. [Google Scholar] [CrossRef]
- Dhamodharan, G.; Mohan, C.G. Machine learning models for predicting the activity of AChE and BACE1 dual inhibitors for the treatment of Alzheimer’s disease. Mol. Divers. 2022, 26, 1501–1517. [Google Scholar] [CrossRef]
- Melo, M.C.R.; Maasch, J.R.M.A.; de la Fuente-Nunez, C. Accelerating antibiotic discovery through artificial intelligence. Commun. Biol. 2021, 4, 1050. [Google Scholar] [CrossRef]
- Marchant, J. Powerful antibiotics discovered using AI. Nature, 2020; Online ahead of print. [Google Scholar] [CrossRef]
- Lv, H.; Shi, L.; Berkenpas, J.W.; Dao, F.Y.; Zulfiqar, H.; Ding, H.; Zhang, Y.; Yang, L.; Cao, R. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief. Bioinform. 2021, 22, bbab320. [Google Scholar] [CrossRef]
- Monteleone, S.; Kellici, T.F.; Southey, M.; Bodkin, M.J.; Heifetz, A. Fighting COVID-19 with Artificial Intelligence. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2022; Volume 2390, pp. 103–112. [Google Scholar]
- Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health 2020, 2, e667–e676. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Qu, X.; Trozzi, F.; Elsaied, M.; Karki, N.; Tao, Y.; Zoltowski, B.; Larson, E.C.; Kraka, E. Predicting potential Sars-Cov-2 drugs-in depth drug database screening using deep neural network framework ssnet, classical virtual screening and docking. Int. J. Mol. Sci. 2021, 22, 1392. [Google Scholar] [CrossRef]
- Bung, N.; Krishnan, S.R.; Bulusu, G.; Roy, A. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Med. Chem. 2021, 13, 575–585. [Google Scholar] [CrossRef]
- Floresta, G.; Zagni, C.; Gentile, D.; Patamia, V.; Rescifina, A. Artificial Intelligence Technologies for COVID-19 De Novo Drug Design. Int. J. Mol. Sci. 2022, 23, 3261. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, S.; Schlessinger, A.; Wacker, D.; Kaniskan, H.Ü.; Jin, J.; Zhou, M.M.; Zhang, B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med. Res. Rev. 2021, 41, 1427–1473. [Google Scholar] [CrossRef]
- Farghali, H.; Canová, N.K.; Arora, M. The Potential Applications of Artificial Intelligence in Drug Discovery and Development. Physiol. Res. 2021, 70 (Suppl. S4), S715–S722. [Google Scholar] [CrossRef]
- Ganesh, G.S.; Kolusu, A.S.; Prasad, K.; Samudrala, P.K.; Nemmani, K.V.S. Advancing health care via artificial intelligence: From concept to clinic. Eur. J. Pharmacol. 2022, 934. [Google Scholar] [CrossRef]
- Koromina, M.; Pandi, M.T.; Patrinos, G.P. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics. OMICS A J. Integr. Biol. 2019, 23, 539–548. [Google Scholar] [CrossRef]
- Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today 2019, 24, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Fleming, N. How artificial intelligence is changing drug discovery spotlight. Nature 2018, 557, S55–S57. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.fiercebiotech.com/biotech/numerate-forms-drug-discovery-collaboration-merck-to-utilize-numerate-s-silico-drug-design (accessed on 6 December 2022).
- 11 Companies Using Pharma AI to Stimulate Growth in the Industry. Available online: https://www.p360.com/data360/11-companies-using-pharma-ai-to-stimulate-growth-in-the-industry-1/ (accessed on 6 December 2022).
