Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Cytokine Signalling Pathways
3. Structure and Function of JAK/STAT Pathway
4. Connective Tissue Diseases—The Role of Cytokine Network
- Systemic sclerosis
5. Do JAKi Offer Therapeutic Potential in SSc?
6. Systemic Lupus Erythematosus
7. Interferons in the Pathogenesis of SLE
8. Interleukin-6 in Lupus
9. IL-2: The Role in Lupus Development
10. IL-12 and IL-23 in Lupus
11. IL-10 and IL-10 Cytokine Family in SLE
12. Jakinibs for Systemic Lupus
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mak, A. T cells, interleukin-2 and systemic lupus erythematosus-from pathophysiology to therapy. Cells 2022, 11, 980. [Google Scholar] [CrossRef]
- Rosendahl, A.H.; Schönborn, K.; Krieg, T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J. Med. Sci. 2022, 38, 187–195. [Google Scholar] [CrossRef]
- Meier, C.A. Mechanisms of immunosuppression by glucocorticoids. Eur. J. Endocrinol. 1996, 134, 50. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Qian, J.; Zhang, S.; Xu, D.; Leng, X.; Zhao, J.; Wang, Q.; Zhang, W.; Tian, X.; Li, M.; et al. Immunosuppressive therapy in patients with connective tissue disease-associated pulmonary arterial hypertension: A systematic review. Int. J. Rheum. Dis. 2022. [Google Scholar] [CrossRef]
- Nakken, B.; Bodolay, E.; Szodoray, P. Cytokine milieu in undifferentiated connective tissue disease: A comprehensive review. Clin. Rev. Allergy Immunol. 2015, 49, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, M.; Brennan, F.M.; Williams, R.O.; Woody, J.N.; Maini, R.N. The transfer of a laboratory based hypothesis to a clinically useful therapy: The development of anti-tnf therapy of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2004, 18, 59–80. [Google Scholar] [CrossRef]
- Ostör, A.J. Beyond methotrexate: Biologic therapy in rheumatoid arthritis. Clin. Med. 2005, 5, 222–226. [Google Scholar] [CrossRef]
- Weaver, A.L. The impact of new biologicals in the treatment of rheumatoid arthritis. Rheumatology 2004, 43 (Suppl. S3), iii17–iii23. [Google Scholar] [CrossRef] [Green Version]
- Kotyla, P.J. Bimodal function of anti-tnf treatment: Shall we be concerned about anti-tnf treatment in patients with rheumatoid arthritis and heart failure? Int. J. Mol. Sci. 2018, 19, 1739. [Google Scholar] [CrossRef] [Green Version]
- Kotyla, P.J.; Kucharz, E.J. Who might be predisposed to the development of serious side effects when treated with tnf-alpha antagonist? Clin. Exp. Rheumatol. 2006, 24, 211. [Google Scholar]
- Kotyla, P.J.; Sliwinska-Kotyla, B.; Kucharz, E.J. Treatment with infliximab may contribute to the development of peripheral neuropathy among the patients with rheumatoid arthritis. Clin. Rheumatol. 2007, 26, 1595–1596. [Google Scholar] [CrossRef] [PubMed]
- Scheidereit, C. Iκb kinase complexes: Gateways to nf-κb activation and transcription. Oncogene 2006, 25, 6685–6705. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.D.; Vucic, D. The balance of tnf mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues. Front. Cell Dev. Biol. 2020, 8, 365. [Google Scholar] [CrossRef] [PubMed]
- Burns, K.; Martinon, F.; Esslinger, C.; Pahl, H.; Schneider, P.; Bodmer, J.-L.; Di Marco, F.; French, L.; Tschopp, J. Myd88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 1998, 273, 12203–12209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzio, M.; Ni, J.; Feng, P.; Dixit, V.M. Irak (pelle) family member irak-2 and myd88 as proximal mediators of il-1 signaling. Science 1997, 278, 1612–1615. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bechara, R.; Zhao, J.; McGeachy, M.J.; Gaffen, S.L. Il-17 receptor-based signaling and implications for disease. Nat. Immunol. 2019, 20, 1594–1602. [Google Scholar] [CrossRef]
- Morris, R.; Kershaw, N.J.; Babon, J.J. The molecular details of cytokine signaling via the jak/stat pathway. Protein Sci. Publ. Protein Soc. 2018, 27, 1984–2009. [Google Scholar] [CrossRef] [Green Version]
