Chemical Profiling of Kaliziri Injection and Quantification of Six Caffeoyl Quinic Acids in Beagle Plasma by LC-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Identification of Caffeoyl Quinic Acid Derivatives in KZI by UHPLC-Q-Orbitrap-MS
2.2. Simultaneous Quantification of 5-CQA, 4-CQA, 1,3-diCQA, 3,4-diCQA, 3,5-diCQA and 4,5-diCQA in Beagle Plasma after the Subcutaneous Injection of KZI
2.2.1. Optimization of HPLC-MS/MS Conditions for Quantitative Analysis
2.2.2. Method Validation
2.2.3. Simultaneous Quantification of 5-CQA, 4-CQA, 1,3-diCQA, 3,4-diCQA, 3,5-diCQA and 4,5-diCQA in Beagle Plasma after the Subcutaneous Injection of KZI
3. Materials and Methods
3.1. Materials
3.2. UHPLC-Q-Orbitrap-MS Conditions
3.3. Quantitative HPLC-MS/MS Conditions
3.4. Animal Experiment
3.5. Beagle Plasma Standard Solution Preparation
3.6. Treatment of Beagle Plasma Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ezzedine, K.; Lim, H.W.; Suzuki, T.; Katayama, I.; Hamzavi, I.; Lan, C.C.E.; Goh, B.K.; Anbar, T.; Castro, C.S.; Lee, A.Y.; et al. Revised classification/nomenclature of vitiligo and related issues: The vitiligo global issues consensus conference. Pigm. Cell Melanoma R. 2012, 25, E1–E13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boniface, K.; Seneschal, J. Vitiligo as a skin memory disease: The need for early intervention with immunomodulating agents and a maintenance therapy to target resident memory T cells. Exp. Dermatol. 2019, 28, 656–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.J.; Liu, J.B.; Gui, J.P.; Li, M.; Xiong, Q.G.; Wu, H.B.; Li, J.X.; Yang, S.; Wang, H.Y.; Gao, M.; et al. Characteristics of genetic epidemiology and genetic models for vitiligo. J. Am. Acad. Dermatol. 2004, 51, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Taieb, A.; Alomar, A.; Boehm, M.; Dell’Anna, M.L.; De Pase, A.; Eleftheriadou, V.; Ezzedine, K.; Gauthier, Y.; Gawkrodger, D.J.; Jouary, T.; et al. Guidelines for the management of vitiligo: The european dermatology forum consensus. Br. J. Dermatol. 2013, 168, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulou, P.; Jouary, T.; Quintard, B.; Ezzedine, K.; Marques, S.; Boutchnei, S.; Taieb, A. Objective Vs. subjective factors in the psychological impact of vitiligo: The experience from a french referral centre. Br. J. Dermatol. 2009, 161, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Homan, M.W.L.; de Korte, J.; Grootenhuis, M.A.; Bos, J.D.; Sprangers, M.A.G.; van der Veen, J.P.W. Impact of childhood vitiligo on adult life. Br. J. Dermatol. 2008, 159, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Dogra, N.K.; Kumar, S.; Kumar, D. Vernonia anthelmintica (L.) Willd.: An ethnomedicinal, phytochemical, pharmacological and toxicological review. J. Ethnopharmacol. 2020, 256, 112777. [Google Scholar] [CrossRef]
