Special Issue “Anticancer Drugs 2021”
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imran, M.; Asdaq, S.M.B.; Khan, S.A.; Unnikrishnan Meenakshi, D.; Alamri, A.S.; Alsanie, W.F.; Alhomrani, M.; Mohzari, Y.; Alrashed, A.; AlMotairi, M.; et al. Innovations and patent trends in the development of usfda approved protein kinase inhibitors in the last two decades. Pharmaceuticals 2021, 14, 710. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y. Trk inhibitors: Tissue-agnostic anti-cancer drugs. Pharmaceuticals 2021, 14, 632. [Google Scholar] [CrossRef]
- Mashelkar, K.K.; Byun, W.S.; Ko, H.; Sung, K.; Tripathi, S.K.; An, S.; Yum, Y.A.; Kwon, J.Y.; Kim, M.; Kim, G.; et al. Discovery of a novel template, 7-substituted 7-deaza-4′-thioadenosine derivatives as multi-kinase inhibitors. Pharmaceuticals 2021, 14, 1290. [Google Scholar] [CrossRef] [PubMed]
- Previtali, V.; Mihigo, H.B.; Amet, R.; McElligott, A.M.; Zisterer, D.M.; Rozas, I. Exploring the anti-cancer mechanism of novel 3,4′-substituted diaryl guanidinium derivatives. Pharmaceuticals 2020, 13, 485. [Google Scholar] [CrossRef] [PubMed]
- Elrayess, R.; Abdel Aziz, Y.M.; Elgawish, M.S.; Elewa, M.; Yassen, A.S.A.; Elhady, S.S.; Elshihawy, H.A.; Said, M.M. Discovery of potent dual EGFR/HER2 inhibitors based on thiophene scaffold targeting H1299 lung cancer cell line. Pharmaceuticals 2020, 14, 9. [Google Scholar] [CrossRef]
- Ibrahim, T.S.; Malebari, A.M.; Mohamed, M.F.A. Design, synthesis, in vitro anticancer evaluation and molecular modelling studies of 3,4,5-trimethoxyphenyl-based derivatives as dual EGFR/HDAC hybrid inhibitors. Pharmaceuticals 2021, 14, 1177. [Google Scholar] [CrossRef]
- Balbuena-Rebolledo, I.; Padilla, M., II; Rosales-Hernandez, M.C.; Bello, M. Repurposing FDA drug compounds against breast cancer by targeting EGFR/HER2. Pharmaceuticals 2021, 14, 791. [Google Scholar] [CrossRef]
- Ruanglertboon, W.; Sorich, M.J.; Hopkins, A.M.; Rowland, A. Mechanistic modelling identifies and addresses the risks of empiric concentration-guided sorafenib dosing. Pharmaceuticals 2021, 14, 389. [Google Scholar] [CrossRef]
- Nagy, M.I.; Darwish, K.M.; Kishk, S.M.; Tantawy, M.A.; Nasr, A.M.; Qushawy, M.; Swidan, S.A.; Mostafa, S.M.; Salama, I. Design, synthesis, anticancer activity, and solid lipid nanoparticle formulation of indole- and benzimidazole-based compounds as pro-apoptotic agents targeting bcl-2 protein. Pharmaceuticals 2021, 14, 113. [Google Scholar] [CrossRef]
- Espadinha, M.; Barcherini, V.; Goncalves, L.M.; Molins, E.; Antunes, A.M.M.; Santos, M.M.M. Tryptophanol-derived oxazolopyrrolidone lactams as potential anticancer agents against gastric adenocarcinoma. Pharmaceuticals 2021, 14, 208. [Google Scholar] [CrossRef]
- Stecoza, C.E.; Nitulescu, G.M.; Draghici, C.; Caproiu, M.T.; Olaru, O.T.; Bostan, M.; Mihaila, M. Synthesis and anticancer evaluation of new 1,3,4-oxadiazole derivatives. Pharmaceuticals 2021, 14, 438. [Google Scholar] [CrossRef] [PubMed]
- Gargantilla, M.; Lopez-Fernandez, J.; Camarasa, M.J.; Persoons, L.; Daelemans, D.; Priego, E.M.; Perez-Perez, M.J. Inhibition of XPO-1 mediated nuclear export through the michael-acceptor character of chalcones. Pharmaceuticals 2021, 14, 1131. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Almalki, A.S.; Neamatallah, T.; Ali, N.M.; Malebari, A.M.; Nazreen, S. Synthesis of new 1, 3, 4-oxadiazole-incorporated 1, 2, 3-triazole moieties as potential anticancer agents targeting thymidylate synthase and their docking studies. Pharmaceuticals 2020, 13, 390. [Google Scholar] [CrossRef]
