Surfactant-Free Chitosan/Cellulose Acetate Phthalate Nanoparticles: An Attempt to Solve the Needs of Captopril Administration in Paediatrics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterisation of Nanoparticles
2.2. Morphological Analysis
2.3. Physical Stability
2.4. Chemical Drug Stability
2.5. Solid State Characterisation
2.5.1. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.5.2. X-ray Diffraction (XRD) Analysis
2.5.3. Thermal Analysis (TG-DTG-DTA)
2.6. In Vitro Drug Release Study
2.7. In Vitro Cytotoxicity
3. Materials and Methods
3.1. Materials
3.2. Preparation of Polymeric Nanoparticles
3.3. Particle Size, Polydispersity Index and Zeta Potential Measurements
3.4. Quantitative Analysis of Captopril
3.5. Total Drug in Dispersion and Encapsulation Efficiency
3.6. Morphological Analysis
3.7. Physical Stability
3.8. Chemical Drug Stability
3.9. Solid State Characterisation
3.9.1. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.9.2. X-ray Diffraction (XRD) Analysis
3.9.3. Thermal Analysis (TG-DTG-DTA)
3.10. In Vitro Drug Release Study
3.11. In Vitro Cytotoxicity
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Artwork
Acknowledgments
Conflicts of Interest
References
- Inventory of Paediatric Therapeutic Needs, EMA/PDCO/358806/2013 Needs for Paediatric Medicines. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/paediatric-medicines/needs-paediatric-medicines/ (accessed on 21 April 2022).
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global Prevalence of Hypertension in Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 1154. [Google Scholar] [CrossRef]
- Duchin, K.L.; McKinstry, D.N.; Cohen, A.I.; Migdalof, B.H. Pharmacokinetics of Captopril in Healthy Subjects and in Patients with Cardiovascular Diseases. Clin. Pharmacokinet. 1988, 14, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.M.; Tam, Y.K. Stability of Captopril in Tap Water. Am. J. Hosp. Pharm. 1992, 49, 612–615. [Google Scholar] [CrossRef]
- Pabari, R.M.; McDermott, C.; Barlow, J.; Ramtoola, Z. Stability of an Alternative Extemporaneous Captopril Fast-Dispersing Tablet Formulation Versus an Extemporaneous Oral Liquid Formulation. Clin. Ther. 2012, 34, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, H.K.; Marriott, J.F. Formulations for Children: Problems and Solutions: Formulations for Children: Problems and Solutions. Br. J. Clin. Pharm. 2015, 79, 405–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulla, H.; Tofeig, M.; Bu’Lock, F.; Samani, N.; Pandya, H.C. Variations in Captopril Formulations Used to Treat Children with Heart Failure: A Survey in the United Kingdom. Arch. Dis. Child. 2007, 92, 409–411. [Google Scholar] [CrossRef] [Green Version]
- Pasquali, S.K.; Hall, M.; Slonim, A.D.; Jenkins, K.J.; Marino, B.S.; Cohen, M.S.; Shah, S.S. Off-Label Use of Cardiovascular Medications in Children Hospitalised with Congenital and Acquired Heart Disease. Circ. Cardiovasc. Qual. Outcomes 2008, 1, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Pratico, A.D.; Longo, L.; Mansueto, S.; Gozzo, L.; Barberi, I.; Tiralongo, V.; Salvo, V.; Falsaperla, R.; Vitaliti, G.; La Rosa, M.; et al. Off-Label Use of Drugs and Adverse Drug Reactions in Pediatric Units: A Prospective, Multicenter Study. Curr. Drug Saf. 2018, 13, 200–207. [Google Scholar] [CrossRef]
- Faulkner, B.; Delgado-Charro, M.B. Cardiovascular Paediatric Medicines Development: Have Paediatric Investigation Plans Lost Heart? Pharmaceutics 2020, 12, 1176. [Google Scholar] [CrossRef]
- Alessandrini, E.; Brako, F.; Scarpa, M.; Lupo, M.; Bonifazi, D.; Pignataro, V.; Cavallo, M.; Cullufe, O.; Enache, C.; Nafria, B.; et al. Children’s Preferences for Oral Dosage Forms and Their Involvement in Formulation Research via EPTRI (European Paediatric Translational Research Infrastructure). Pharmaceutics 2021, 13, 730. [Google Scholar] [CrossRef]
- Standing, J.F.; Tuleu, C. Paediatric Formulations—Getting to the Heart of the Problem. Int. J. Pharm. 2005, 300, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Tuleu, C.; Hughes, D.A.; Clapham, D.; Vallet, T.; Ruiz, F. Acceptability of Generic versus Innovator Oral Medicines: Not Only a Matter of Taste. Drug Discov. Today 2021, 26, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Committee for Human Medicinal Products of European Medicines Agency ICH E11(R1) Guideline on Clinical Investigation of Medicinal Products in the Pediatric Population Step 5. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e11r1-guideline-clinical-investigation-medicinal-products-pediatric-population-revision-1_en.pdf/ (accessed on 21 April 2022).