- Turak, A.; Liu, Y.Q.; Aisa, H.A. Elemanolide dimers from seeds of Vernonia anthelmintica. Fitoterapia 2015, 104, 23–30. [Google Scholar] [CrossRef]
- Wang, J.Y.; Luo, L.; Ding, Q.; Wu, Z.R.; Peng, Y.Y.; Li, J.; Wang, X.Q.; Li, W.H.; Liu, G.X.; Zhang, B.; et al. Development of a multi-target strategy for the treatment of vitiligo via machine learning and network analysis methods. Front. Pharmacol. 2021, 12, 754175. [Google Scholar] [CrossRef]
- Lai, Y.F.; Feng, Q.Y.; Zhang, R.; Shang, J.; Zhong, H. The great capacity on promoting melanogenesis of three compatible components in Vernonia anthelmintica (L.) Willd. Int. J. Mol. Sci. 2021, 22, 4073. [Google Scholar] [CrossRef]
- Rajan, M.; Feba, K.S.; Chandran, V.; Shahena, S.; Mathew, L. Enhancement of rhamnetin production in Vernonia anthelmintica (L.) Willd. cell suspension cultures by eliciting with methyl jasmonate and salicylic acid. Physiol. Mol. Biol. Pla. 2020, 26, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Y.X.; Pang, S.L.; Zhou, J.; Cai, J.; Shang, J. Alcohol extract from Vernonia anthelmintica (L.) willd. seed counteracts stress-induced murine hair follicle growth inhibition. BMC Complem. Altern. Med. 2019, 19, 372. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.X.; Wang, Q.; Liu, X.M.; Ge, C.H.; Gao, L.; Peng, X.M.; Yan, M. The effect of butin on the vitiligo mouse model induced by hydroquinone. Phytother. Res. 2017, 31, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shang, J.; Ping, F.F.; Zhao, G.R. Alcohol extract from Vernonia anthelmintica (L.) willd. seed enhances melanin synthesis through activation of the p38 MAPK signaling pathway in B16F10 cells and primary melanocytes. J. Ethnopharmacol. 2012, 143, 639–647. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, Y.J.; Wa, Q.B.; Liu, L.; Gu, L.Q. Efficacy of 308 nm excimer laser plus Vernonia anthelmintica willd. injection in 60 cases of vitiligo. Chin. J. Derm. Venereol. 2014, 28, 1209–1210. [Google Scholar]
- Sun, H.M.; Xu, Z.T. Efficacy of Vernonia anthelmintica injection combined with vitiligo pill in the treatment of vitiligo. World Latest Med. Inform. 2015, 15, 185–188. [Google Scholar]
- Deng, R.C.; Zhou, Y.; Zhang, W.S.; Xu, J.G.; Shang, J.; Wang, X.D.; Yu, L.H. Study on mechanism of vitiligo by Vernonia anthelmintica Willd. Lett. Biotech. 2004, 15, 573–576. [Google Scholar]
- Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef]
- Ersan, S.; Ustundag, O.G.; Carle, R.; Schweiggert, R.M. Identification of phenolic compounds in red and green pistachio (Pistacia vera L.) hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MSn. J. Agri. Food Chem. 2016, 64, 5334–5344. [Google Scholar] [CrossRef]
- Gouveia, S.C.; Castilho, P.C. Characterization of phenolic compounds in Helichrysum melaleucum by high-performance liquid chromatography with on-line ultraviolet and mass spectrometry detection. Rapid Commun. Mass Spectrom. 2010, 24, 1851–1868. [Google Scholar] [CrossRef]