- Kotyla, P.J. Are janus kinase inhibitors superior over classic biologic agents in ra patients? BioMed Res. Int. 2018, 2018, 7492904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- T Virtanen, A.; Haikarainen, T.; Raivola, J.; Silvennoinen, O. Selective jakinibs: Prospects in inflammatory and autoimmune diseases. BioDrugs 2019, 33, 15–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadina, M.; Chisolm, D.A.; Philips, R.L.; McInness, I.B.; Changelian, P.S.; O’Shea, J.J. Translating jaks to jakinibs. J. Immunol. 2020, 204, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Fiebelkow, J.; Guendel, A.; Guendel, B.; Mehwald, N.; Jetka, T.; Komorowski, M.; Waldherr, S.; Schaper, F.; Dittrich, A. The tyrosine phosphatase shp2 increases robustness and information transfer within il-6-induced jak/stat signalling. Cell Commun. Signal. 2021, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Wang, Y.; Zhou, X.; Long, J.-E. Stat3 roles in viral infection: Antiviral or proviral? Future Virol. 2018, 13, 557–574. [Google Scholar] [CrossRef]
- Kotyla, P.J.; Engelmann, M.; Giemza-Stokłosa, J.; Wnuk, B.; Islam, M.A. Thromboembolic adverse drug reactions in janus kinase (jak) inhibitors: Does the inhibitor specificity play a role? Int. J. Mol. Sci. 2021, 22, 2499. [Google Scholar] [CrossRef] [PubMed]
- Darnell, J.E., Jr. Stats and gene regulation. Science 1997, 277, 1630–1635. [Google Scholar] [CrossRef]
- Gao, Q.; Liang, X.; Shaikh, A.S.; Zang, J.; Xu, W.; Zhang, Y. Jak/stat signal transduction: Promising attractive targets for immune, inflammatory and hematopoietic diseases. Curr. Drug Targets 2018, 19, 487–500. [Google Scholar] [CrossRef]
- Liongue, C.; Taznin, T.; Ward, A.C. Signaling via the cytor/jak/stat/socs pathway: Emergence during evolution. Mol. Immunol. 2016, 71, 166–175. [Google Scholar] [CrossRef]
- Liongue, C.; Sertori, R.; Ward, A.C. Evolution of cytokine receptor signaling. J. Immunol. 2016, 197, 11–18. [Google Scholar] [CrossRef]
- Ahmed, S.; Jacob, B.; Carsons, S.E.; De Leon, J.; Reiss, A.B. Treatment of cardiovascular disease in rheumatoid arthritis: A complex challenge with increased atherosclerotic risk. Pharmaceuticals 2021, 15, 11. [Google Scholar] [CrossRef]
- Waickman, A.T.; Park, J.-Y.; Park, J.-H. The common γ-chain cytokine receptor: Tricks-and-treats for t cells. Cell. Mol. Life Sci. 2016, 73, 253–269. [Google Scholar] [CrossRef]
- Dougan, M.; Dranoff, G.; Dougan, S.K. Gm-csf, il-3, and il-5 family of cytokines: Regulators of inflammation. Immunity 2019, 50, 796–811. [Google Scholar] [CrossRef]
- Scheller, J.; Berg, A.; Moll, J.M.; Floss, D.M.; Jungesblut, C. Current status and relevance of single nucleotide polymorphisms in il-6-/il-12-type cytokine receptors. Cytokine 2021, 148, 155550. [Google Scholar] [CrossRef]
- Jones, L.L.; Chaturvedi, V.; Uyttenhove, C.; Van Snick, J.; Vignali, D.A.A. Distinct subunit pairing criteria within the heterodimeric il-12 cytokine family. Mol. Immunol. 2012, 51, 234–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broughton, S.E.; Hercus, T.R.; Lopez, A.F.; Parker, M.W. Cytokine receptor activation at the cell surface. Curr. Opin. Struct. Biol. 2012, 22, 350–359. [Google Scholar] [CrossRef]
- Schwartz, D.M.; Bonelli, M.; Gadina, M.; O’shea, J.J. Type i/ii cytokines, jaks, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol. 2016, 12, 25–36. [Google Scholar] [CrossRef]
- Pfeifer, A.C.; Timmer, J.; Klingmüller, U. Systems biology of jak/stat signalling. Essays Biochem. 2008, 45, 109–120. [Google Scholar]
- Croker, B.A.; Kiu, H.; Nicholson, S.E. Socs regulation of the jak/stat signalling pathway. Semin. Cell Dev. Biol. 2008, 19, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Shuai, K.; Liu, B. Regulation of gene-activation pathways by pias proteins in the immune system. Nat. Rev. Immunol. 2005, 5, 593–605. [Google Scholar] [CrossRef]
- Gabrielli, A.; Avvedimento, E.V.; Krieg, T. Scleroderma. N. Engl. J. Med. 2009, 360, 1989–2003. [Google Scholar] [CrossRef]
- Jerjen, R.; Nikpour, M.; Krieg, T.; Denton, C.P.; Saracino, A.M. Systemic sclerosis in adults. Part i: Clinical features and pathogenesis. J. Am. Acad. Dermatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Codullo, V.; Baldwin, H.M.; Singh, M.D.; Fraser, A.R.; Wilson, C.; Gilmour, A.; Hueber, A.J.; Bonino, C.; McInnes, I.B.; Montecucco, C.; et al. An investigation of the inflammatory cytokine and chemokine network in systemic sclerosis. Ann. Rheum. Dis. 2011, 70, 1115–1121. [Google Scholar] [CrossRef]
- Katsumoto, T.R.; Whitfield, M.L.; Connolly, M.K. The pathogenesis of systemic sclerosis. Annu. Rev. Pathol. 2011, 6, 509–537. [Google Scholar] [CrossRef] [PubMed]
- Skaug, B.; Assassi, S. Type i interferon dysregulation in systemic sclerosis. Cytokine 2020, 132, 154635. [Google Scholar] [CrossRef] [PubMed]