- Rouaz, K.; Chiclana-Rodríguez, B.; Nardi-Ricart, A.; Suñé-Pou, M.; Mercadé-Frutos, D.; Suñé-Negre, J.M.; Pérez-Lozano, P.; García-Montoya, E. Excipients in the Paediatric Population: A Review. Pharmaceutics 2021, 13, 387. [Google Scholar] [CrossRef] [PubMed]
- Nieto Gonzalez, N.; Obinu, A.; Rassu, G.; Giunchedi, P.; Gavini, E. Polymeric and Lipid Nanoparticles: Which Applications in Pediatrics? Pharmaceutics 2021, 13, 670. [Google Scholar] [CrossRef]
- Rowe, R.C. (Ed.) Handbook of Pharmaceutical Excipients, 6th ed.; APhA, (PhP) Pharmaceutical Press: London, UK, 2009; ISBN 978-0-85369-792-3. [Google Scholar]
- Edgar, K.J. Cellulose Esters in Drug Delivery. Cellulose 2006, 14, 49–64. [Google Scholar] [CrossRef]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Inactive Ingredient Search for Approved Drug Products. Available online: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm?event=browseByLetter.page&Letter=C (accessed on 25 November 2021).
- Indumathi, M.P.; Saral Sarojini, K.; Rajarajeswari, G.R. Antimicrobial and Biodegradable Chitosan/Cellulose Acetate Phthalate/ZnO Nano Composite Films with Optimal Oxygen Permeability and Hydrophobicity for Extending the Shelf Life of Black Grape Fruits. Int. J. Biol. Macromol. 2019, 132, 1112–1120. [Google Scholar] [CrossRef]
- Jagdale, S.; Chandekar, A. Optimization of Chitosan and Cellulose Acetate Phthalate Controlled Delivery of Methylprednisolone for Treatment of Inflammatory Bowel Disease. Adv. Pharm. Bull. 2017, 7, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Thakker, S.P.; Rokhade, A.P.; Abbigerimath, S.S.; Iliger, S.R.; Kulkarni, V.H.; More, U.A.; Aminabhavi, T.M. Inter-Polymer Complex Microspheres of Chitosan and Cellulose Acetate Phthalate for Oral Delivery of 5-Fluorouracil. Polym. Bull. 2014, 71, 2113–2131. [Google Scholar] [CrossRef]
- Gaurav, A.; Ashamol, A.; Deepthi, M.V.; Sailaja, R.R.N. Biodegradable Nanocomposites of Cellulose Acetate Phthalate and Chitosan Reinforced with Functionalized Nanoclay: Mechanical, Thermal, and Biodegradability Studies. J. Appl. Polym. Sci. 2012, 125, E16–E26. [Google Scholar] [CrossRef]
- Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front. Pharmacol. 2021, 12, 601626. [Google Scholar] [CrossRef]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterisation, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef]
- Ferreira, L.M.B.; dos Santos, A.M.; Boni, F.I.; dos Santos, K.C.; Robusti, L.M.G.; de Souza, M.P.C.; Ferreira, N.N.; Carvalho, S.G.; Cardoso, V.M.O.; Chorilli, M.; et al. Design of Chitosan-Based Particle Systems: A Review of the Physicochemical Foundations for Tailored Properties. Carbohydr. Polym. 2020, 250, 116968. [Google Scholar] [CrossRef] [PubMed]
- Masarudin, M.J.; Cutts, S.M.; Evison, B.J.; Phillips, D.R.; Pigram, P.J. Factors Determining the Stability, Size Distribution, and Cellular Accumulation of Small, Monodisperse Chitosan Nanoparticles as Candidate Vectors for Anticancer Drug Delivery: Application to the Passive Encapsulation of [14C]-Doxorubicin. Nanotechnol. Sci. Appl. 2015, 2015, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Yoncheva, K.; Merino, M.; Shenol, A.; Daskalov, N.T.; Petkov, P.S.; Vayssilov, G.N.; Garrido, M.J. Optimization and In-Vitro/in-Vivo Evaluation of Doxorubicin-Loaded Chitosan-Alginate Nanoparticles Using a Melanoma Mouse Model. Int. J. Pharm. 2019, 556, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, E.; Prado-Gotor, R. Interaction of Gold Nanoparticles Mediated by Captopril and S-Nitrosocaptopril: The Effect of Manganese Ions in Mild Acid Medium. Phys. Chem. Chem. Phys. 2015, 17, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Moraru, C.; Mincea, M.; Menghiu, G.; Ostafe, V. Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications. Molecules 2020, 25, 4758. [Google Scholar] [CrossRef]