- Ammar, S.; Contreras, M.D.; Gargouri, B.; Segura-Carretero, A.; Bouaziz, M. RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart. Phytochem. Anal. 2017, 28, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Sommella, E.; Pagano, F.; Salviati, E.; Chieppa, M.; Bertamino, A.; Manfra, M.; Sala, M.; Novellino, E.; Campiglia, P. Chemical profiling of bioactive constituents in hop cones and pellets extracts by online comprehensive two-dimensional liquid chromatography with tandem mass spectrometry and direct infusion Fourier transform ion cyclotron resonance mass spectrometry. J. Sep. Sci. 2018, 41, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Solliec, M.; Roy-Lachapelle, A.; Sauve, S. Quantitative performance of liquid chromatography coupled to Q-Exactive high resolution mass spectrometry (HRMS) for the analysis of tetracyclines in a complex matrix. Anal. Chim. Acta 2015, 853, 415–424. [Google Scholar] [CrossRef] [PubMed]
No. | tR (min) | Molecular Formula | [M-H]− | Major and Important MS2 Ions | Identification | Error (ppm) |
---|---|---|---|---|---|---|
1 | 9.22 | C28H38O19 | 677.19519 | 515, 353, 341, 191, 179, 173, 161, 135 | CQA hexosyl hexoside-a | 4.19 |
2 | 9.32 | C16H18O9 | 353.08719 | 191 | CQA | 1.36 |
3 | 10.13 | C28H38O19 | 677.19562 | 515, 353, 323, 191, 179, 173, 161, 135 | CQA hexosyl hexoside-b | 4.82 |
4 | 11.18 | C16H18O9 | 353.08566 | 191, 179, 135 | 3-CQA * | −2.90 |
5 | 11.51 | C28H38O19 | 677.19537 | 515, 353, 341, 179, 173, 135 | CQA hexosyl hexoside-c | 4.46 |
6 | 13.28 | C16H18O8 | 337.09326 | 191, 173, 163, 119 | CoQA-a | 4.35 |
7 | 14.15 | C16H18O9 | 353.08627 | 191 | 5-CQA * | −1.20 |
8 | 14.86 | C16H18O9 | 353.08517 | 191, 179, 173, 135 | 4-CQA * | −4.30 |
9 | 15.47 | C23H22O12 | 489.10510 | 353, 335, 191, 179, 161, 135, 109 | dihydroxybenzoyl CQA-a | 4.80 |
10 | 15.81 | C18H24O10 | 399.13062 | 353, 191, 179, 135 | CQA ethyl ester-a | 5.12 |
11 | 16.07 | C34H30O16 | 693.14832 | 531, 353, 339, 313, 295, 269, 229, 191, 173, 159, 109 | Trihydroxycinnamoyl diCQA-a | 4.77 |
12 | 16.79 | C16H18O8 | 337.09351 | 191, 173, 163, 119 | CoQA-b | 5.07 |
13 | 17.11 | C16H18O8 | 337.09311 | 191, 173, 163, 137, 119 | CoQA-c | 3.90 |
14 | 17.54 | C18H24O10 | 399.13055 | 353, 191, 179, 135 | CQA ester-b | 4.96 |
15 | 17.63 | C25H24O12 | 515.12024 | 353, 191, 179, 135 | 1,3-diCQA * | 3.56 |
16 | 17.73 | C18H24O10 | 399.13043 | 353, 191, 179, 135 | CQA ethyl ester-c | 4.66 |
17 | 18.32 | C17H20O9 | 367.10413 | 191, 134 | FQA-a | 4.81 |
18 | 18.42 | C17H20O9 | 367.10413 | 193, 191, 173, 155, 134 | FQA-b | 4.81 |
19 | 19.19 | C34H30O16 | 693.14783 | 531, 353, 339, 313, 295, 269, 229, 191, 179, 173, 159, 109 | Trihydroxycinnamoyl diCQA-b | 4.06 |
20 | 19.33 | C34H30O16 | 693.14789 | 531, 353, 339, 313, 295, 269, 229, 191, 179, 173, 159, 109 | Trihydroxycinnamoyl diCQA-c | 4.15 |