- Brkic, Z.; van Bon, L.; Cossu, M.; van Helden-Meeuwsen, C.G.; Vonk, M.C.; Knaapen, H.; van den Berg, W.; Dalm, V.A.; Van Daele, P.L.; Severino, A.; et al. The interferon type i signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high baff gene expression and high collagen synthesis. Ann. Rheum. Dis. 2016, 75, 1567–1573. [Google Scholar] [CrossRef]
- Muangchan, C.; Pope, J.E. Interleukin 6 in systemic sclerosis and potential implications for targeted therapy. J. Rheumatol. 2012, 39, 1120–1124. [Google Scholar] [CrossRef]
- Lin, X.; Ding, M.M.; Chen, T.; Min, S.H.; Wang, D.F.; Jiang, G. Peripheral blood il-6 levels in systemic sclerosis patients: Correlation between il-6 levels and clinical phenotypes. J. Cosmet. Dermatol. 2022. [Google Scholar] [CrossRef]
- Sato, S.; Hasegawa, M.; Takehara, K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J. Dermatol. Sci. 2001, 27, 140–146. [Google Scholar] [CrossRef]
- Denton, C.P.; Ong, V.H.; Xu, S.; Chen-Harris, H.; Modrusan, Z.; Lafyatis, R.; Khanna, D.; Jahreis, A.; Siegel, J.; Sornasse, T. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: Insights from the fasscinate clinical trial in systemic sclerosis. Ann. Rheum. Dis. 2018, 77, 1362–1371. [Google Scholar] [CrossRef]
- Khanna, D. In Efficacy and safety of tocilizumab for the treatment of systemic sclerosis: Results from a phase 3 randomized controlled trial. In Proceedings of the 2018 ACR/ARHP Annual Meeting, Chicago, IL, USA, 21 October 2018; ACR: Ann Arbor, MI, USA, 2018. [Google Scholar]
- Khanna, D.; Denton, C.P.; Jahreis, A.; van Laar, J.M.; Frech, T.M.; Anderson, M.E.; Baron, M.; Chung, L.; Fierlbeck, G.; Lakshminarayanan, S. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (fasscinate): A phase 2, randomised, controlled trial. Lancet 2016, 387, 2630–2640. [Google Scholar] [CrossRef]
- de Almeida, A.R.; Dantas, A.T.; Pereira, M.C.; de Melo Rêgo, M.J.B.; Guimarães Gonçalves, R.S.; Pitta, I.D.R.; Branco Pinto Duarte, A.L.; Parra Abdalla, D.S.; da Rocha Pitta, M.G. Increased levels of the soluble oncostatin m receptor (sosmr) and glycoprotein 130 (sgp130) in systemic sclerosis patients and associations with clinical parameters. Immunobiology 2020, 225, 151964. [Google Scholar] [CrossRef]
- Marden, G.; Wan, Q.; Wilks, J.; Nevin, K.; Feeney, M.; Wisniacki, N.; Trojanowski, M.; Bujor, A.; Stawski, L.; Trojanowska, M. The role of the oncostatin m/osm receptor β axis in activating dermal microvascular endothelial cells in systemic sclerosis. Arthritis Res. Ther. 2020, 22, 179. [Google Scholar] [CrossRef]
- Bağci, I.S.; Ruzicka, T. Il-31: A new key player in dermatology and beyond. J. Allergy Clin. Immunol. 2018, 141, 858–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopf, M.; Gros, G.L.; Bachmann, M.; Lamers, M.C.; Bluethmann, H.; Köhler, G. Disruption of the murine il-4 gene blocks th2 cytokine responses. Nature 1993, 362, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Gumkowska-Sroka, O.; Jagoda, K.; Owczarek, A.; Helbig, G.; Giemza-Stokłosa, J.; Kotyla, P.J. Cytometric characterization of main immunocompetent cells in patients with systemic sclerosis: Relationship with disease activity and type of immunosuppressive treatment. J. Clin. Med. 2019, 8, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Lei, L.; Pan, J.; Zhao, C.; Wen, J.; Qin, F.; Dong, F.; Wei, W. Altered cd4+ t cell and cytokine levels in peripheral blood and skin samples from systemic sclerosis patients and il-35 in cd4+ t cell growth. Rheumatology 2022, 61, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Dantas, A.T.; Gonçalves, S.M.C.; Pereira, M.C.; Gonçalves, R.S.G.; Marques, C.D.L.; Rego, M.J.B.d.M.; da Rocha Pitta, I.; Duarte, A.L.B.P.; da Rocha Pitta, M.G. Increased il-35 serum levels in systemic sclerosis and association with pulmonary interstitial involvement. Clin. Rheumatol. 2015, 34, 1621–1625. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, W.; Jinnin, M.; Tomizawa, Y.; Nakamura, K.; Kudo, H.; Inoue, K.; Makino, K.; Honda, N.; Kajihara, I.; Fukushima, S.; et al. Dysregulated interleukin-23 signalling contributes to the increased collagen production in scleroderma fibroblasts via balancing microrna expression. Rheumatology 2016, 56, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Fujimoto, M.; Kikuchi, K.; Takehara, K. Elevated serum levels of interleukin 4 (il-4), il-10, and il-13 in patients with systemic sclerosis. J. Rheumatol. 1997, 24, 328–332. [Google Scholar]
- Postlethwaite, A.E.; Holness, M.A.; Katai, H.; Raghow, R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J. Clin. Investig. 1992, 90, 1479–1485. [Google Scholar] [CrossRef] [Green Version]