- Lu, B.; Lv, X.; Le, Y. Chitosan-Modified PLGA Nanoparticles for Control-Released Drug Delivery. Polymers 2019, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Glass, B.D.; Haywood, A. Stability Considerations in Liquid Dosage Forms Extemporaneously Prepared from Commercially Available Products. J. Pharm. Pharm. Sci. 2006, 9, 398–426. [Google Scholar]
- Stulzer, H.K.; Rodrigues, P.O.; Cardoso, T.M.; Matos, J.S.R.; Silva, M.A.S. Compatibility Studies between Captopril and Pharmaceutical Excipients Used in Tablets Formulations. J. Therm. Anal. Calorim. 2008, 91, 323–328. [Google Scholar] [CrossRef]
- Manjunath, L.; Sailaja, R.R.N. PMMA–Cellulose Acetate Phthalate Nanocomposites Reinforced with Silane-Treated Nanoclay. Cellulose 2014, 21, 1793–1802. [Google Scholar] [CrossRef]
- Marquez-Bravo, S.; Doench, I.; Molina, P.; Bentley, F.E.; Tamo, A.K.; Passieux, R.; Lossada, F.; David, L.; Osorio-Madrazo, A. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Polymers 2021, 13, 1563. [Google Scholar] [CrossRef] [PubMed]
- Obinu, A.; Porcu, E.P.; Piras, S.; Ibba, R.; Carta, A.; Molicotti, P.; Migheli, R.; Dalpiaz, A.; Ferraro, L.; Rassu, G.; et al. Solid Lipid Nanoparticles as Formulative Strategy to Increase Oral Permeation of a Molecule Active in Multidrug-Resistant Tuberculosis Management. Pharmaceutics 2020, 12, 1132. [Google Scholar] [CrossRef]
- Bojarska, J.; Maniukiewicz, W.; Fruziński, A.; Sieroń, L.; Remko, M. Captopril and Its Dimer Captopril Disulfide: Comparative Structural and Conformational Studies. Acta Cryst. C Struct. Chem. 2015, 71, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, R.; Ganesh, M.; Ubaidulla, U.; Choi, E.Y.; Jang, H.T. Preparation, Characterisation, and in Vitro Diffusion Study of Nonwoven Electrospun Nanofiber of Curcumin-Loaded Cellulose Acetate Phthalate Polymer. Saudi Pharm. J. 2017, 25, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Roxin, P.; Karlsson, A.; Singh, S.K. Characterisation of Cellulose Acetate Phthalate (CAP). Drug Dev. Ind. Pharm. 1998, 24, 1025–1041. [Google Scholar] [CrossRef]
- Rassu, G.; Soddu, E.; Cossu, M.; Brundu, A.; Cerri, G.; Marchetti, N.; Ferraro, L.; Regan, R.F.; Giunchedi, P.; Gavini, E.; et al. Solid Microparticles Based on Chitosan or Methyl-β-Cyclodextrin: A First Formulative Approach to Increase the Nose-to-Brain Transport of Deferoxamine Mesylate. J. Control. Release 2015, 201, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Musuc, A.M.; Anuta, V.; Atkinson, I.; Popa, V.T.; Sarbu, I.; Mircioiu, C.; Abdalrb, G.A.; Mitu, M.A.; Ozon, E.A. Development and Characterization of Orally Disintegrating Tablets Containing a Captopril-Cyclodextrin Complex. Pharmaceutics 2020, 12, 744. [Google Scholar] [CrossRef]
- Stulzer, H.K.; Silva, M.A.; Fernandes, D.; Assreuy, J. Development of controlled release captopril granules coated with ethylcellulose and methylcellulose by fluid bed dryer. Drug Deliv. 2008, 15, 11–18. [Google Scholar] [CrossRef]
- de Azevedo, M.d.B.; Tasic, L.; Fattori, J.; Rodrigues, F.H.; Cantos, F.C.; Ribeiro, L.P.; de Paula, V.; Ianzer, D.; Santos, R.A. New formulation of an old drug in hypertension treatment: The sustained release of captopril from cyclodextrin nanoparticles. Int. J. Nanomed. 2011, 6, 1005–1016. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Cheng, Y.; Alexander, K.; Dollimore, D. The Thermal Analysis Study of the Drug Captopril. Thermochim. Acta 2001, 367–368, 43–58. [Google Scholar] [CrossRef]
- Pereira, F.S.; da Silva Agostini, D.L.; Job, A.E.; González, E.R.P. Thermal Studies of Chitin–Chitosan Derivatives. J. Anal. Calorim. 2013, 114, 321–327. [Google Scholar] [CrossRef]