21 | 19.52 | C34H30O16 | 693.14801 | 531, 353, 339, 295, 269, 229, 191, 179, 173, 159, 135, 109 | Trihydroxycinnamoyl diCQA-d | 4.33 |
22 | 20.39 | C25H24O11 | 499.12573 | 353, 335, 191, 179, 161, 135 | CoCQA-a | 4.50 |
23 | 20.42 | C34H30O16 | 693.14764 | 531, 353, 339, 295, 267, 229, 191, 179, 173, 159, 135, 109 | Trihydroxycinnamoyl diCQA-e | 3.80 |
24 | 20.55 | C23H22O12 | 489.10468 | 353, 335, 327, 309, 191, 179, 173, 161, 153, 135, 109 | dihydroxybenzoyl CQA-b | 3.93 |
25 | 20.61 | C34H30O16 | 693.14752 | 531, 353, 339, 313, 295, 269, 229, 191, 179, 173, 159, 109 | Trihydroxycinnamoyl diCQA-f | 3.62 |
26 | 21.05 | C23H22O12 | 489.10498 | 327, 191, 179, 153, 109 | dihydroxybenzoyl CQA-c | 4.56 |
27 | 21.11 | C25H24O11 | 499.12570 | 337, 191, 163, 119 | CoCQA-b | 4.44 |
28 | 21.43 | C31H34O17 | 677.17371 | 515, 353, 323, 191, 179, 173, 161, 135 | diCQA hexoside-a | 3.66 |
29 | 21.79 | C31H34O17 | 677.17450 | 515, 353, 323, 191, 179, 173, 161, 135 | diCQA hexoside-b | 4.83 |
30 | 22.26 | C31H34O17 | 677.17383 | 515, 353, 323, 191, 179, 173, 161, 135 | diCQA hexoside-c | 3.84 |
31 | 22.85 | C23H22O12 | 489.10477 | 327, 191, 173, 153, 109 | dihydroxybenzoyl CQA-d | 4.12 |
32 | 23.31 | C31H34O17 | 677.17444 | 515, 353, 323, 191, 179, 173, 161, 135 | diCQA hexoside-d | 4.75 |
33 | 23.50 | C25H24O12 | 515.11975 | 353, 335, 191, 179, 173, 135 | 3,4-diCQA * | 2.62 |
34 | 24.07 | C25H24O12 | 515.12006 | 353, 191, 179, 135 | 3,5-diCQA * | 3.21 |
35 | 24.76 | C27H30O13 | 561.16260 | 515, 399, 353, 191, 179, 173, 161, 135 | diCQA ethyl ester-a | 4.15 |
36 | 24.99 | C27H30O13 | 561.16266 | 515, 399, 353, 191, 179, 173, 161, 135 | diCQA ethyl ester-b | 4.26 |
37 | 25.42 | C25H24O12 | 515.11987 | 353, 191, 179, 173, 135 | 4,5-diCQA * | 2.85 |
38 | 25.51 | C27H30O13 | 561.16193 | 515, 399, 353, 335, 191, 179, 173, 161, 135 | diCQA ethyl ester-c | 2.96 |
39 | 25.74 | C27H30O13 | 561.16241 | 515, 399, 353, 335, 191, 179, 173, 161, 135 | diCQA ethyl ester-d | 3.83 |
40 | 25.77 | C25H24O11 | 499.12561 | 353, 337, 335, 319, 191, 179, 173, 163, 135, 119 | CoCQA-c | 4.25 |
41 | 26.14 | C25H24O11 | 499.12567 | 353, 337, 319, 191, 179, 173, 163, 119 | CoCQA-d | 4.37 |
42 | 26.31 | C26H26O12 | 529.13617 | 365, 335, 193, 191, 179, 175, 173, 161, 135, 134 | FCQA-a | 4.00 |
43 | 26.41 | C25H24O11 | 499.12570 | 337, 191, 173, 163, 119 | CoCQA-e | 4.44 |
44 | 26.41 | C27H30O13 | 561.16266 | 499, 414, 399, 353, 191, 179, 173, 161, 135 | diCQA ethyl ester-e | 4.26 |
45 | 26.64 | C25H24O11 | 499.12564 | 353, 337, 191, 179, 173, 135 | CoCQA-f | 4.31 |
46 | 26.81 | C26H26O12 | 529.13617 | 367, 335, 193, 173, 161, 134 | FCQA-b | 4.00 |
47 | 26.85 | C27H30O13 | 561.16272 | 515, 441, 399, 353, 191, 179, 173, 135 | diCQA ethyl ester-f | 4.37 |
48 | 27.28 | C27H30O13 | 561.16254 | 515, 399, 353, 191, 179, 173, 135 | diCQA ethyl ester-g | 4.04 |
49 | 27.41 | C26H26O12 | 529.13599 | 367, 193, 179, 134 | FCQA-c | 3.65 |