- Le Huu, D.; Matsushita, T.; Jin, G.; Hamaguchi, Y.; Hasegawa, M.; Takehara, K.; Tedder, T.F.; Fujimoto, M. Donor-derived regulatory b cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood J. Am. Soc. Hematol. 2013, 121, 3274–3283. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, T.; Hamaguchi, Y.; Hasegawa, M.; Takehara, K.; Fujimoto, M. Decreased levels of regulatory b cells in patients with systemic sclerosis: Association with autoantibody production and disease activity. Rheumatology 2016, 55, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Mavropoulos, A.; Liaskos, C.; Simopoulou, T.; Bogdanos, D.P.; Sakkas, L.I. Il-10-producing regulatory b cells (b10 cells), il-17+ t cells and autoantibodies in systemic sclerosis. Clin. Immunol. 2017, 184, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Mavropoulos, A.; Simopoulou, T.; Varna, A.; Liaskos, C.; Katsiari, C.G.; Bogdanos, D.P.; Sakkas, L.I. Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis. Arthritis Rheumatol. 2016, 68, 494–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydoğdu, E.; Pamuk, Ö.N.; Dönmez, S.; Pamuk, G.E. Decreased interleukin-20 level in patients with systemic sclerosis: Are they related with angiogenesis? Clin. Rheumatol. 2013, 32, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, S.; Jinnin, M.; Inoue, K.; Yamane, K.; Honda, N.; Kajihara, I.; Makino, T.; Masuguchi, S.; Fukushima, S.; Ihn, H. Regulatory mechanisms of collagen expression by interleukin-22 signaling in scleroderma fibroblasts. J. Dermatol. Sci. 2018, 90, 52–59. [Google Scholar] [CrossRef]
- De Ceuninck, F.; Duguet, F.; Aussy, A.; Laigle, L.; Moingeon, P. Ifn-α: A key therapeutic target for multiple autoimmune rheumatic diseases. Drug Discov. Today 2021, 26, 2465–2473. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Xu, D.; Hou, Y.; Zhou, J.; Wang, Q.; Li, M.; Zeng, X. Tofacitinib as a possible treatment for skin thickening in diffuse cutaneous systemic sclerosis. Rheumatology 2021, 60, 2472–2477. [Google Scholar] [CrossRef]
- Karalilova, R.V.; Batalov, Z.A.; Sapundzhieva, T.L.; Matucci-Cerinic, M.; Batalov, A.Z. Tofacitinib in the treatment of skin and musculoskeletal involvement in patients with systemic sclerosis, evaluated by ultrasound. Rheumatol. Int. 2021, 41, 1743–1753. [Google Scholar] [CrossRef]
- Trouw, L.A.; Pickering, M.C.; Blom, A.M. The complement system as a potential therapeutic target in rheumatic disease. Nat. Rev. Rheumatol. 2017, 13, 538–547. [Google Scholar] [CrossRef]
- Tsokos, G.C.; Lo, M.S.; Reis, P.C.; Sullivan, K.E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef]
- Liphaus, B.L.; Kiss, M.H. The role of apoptosis proteins and complement components in the etiopathogenesis of systemic lupus erythematosus. Clinics 2010, 65, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Munoz, L.E.; van Bavel, C.; Franz, S.; Berden, J.; Herrmann, M.; Van Der Vlag, J. Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 2008, 17, 371–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandt, L.t.; Hedberg, H. Impaired phagocytosis by peripheral blood granulocytes in systemic lupus erythematosus. Scand. J. Haematol. 1969, 6, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Bolouri, N.; Akhtari, M.; Farhadi, E.; Mansouri, R.; Faezi, S.T.; Jamshidi, A.; Mahmoudi, M. Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus. Inflamm. Res. 2022, 71, 537–554. [Google Scholar] [CrossRef]
- Macedo, A.C.L.; Isaac, L. Systemic lupus erythematosus and deficiencies of early components of the complement classical pathway. Front. Immunol. 2016, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, D.Y.; Chan, T.M. B cell abnormalities in systemic lupus erythematosus and lupus nephritis—role in pathogenesis and effect of immunosuppressive treatments. Int. J. Mol. Sci. 2019, 20, 6231. [Google Scholar] [CrossRef] [Green Version]
- Fakhfakh, R.; Zian, Z.; Elloumi, N.; Abida, O.; Bouallegui, E.; Houssaini, H.; Volpe, E.; Capone, A.; Hachicha, H.; Marzouk, S.; et al. Th17 and th1 cells in systemic lupus erythematosus with focus on lupus nephritis. Immunol. Res. 2022, 1–10. [Google Scholar] [CrossRef]
- Pourreza, E.; Shahbazi, M.; Mirzakhani, M.; Yousefghahari, B.; Akbari, R.; Oliaei, F.; Mohammadnia-Afrouzi, M. Increased frequency of activated regulatory t cells in patients with lupus nephritis. Hum. Immunol. 2022, 83, 574–579. [Google Scholar] [CrossRef]