- Liu, W.; Deng, Y.; Liu, Y.; Gong, W.; Deng, W. Stem Cell Models for Drug Discovery and Toxicology Studies: Stem Cell Models for Drug Discovery and Toxicology. J. Biochem. Mol. Toxicol. 2013, 27, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.-S.; Choi, J.-S.; Lee, S.-E.; Lee, J.-K.; Kim, T.-H.; Jang, W.S.; Tunsirikongkon, A.; Kim, J.-K.; Park, J.-S. Enhancing the in Vitro Anticancer Activity of Albendazole Incorporated into Chitosan-Coated PLGA Nanoparticles. Carbohydr. Polym. 2017, 159, 39–47. [Google Scholar] [CrossRef]
- Rajam, M.; Pulavendran, S.; Rose, C.; Mandal, A.B. Chitosan Nanoparticles as a Dual Growth Factor Delivery System for Tissue Engineering Applications. Int. J. Pharm. 2011, 410, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Ta, H.T. Investigating the Effect of Biomaterials Such as Poly-(l-Lactic Acid) Particles on Collagen Synthesis In Vitro: Method Is Matter. J. Funct. Biomater. 2020, 11, 51. [Google Scholar] [CrossRef]
- Kean, T.; Thanou, M. Biodegradation, Biodistribution and Toxicity of Chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef]
- Hornig, S.; Heinze, T. Efficient Approach To Design Stable Water-Dispersible Nanoparticles of Hydrophobic Cellulose Esters. Biomacromolecules 2008, 9, 1487–1492. [Google Scholar] [CrossRef]
- Sultana, N.; Arayne, M.S.; Naveed, S. Simultaneous Determination of Captopril and Statins in API, Pharmaceutical Formulations and in Human Serum by RP-HPLC. J. Chin. Chem. Soc. 2010, 57, 378–383. [Google Scholar] [CrossRef]
- Onnainty, R.; Granero, G. Chitosan-Based Nanocomposites: Promising Materials for Drug Delivery Applications. In Biomedical Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 375–407. ISBN 978-0-12-816506-5. [Google Scholar]
Formulation | Drug | Polymer | Size (nm) | PDI | Total Drug in Dispersion (%) | Encapsulation Efficiency (%) |
---|---|---|---|---|---|---|
NP-Ab | - | CAP | 259.2 ± 30.0 Δ | 0.10 ± 0.07 • | - | - |
NP-Bb | - | CAP:CH 1:1 w/w | 252.5 ± 16.4 Δ | 0.21 ± 0.09 • | - | - |
NP-Cb | - | CAP:CH 1:3 w/w | 478.6 ± 21.1 *,Δ | 0.16 ± 0.06 | - | - |
NP-A | CAT | CAP | 259.8 ± 27.7 ¥ | 0.06 ± 0.03 § | 103.9 ± 3.2 | 11.7 ± 8.8 # |
NP-B | CAT | CAP:CH 1:1 w/w | 248.3 ± 31.9 ¥ | 0.23 ± 0.04 § | 100.3 ± 8.0 | 32.6 ± 2.3 #,$ |
NP-C | CAT | CAP:CH 1:3 w/w | 427.1 ± 32.7 *,¥ | 0.17 ± 0.09 § | 99.16 ± 0.5 | 61.0 ± 6.5 #,$ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto González, N.; Cerri, G.; Molpeceres, J.; Cossu, M.; Rassu, G.; Giunchedi, P.; Gavini, E. Surfactant-Free Chitosan/Cellulose Acetate Phthalate Nanoparticles: An Attempt to Solve the Needs of Captopril Administration in Paediatrics. Pharmaceuticals 2022, 15, 662. https://doi.org/10.3390/ph15060662
Nieto González N, Cerri G, Molpeceres J, Cossu M, Rassu G, Giunchedi P, Gavini E. Surfactant-Free Chitosan/Cellulose Acetate Phthalate Nanoparticles: An Attempt to Solve the Needs of Captopril Administration in Paediatrics. Pharmaceuticals. 2022; 15(6):662. https://doi.org/10.3390/ph15060662
Chicago/Turabian StyleNieto González, Noelia, Guido Cerri, Jesús Molpeceres, Massimo Cossu, Giovanna Rassu, Paolo Giunchedi, and Elisabetta Gavini. 2022. "Surfactant-Free Chitosan/Cellulose Acetate Phthalate Nanoparticles: An Attempt to Solve the Needs of Captopril Administration in Paediatrics" Pharmaceuticals 15, no. 6: 662. https://doi.org/10.3390/ph15060662
APA StyleNieto González, N., Cerri, G., Molpeceres, J., Cossu, M., Rassu, G., Giunchedi, P., & Gavini, E. (2022). Surfactant-Free Chitosan/Cellulose Acetate Phthalate Nanoparticles: An Attempt to Solve the Needs of Captopril Administration in Paediatrics. Pharmaceuticals, 15(6), 662. https://doi.org/10.3390/ph15060662