50 | 27.47 | C27H30O13 | 561.16260 | 515, 399, 353, 191, 179, 173, 161, 135 | diCQA ethyl ester-h | 4.15 |
51 | 27.61 | C26H26O12 | 529.13629 | 367, 353, 191, 179, 135 | FCQA-d | 4.23 |
52 | 27.61 | C27H30O13 | 561.16278 | 515, 399, 353, 351, 191, 179, 173, 135 | diCQA ethyl ester-i | 4.48 |
53 | 27.81 | C25H24O11 | 499.12567 | 337, 191, 173, 163, 119 | CoCQA-g | 4.37 |
54 | 27.98 | C25H24O11 | 499.12576 | 353, 337, 191, 179, 173, 163, 135 | CoCQA-h | 4.56 |
55 | 28.19 | C26H26O12 | 529.13593 | 367, 183, 173, 134 | FCQA-e | 3.54 |
56 | 28.38 | C26H26O12 | 529.13562 | 367, 353, 335, 191, 179, 173, 135 | FCQA-f | 2.96 |
57 | 29.52 | C34H30O15 | 677.15283 | 515, 353, 335, 191, 179, 173, 161, 135 | triCQA | 4.04 |
58 | 30.02 | C35H34O15 | 693.18433 | 531, 513, 353, 335, 191, 179, 177, 173, 161, 135, 133 | Hydroferuoyl diCQA | 4.23 |
59 | 30.19 | C35H34O15 | 693.18445 | 531, 335, 191, 179, 177, 173, 161, 135, 133 | Hydroferuoyl diCQA | 4.40 |
60 | 30.58 | C35H34O15 | 693.18408 | 531, 353, 191, 179, 173, 135 | Hydroferuoyl diCQA | 3.87 |
Analytes | Q1 Mass (Da) | Q3 Mass (Da) | DP (Volts) | EP (Volts) | CE (Volts) | CXP (Volts) |
---|---|---|---|---|---|---|
5-CQA | 353 | 191 | 65 | 10 | 30 | 15 |
4-CQA | 353 | 191 | 65 | 10 | 30 | 15 |
1,3-diCQA | 515 | 353 | 85 | 10 | 27 | 15 |
3,4-diCQA | 515 | 353 | 85 | 10 | 27 | 15 |
3,5-diCQA | 515 | 353 | 85 | 10 | 27 | 15 |
4,5-diCQA | 515 | 353 | 85 | 10 | 27 | 15 |
Internal standard | 447 | 285 | 100 | 10 | 36 | 10 |
Analytes | 5-CQA | 4-CQA | 1,3-diCQA | 3,4-diCQA | 3,5-diCQA | 4,5-diCQA |
---|---|---|---|---|---|---|
Contents (μg/mL) | 46.2 | 48.0 | 9.7 | 190.0 | 11.7 | 17.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wahefu, A.; Lu, X.; Abdulla, R.; Dou, J.; Zhao, H.; Aisa, H.A.; Xin, X.; Liu, Y. Chemical Profiling of Kaliziri Injection and Quantification of Six Caffeoyl Quinic Acids in Beagle Plasma by LC-MS/MS. Pharmaceuticals 2022, 15, 663. https://doi.org/10.3390/ph15060663
Liu C, Wahefu A, Lu X, Abdulla R, Dou J, Zhao H, Aisa HA, Xin X, Liu Y. Chemical Profiling of Kaliziri Injection and Quantification of Six Caffeoyl Quinic Acids in Beagle Plasma by LC-MS/MS. Pharmaceuticals. 2022; 15(6):663. https://doi.org/10.3390/ph15060663
Chicago/Turabian StyleLiu, Changhua, Atikanmu Wahefu, Xueying Lu, Rahima Abdulla, Jun Dou, Haiqing Zhao, Haji Akber Aisa, Xuelei Xin, and Yongqiang Liu. 2022. "Chemical Profiling of Kaliziri Injection and Quantification of Six Caffeoyl Quinic Acids in Beagle Plasma by LC-MS/MS" Pharmaceuticals 15, no. 6: 663. https://doi.org/10.3390/ph15060663
APA StyleLiu, C., Wahefu, A., Lu, X., Abdulla, R., Dou, J., Zhao, H., Aisa, H. A., Xin, X., & Liu, Y. (2022). Chemical Profiling of Kaliziri Injection and Quantification of Six Caffeoyl Quinic Acids in Beagle Plasma by LC-MS/MS. Pharmaceuticals, 15(6), 663. https://doi.org/10.3390/ph15060663