- Jung, S.M.; Kim, W.-U. Targeted immunotherapy for autoimmune disease. Immune. Netw. 2022, 22, e9. [Google Scholar] [CrossRef]
- Idborg, H.; Oke, V. Cytokines as biomarkers in systemic lupus erythematosus: Value for diagnosis and drug therapy. Int. J. Mol. Sci. 2021, 22, 11327. [Google Scholar] [CrossRef]
- Stohl, W. Inhibition of b cell activating factor (baff) in the management of systemic lupus erythematosus (sle). Expert Rev. Clin. Immunol. 2017, 13, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Domeier, P.P.; Rahman, Z.S.M. Regulation of b cell responses in sle by three classes of interferons. Int. J. Mol. Sci. 2021, 22, 10464. [Google Scholar] [CrossRef] [PubMed]
- Hooks, J.J.; Moutsopoulos, H.M.; Geis, S.A.; Stahl, N.I.; Decker, J.L.; Notkins, A.L. Immune interferon in the circulation of patients with autoimmune disease. N. Engl. J. Med. 1979, 301, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Baechler, E.C.; Batliwalla, F.M.; Karypis, G.; Gaffney, P.M.; Ortmann, W.A.; Espe, K.J.; Shark, K.B.; Grande, W.J.; Hughes, K.M.; Kapur, V. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 2003, 100, 2610–2615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crow, M.K.; Olferiev, M.; Kirou, K.A. Type i interferons in autoimmune disease. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 369–393. [Google Scholar] [CrossRef] [PubMed]
- Rönnblom, L.; Eloranta, M.-L. The interferon signature in autoimmune diseases. Curr. Opin. Rheumatol. 2013, 25, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Haynes, W.A.; Haddon, D.J.; Diep, V.K.; Khatri, A.; Bongen, E.; Yiu, G.; Balboni, I.; Bolen, C.R.; Mao, R.; Utz, P.J.; et al. Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight 2020, 5, e122312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villadangos, J.A.; Young, L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 2008, 29, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, G.; Lech, M.; Anders, H.J. Toll-like receptor activation in the pathogenesis of lupus nephritis. Clin. Immunol. 2017, 185, 86–94. [Google Scholar] [CrossRef]
- Marshak-Rothstein, A.; Rifkin, I.R. Immunologically active autoantigens: The role of toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol. 2007, 25, 419–441. [Google Scholar] [CrossRef]
- Fitzgerald-Bocarsly, P.; Dai, J.; Singh, S. Plasmacytoid dendritic cells and type i ifn: 50 years of convergent history. Cytokine Growth Factor Rev. 2008, 19, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Bezalel, S.; Guri, K.M.; Elbirt, D.; Asher, I.; Sthoeger, Z.M. Type i interferon signature in systemic lupus erythematosus. Isr. Med. Assoc. J. IMAJ 2014, 16, 246–249. [Google Scholar] [PubMed]
- Zickert, A.; Oke, V.; Parodis, I.; Svenungsson, E.; Sundström, Y.; Gunnarsson, I. Interferon (ifn)-λ is a potential mediator in lupus nephritis. Lupus Sci. Med. 2016, 3, e000170. [Google Scholar] [CrossRef] [Green Version]
- Oke, V.; Gunnarsson, I.; Dorschner, J.; Eketjäll, S.; Zickert, A.; Niewold, T.B.; Svenungsson, E. High levels of circulating interferons type i, type ii and type iii associate with distinct clinical features of active systemic lupus erythematosus. Arthritis Res. Ther. 2019, 21, 107. [Google Scholar] [CrossRef] [Green Version]
- Sim, T.M.; Ong, S.J.; Mak, A.; Tay, S.H. Type i interferons in systemic lupus erythematosus: A journey from bench to bedside. Int. J. Mol. Sci. 2022, 23, 2505. [Google Scholar] [CrossRef] [PubMed]
- Braunstein, I.; Klein, R.; Okawa, J.; Werth, V. The interferon-regulated gene signature is elevated in subacute cutaneous lupus erythematosus and discoid lupus erythematosus and correlates with the cutaneous lupus area and severity index score. Br. J. Dermatol. 2012, 166, 971–975. [Google Scholar] [CrossRef]
- Casey, K.A.; Guo, X.; Smith, M.A.; Wang, S.; Sinibaldi, D.; Sanjuan, M.A.; Wang, L.; Illei, G.G.; White, W.I. Type i interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of sle. Lupus Sci. Med. 2018, 5, e000286. [Google Scholar] [PubMed]
- Liu, W.; Li, M.; Wang, Z.; Wang, J. Ifn-γ mediates the development of systemic lupus erythematosus. BioMed Res. Int. 2020, 2020, 7176515. [Google Scholar] [CrossRef] [PubMed]
- Pattanaik, S.S.; Panda, A.K.; Pati, A.; Padhi, S.; Tripathy, R.; Tripathy, S.R.; Parida, M.K.; Das, B.K. Role of interleukin-6 and interferon-α in systemic lupus erythematosus: A case–control study and meta-analysis. Lupus 2022, 31, 1094–1103. [Google Scholar] [CrossRef]