- Kovaleva, K.; Yarovaya, O.; Ponomarev, K.; Cheresiz, S.; Azimirad, A.; Chernyshova, I.; Zakharenko, A.; Konev, V.; Khlebnikova, T.; Mozhaytsev, E.; et al. Design, synthesis, and molecular docking study of new tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors combining resin acids and adamantane moieties. Pharmaceuticals 2021, 14, 422. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Choi, S.; Park, Y.; Jin, H.S. Mucin1 and mucin16: Therapeutic targets for cancer therapy. Pharmaceuticals 2021, 14, 1053. [Google Scholar] [CrossRef]
- Ana, G.; Kelly, P.M.; Malebari, A.M.; Noorani, S.; Nathwani, S.M.; Twamley, B.; Fayne, D.; O’Boyle, N.M.; Zisterer, D.M.; Pimentel, E.F.; et al. Synthesis and biological evaluation of 1-(diarylmethyl)-1H-1,2,4-triazoles and 1-(diarylmethyl)-1H-imidazoles as a novel class of anti-mitotic agent for activity in breast cancer. Pharmaceuticals 2021, 14, 169. [Google Scholar] [CrossRef]
- Perez-Villanueva, J.; Matadamas-Martinez, F.; Yepez-Mulia, L.; Perez-Koldenkova, V.; Leyte-Lugo, M.; Rodriguez-Villar, K.; Cortes-Benitez, F.; Macias-Jimenez, A.P.; Gonzalez-Sanchez, I.; Romero-Velasquez, A.; et al. Synthesis and cytotoxic activity of combretastatin a-4 and 2,3-diphenyl-2H-indazole hybrids. Pharmaceuticals 2021, 14, 815. [Google Scholar] [CrossRef]
- Balandis, B.; Mickevicius, V.; Petrikaite, V. Exploration of benzenesulfonamide-bearing imidazole derivatives activity in triple-negative breast cancer and melanoma 2D and 3D cell cultures. Pharmaceuticals 2021, 14, 1158. [Google Scholar] [CrossRef]
- Strzyga-Lach, P.; Chrzanowska, A.; Podsadni, K.; Bielenica, A. Investigation of the mechanisms of cytotoxic activity of 1,3-disubstituted thiourea derivatives. Pharmaceuticals 2021, 14, 1097. [Google Scholar] [CrossRef]
- Kurniawan, Y.S.; Priyangga, K.T.A.; Jumina; Pranowo, H.D.; Sholikhah, E.N.; Zulkarnain, A.K.; Fatimi, H.A.; Julianus, J. An update on the anticancer activity of xanthone derivatives: A review. Pharmaceuticals 2021, 14, 1144. [Google Scholar] [CrossRef]
- Reis-Mendes, A.; Dores-Sousa, J.L.; Padrao, A.I.; Duarte-Araujo, M.; Duarte, J.A.; Seabra, V.; Goncalves-Monteiro, S.; Remiao, F.; Carvalho, F.; Sousa, E.; et al. Inflammation as a possible trigger for mitoxantrone-induced cardiotoxicity: An in vivo study in adult and infant mice. Pharmaceuticals 2021, 14, 510. [Google Scholar] [CrossRef] [PubMed]
- Merwid-Lad, A.; Ksiadzyna, D.; Halon, A.; Szkudlarek, D.; Trocha, M.; Szandruk-Bender, M.; Matuszewska, A.; Nowak, B.; Sozanski, T.; Kuzniar, A.; et al. Morin-5′-sulfonic acid sodium salt (namsa) attenuates cyclophosphamide-induced histological changes in genitourinary tract in rats-short report. Pharmaceuticals 2021, 14, 192. [Google Scholar] [CrossRef] [PubMed]
- Merwid-Lad, A.; Ziolkowski, P.; Szandruk-Bender, M.; Matuszewska, A.; Szelag, A.; Trocha, M. Effect of a low dose of carvedilol on cyclophosphamide-induced urinary toxicity in rats-a comparison with mesna. Pharmaceuticals 2021, 14, 1237. [Google Scholar] [CrossRef] [PubMed]
- Pulukuri, A.J.; Burt, A.J.; Opp, L.K.; McDowell, C.M.; Davaritouchaee, M.; Nielsen, A.E.; Mancini, R.J. Acquired drug resistance enhances imidazoquinoline efflux by P-glycoprotein. Pharmaceuticals 2021, 14, 1292. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meegan, M.J.; O’Boyle, N.M. Special Issue “Anticancer Drugs 2021”. Pharmaceuticals 2022, 15, 479. https://doi.org/10.3390/ph15040479
Meegan MJ, O’Boyle NM. Special Issue “Anticancer Drugs 2021”. Pharmaceuticals. 2022; 15(4):479. https://doi.org/10.3390/ph15040479
Chicago/Turabian StyleMeegan, Mary J., and Niamh M. O’Boyle. 2022. "Special Issue “Anticancer Drugs 2021”" Pharmaceuticals 15, no. 4: 479. https://doi.org/10.3390/ph15040479
APA StyleMeegan, M. J., & O’Boyle, N. M. (2022). Special Issue “Anticancer Drugs 2021”. Pharmaceuticals, 15(4), 479. https://doi.org/10.3390/ph15040479