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Hase, T.; Yachie-Kinoshita, A.; Nishino, T.; Ghosh, S.; Kikuchi, M.; Shimokawa, K.; Aburatani, H.; Kitano, H.; Tanaka, H. Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer’s disease. Alzheimer Res. Ther. 2021, 13, 92. [Google Scholar] [CrossRef]
- Basu, T.; Engel-Wolf, S.; Menzer, O. The ethics of machine learning in medical sciences: Where do we stand today? Indian J. Dermatol. 2020, 65, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Kleinberg, J. Inherent Trade-Offs in Algorithmic Fairness. In Proceedings of the Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems, Irvine, CA, USA, 18–22 June 2018; Association for Computing Machinery (ACM): New York, NY, USA, 2018; p. 40. [Google Scholar]
- Silvia, H.; Carr, N. When Worlds Collide: Protecting Physical World Interests Against Virtual World Malfeasance. Michigan Technol. Law Rev. 2020, 26, 279. [Google Scholar] [CrossRef]
- Shimao, H.; Khern-am-nuai, W.; Kannan, K.; Cohen, M.C. Strategic Best Response Fairness in Fair Machine Learning. In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA, 7–9 February 2022; Association for Computing Machinery (ACM): New York, NY, USA, 2022; p. 664. [Google Scholar]
- Kusam, L.; Mayank, D.; Nishanth, K.N. Data Augmentation Using Generative Adversarial Network. In Proceedings of the 2nd International Conference on Advanced Computing and Software Engineering (ICACSE) 2019, Sultanpur, India, 8 February 2019. [Google Scholar] [CrossRef]
- Taylor, L.; Nitschke, G. Improving Deep Learning with Generic Data Augmentation. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, Piscataway, NJ, USA, 18–21 November 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 1542–1547. [Google Scholar]
- Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2022, 55, 3503–3568. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Grebner, C.; Matter, H.; Kofink, D.; Wenzel, J.; Schmidt, F.; Hessler, G. Application of Deep Neural Network Models in Drug Discovery Programs. ChemMedChem 2021, 16, 3772–3786. [Google Scholar] [CrossRef]
- Schraagen, J.M.; van Diggelen, J. A Brief History of the Relationship Between Expertise and Artificial Intelligence. In Expertise at Work; Palgrave Macmillan: Cham, Switzerland, 2021; pp. 149–175. [Google Scholar]
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA Turin, Itali, 1–3 October 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 80–89. [Google Scholar]
- Jarrahi, M.H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horiz. 2018, 61, 577–586. [Google Scholar] [CrossRef]
- Wang, L.; Ding, J.; Pan, L.; Cao, D.; Jiang, H.; Ding, X. Artificial intelligence facilitates drug design in the big data era. Chemom. Intell. Lab. Syst. 2019, 194, 103850. [Google Scholar] [CrossRef]
- Naik, N.; Hameed, B.M.Z.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Brahim, S.; Patil, V.; Smriti, K.; et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front. Surg. 2022, 9, 266. [Google Scholar] [CrossRef] [PubMed]
- Karimian, G.; Petelos, E.; Evers, S.M.A.A. The ethical issues of the application of artificial intelligence in healthcare: A systematic scoping review. AI Ethics 2022, 2, 539–551. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco-González, A.; Cabezón, A.; Seco-González, A.; Conde-Torres, D.; Antelo-Riveiro, P.; Piñeiro, Á.; Garcia-Fandino, R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals 2023, 16, 891. https://doi.org/10.3390/ph16060891
Blanco-González A, Cabezón A, Seco-González A, Conde-Torres D, Antelo-Riveiro P, Piñeiro Á, Garcia-Fandino R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals. 2023; 16(6):891. https://doi.org/10.3390/ph16060891
Chicago/Turabian StyleBlanco-González, Alexandre, Alfonso Cabezón, Alejandro Seco-González, Daniel Conde-Torres, Paula Antelo-Riveiro, Ángel Piñeiro, and Rebeca Garcia-Fandino. 2023. "The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies" Pharmaceuticals 16, no. 6: 891. https://doi.org/10.3390/ph16060891
APA StyleBlanco-González, A., Cabezón, A., Seco-González, A., Conde-Torres, D., Antelo-Riveiro, P., Piñeiro, Á., & Garcia-Fandino, R. (2023). The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals, 16(6), 891. https://doi.org/10.3390/ph16060891