- Sippl, N.; Faustini, F.; Rönnelid, J.; Turcinov, S.; Chemin, K.; Gunnarsson, I.; Malmström, V. Arthritis in systemic lupus erythematosus is characterized by local il-17a and il-6 expression in synovial fluid. Clin. Exp. Immunol. 2021, 205, 44–52. [Google Scholar] [CrossRef]
- Gordon, C.; Richards, N.; Howie, A.; Richardson, K.; Michael, J.; Adu, D.; Emery, P. Urinary il-6: A marker for mesangial proliferative glomerulonephritis? Clin. Exp. Immunol. 1991, 86, 145–149. [Google Scholar] [CrossRef]
- Hirohata, S.; Kikuchi, H. Role of serum il-6 in neuropsychiatric systemic lupus erythematosus. ACR Open Rheumatol. 2021, 3, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Takeuchi, T. An update on the pathogenic role of il-6 in rheumatic diseases. Cytokine 2021, 146, 155645. [Google Scholar] [CrossRef]
- Votavova, P.; Tomala, J.; Kovar, M. Increasing the biological activity of il-2 and il-15 through complexing with anti-il-2 mabs and il-15rα-fc chimera. Immunol. Lett. 2014, 159, 1–10. [Google Scholar] [CrossRef]
- Kolios, A.G.; Tsokos, G.C.; Klatzmann, D. Interleukin-2 and regulatory t cells in rheumatic diseases. Nat. Rev. Rheumatol. 2021, 17, 749–766. [Google Scholar] [CrossRef] [PubMed]
- Alcocer-Varela, J.; Alarcon-Segovia, D. Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus. J. Clin. Investig. 1982, 69, 1388–1392. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; He, F.; Tsokos, G.C.; Kyttaris, V.C. Il-23 limits the production of il-2 and promotes autoimmunity in lupus. J. Immunol. 2017, 199, 903–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reem, G.H.; Yeh, N.-H. Interleukin 2 regulates expression of its receptor and synthesis of gamma interferon by human t lymphocytes. Science 1984, 225, 429–430. [Google Scholar] [CrossRef]
- Liao, W.; Lin, J.-X.; Wang, L.; Li, P.; Leonard, W.J. Modulation of cytokine receptors by il-2 broadly regulates differentiation into helper t cell lineages. Nat. Immunol 2011, 12, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Schinocca, C.; Rizzo, C.; Fasano, S.; Grasso, G.; La Barbera, L.; Ciccia, F.; Guggino, G. Role of the il-23/il-17 pathway in rheumatic diseases: An overview. Front. Immunol. 2021, 12, 637829. [Google Scholar] [CrossRef] [PubMed]
- Larosa, M.; Zen, M.; Gatto, M.; Jesus, D.; Zanatta, E.; Iaccarino, L.; Inês, L.; Doria, A. Il-12 and il-23/th17 axis in systemic lupus erythematosus. Exp. Biol. Med. 2019, 244, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.W.; Bowman, E.P.; McElwee, J.J.; Smyth, M.J.; Casanova, J.L.; Cooper, A.M.; Cua, D.J. Il-12 and il-23 cytokines: From discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 2015, 21, 719–729. [Google Scholar] [CrossRef]
- Floss, D.M.; Schröder, J.; Franke, M.; Scheller, J. Insights into il-23 biology: From structure to function. Cytokine Growth Factor Rev. 2015, 26, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Nakayamada, S.; Kubo, S.; Yamagata, K.; Yoshinari, H.; Tanaka, Y. Interleukin-23 drives expansion of thelper 17 cells through epigenetic regulation by signal transducer and activators of transcription 3 in lupus patients. Rheumatology 2020, 59, 3058–3069. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H. The il-12-stat4 axis in the pathogenesis of human systemic lupus erythematosus. Eur. J. Immunol. 2020, 50, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef]
- Ohteki, T.; Fukao, T.; Suzue, K.; Maki, C.; Ito, M.; Nakamura, M.; Koyasu, S. Interleukin 12–dependent interferon γ production by cd8α+ lymphoid dendritic cells. J. Exp. Med. 1999, 189, 1981–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauwerys, B.; Van Snick, J.; Houssiau, F. Serum il-12 in systemic lupus erythematosus: Absence of p70 heterodimers but presence of p40 monomers correlating with disease activity. Lupus 2002, 11, 384–387. [Google Scholar] [CrossRef]
- Uzrail, A.H.; Assaf, A.M.; Abdalla, S.S. Correlations of expression levels of a panel of genes (irf5, stat4, tnfsf4, mecp2, and tlr7) and cytokine levels (il-2, il-6, il-10, il-12, ifn-γ, and tnf-α) with systemic lupus erythematosus outcomes in jordanian patients. BioMed Res. Int. 2019, 2019, 1703842. [Google Scholar] [CrossRef] [Green Version]
- van Vollenhoven, R.F.; Hahn, B.H.; Tsokos, G.C.; Lipsky, P.; Gordon, R.M.; Fei, K.; Lo, K.H.; Chevrier, M.; Rose, S.; Berry, P.; et al. Efficacy and safety of ustekinumab in patients with active systemic lupus erythematosus: Results of a phase ii open-label extension study. J. Rheumatol. 2022, 49, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wong, K.; Ouyang, W.; Rutz, S. Targeting il-10 family cytokines for the treatment of human diseases. Cold Spring Harb. Perspect. Biol. 2019, 11, a028548. [Google Scholar] [CrossRef]
- Fiorentino, D.F.; Zlotnik, A.; Mosmann, T.R.; Howard, M.; O’Garra, A. Il-10 inhibits cytokine production by activated macrophages. J. Immunol. 1991, 147, 3815–3822. [Google Scholar] [PubMed]
- D’Andrea, A.; Aste-Amezaga, M.; Valiante, N.M.; Ma, X.; Kubin, M.; Trinchieri, G. Interleukin 10 (il-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/il-12 synthesis in accessory cells. J. Exp. Med. 1993, 178, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-R.; Hsing, C.-H.; Chiu, C.-J.; Huang, H.-Y.; Hsu, Y.-H. Roles of il-1 and il-10 family cytokines in the progression of systemic lupus erythematosus: Friends or foes? IUBMB Life 2022, 74, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-H.; Cheng, H.-H.; Sun, K.-H.; Wei, C.-C.; Li, C.-F.; Chen, W.-C.; Wu, W.-M.; Chang, M.-S. Interleukin-20 targets renal mesangial cells and is associated with lupus nephritis. Clin. Immunol. 2008, 129, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jiang, Z.; Jiang, Y.; Ma, N.; Wang, K.; Zhang, Y.; Feng, L. Il-22+ cd4+ t-cells in patients with active systemic lupus erythematosus. Exp. Biol. Med. 2013, 238, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.-F.; Zhao, X.-F.; Yuan, H.; Zhang, W.-H.; Li, X.-P.; Wang, G.-H.; Wu, G.-C.; Tang, X.-W.; Li, W.-X.; Li, L.-H. Decreased serum il-22 levels in patients with systemic lupus erythematosus. Clin. Chim. Acta Int. J. Clin. Chem. 2009, 401, 179–180. [Google Scholar] [CrossRef]
- Brilland, B.; Bach-Bunner, M.; Gomes, C.N.; Larochette, V.; Foucher, E.; Plaisance, M.; Saulnier, P.; Costedoat-Chalumeau, N.; Ghillani, P.; Belizna, C. Serum interleukin-26 is a new biomarker for disease activity assessment in systemic lupus erythematosus. Front. Immunol. 2021, 12, 663192. [Google Scholar] [CrossRef]
- Maeshima, K.; Yamaoka, K.; Kubo, S.; Nakano, K.; Iwata, S.; Saito, K.; Ohishi, M.; Miyahara, H.; Tanaka, S.; Ishii, K.; et al. The jak inhibitor tofacitinib regulates synovitis through inhibition of interferon-γ and interleukin-17 production by human cd4+ t cells. Arthritis Rheum. 2012, 64, 1790–1798. [Google Scholar] [CrossRef]
- Furumoto, Y.; Smith, C.K.; Blanco, L.; Zhao, W.; Brooks, S.R.; Thacker, S.G.; Zarzour, A.; Sciumè, G.; Tsai, W.L.; Trier, A.M.; et al. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction. Arthritis Rheumatol. 2017, 69, 148–160. [Google Scholar] [CrossRef]
- Bonnardeaux, E.; Dutz, J.P. Oral tofacitinib citrate for recalcitrant cutaneous lupus. JAAD Case Rep. 2022, 20, 61–64. [Google Scholar] [CrossRef]
- Kerschbaumer, A.; Smolen, J.S.; Nash, P.; Doerner, T.; Dougados, M.; Fleischmann, R.; Geissler, K.; McInnes, I.B.; Takeuchi, T.; Trauner, M.; et al. Points to consider for the treatment of immune-mediated inflammatory diseases with janus kinase inhibitors: A systematic literature research. RMD Open 2020, 6, e001374. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, M.; Pettus, J.R. Complete remission of tip lesion variant focal segmental glomerulosclerosis (fsgs) with the janus kinase (jak) inhibitor tofacitinib. CEN Case Rep. 2022, 11, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Welzel, T.; Winskill, C.; Zhang, N.; Woerner, A.; Pfister, M. Biologic disease modifying antirheumatic drugs and janus kinase inhibitors in paediatric rheumatology-what we know and what we do not know from randomized controlled trials. Pediatr. Rheumatol. Online J. 2021, 19, 46. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; McKinney, B. Refractory dermatomyositis-systemic lupus erythematosus overlap syndrome and response to tofacitinib. Proceedings 2020, 34, 116–117. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Yokoyama, Y.; Shimizu, Y.; Yajima, H.; Sakurai, N.; Suzuki, C.; Naishiro, Y.; Takahashi, H. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod. Rheumatol. 2016, 26, 633–634. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, J.; Shi, L. Successful remission with tofacitinib in a patient with refractory bullous systemic lupus erythematosus. Rheumatology 2022. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Zhang, G.; Wang, Q.; Zhang, S.; Zhao, J.; Tian, X.; Li, H.; Li, M.; Zeng, X. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: The experience from a single centre. Ann. Rheum. Dis. 2019, 78, 1441–1443. [Google Scholar] [CrossRef]
- Hasni, S.A.; Gupta, S.; Davis, M.; Poncio, E.; Temesgen-Oyelakin, Y.; Carlucci, P.M.; Wang, X.; Naqi, M.; Playford, M.P.; Goel, R.R.; et al. Phase 1 double-blind randomized safety trial of the janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 2021, 12, 3391. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, Y.; Jang, S.G.; Hong, S.-M.; Song, Y.-S.; Kim, M.-J.; Baek, S.; Park, S.-H.; Kwok, S.-K. Baricitinib attenuates autoimmune phenotype and podocyte injury in a murine model of systemic lupus erythematosus. Front. Immunol. 2021, 12, 704526. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.J.; Furie, R.A.; Tanaka, Y.; Kalunian, K.C.; Mosca, M.; Petri, M.A.; Dörner, T.; Cardiel, M.H.; Bruce, I.N.; Gomez, E.; et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2018, 392, 222–231. [Google Scholar] [CrossRef]
- Dörner, T.; Tanaka, Y.; Dow, E.R.; Koch, A.E.; Silk, M.; Ross Terres, J.A.; Sims, J.T.; Sun, Z.; de la Torre, I.; Petri, M. Mechanism of action of baricitinib and identification of biomarkers and key immune pathways in patients with active systemic lupus erythematosus. Ann. Rheum. Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, N.; Joelsson, M.; Leonard, D.; Reid, S.; Eloranta, M.-L.; Mo, J.; Nilsson, M.K.; Syvänen, A.-C.; Bryceson, Y.T.; Rönnblom, L. The stat4 sle risk allele rs7574865[t] is associated with increased il-12-induced ifn-γ production in t cells from patients with sle. Ann. Rheum. Dis. 2018, 77, 1070–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werth, V.P.; Fleischmann, R.; Robern, M.; Touma, Z.; Tiamiyu, I.; Gurtovaya, O.; Pechonkina, A.; Mozaffarian, A.; Downie, B.; Matzkies, F.; et al. Filgotinib or lanraplenib in moderate to severe cutaneous lupus erythematosus: A phase 2, randomized, double-blind, placebo-controlled study. Rheumatology 2021, 61, 2413–2423. [Google Scholar] [CrossRef] [PubMed]
- Oon, S.; Monaghan, K.; Ng, M.; Hoi, A.; Morand, E.; Vairo, G.; Maraskovsky, E.; Nash, A.D.; Wicks, I.P.; Wilson, N.J. A potential association between il-3 and type i and iii interferons in systemic lupus erythematosus. Clin. Transl. Immunol. 2019, 8, e01097. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.S.; Herlitz, L.C.; Jabbari, A. Ruxolitinib attenuates cutaneous lupus development in a mouse lupus model. J. Investig. Dermatol. 2015, 135, 1912–1915. [Google Scholar] [CrossRef] [Green Version]
JAK Inhibitor Name | Selectivity | Indication (NCT Study) |
---|---|---|
Tofacitinib | Non-selective | Tested for lupus treatment (NCT02535689, NCT05048238, and NCT03288324) |
Baricitinib | Non-selective | Studies in Lupus terminated (NCT03616912, NCT03843125) |
Ruxolitinib | Non-selective | Trial in DLE (NCT04908280) |
Peficitinib | Non-selective | Tested for RA treatment |
Filgotinib | Jak-1 selective | Assessed for treatment of CLE (NCT03134222) |
Upadacitinib | Jak-1 selective | Evaluated for lupus treatment (NCT04451772 and NCT03978520) |
Solcitinib | Jak-1 selective | Study in SLE terminated NCT01777256 |
Itacitinib | Jak-1 selective | Under investigation in Systemic Sclerosis (NCT04789850) |
AC430 | Jak-2 | Potential role in the treatment of cancer and autoimmune diseases |
TG101209 | JAK-2 | Potential role in the treatment of leukaemias and myeloproliferative disorders |
Decernotinib | JAK-3 | Tested for treatment in RA |
R 333 | Jak-3 | Further studies terminated |
PF 06651600Ritlecitinib | JAK-3 (dual JAK-3/TEC inhibitor) | Evaluated in alopecia areata, RA |
Brepocitinib | JAK-1/Tyk2 | Tested in SLE (NCT03845517) |
Deucravacitinib | Tyk-2 | Assessed in SLE (NCT03252587) (NCT03920267) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotyla, P.; Gumkowska-Sroka, O.; Wnuk, B.; Kotyla, K. Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals 2022, 15, 936. https://doi.org/10.3390/ph15080936
Kotyla P, Gumkowska-Sroka O, Wnuk B, Kotyla K. Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals. 2022; 15(8):936. https://doi.org/10.3390/ph15080936
Chicago/Turabian StyleKotyla, Przemysław, Olga Gumkowska-Sroka, Bartosz Wnuk, and Kacper Kotyla. 2022. "Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus" Pharmaceuticals 15, no. 8: 936. https://doi.org/10.3390/ph15080936
APA StyleKotyla, P., Gumkowska-Sroka, O., Wnuk, B., & Kotyla, K. (2022). Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals, 15(8), 936. https://doi.org/10.3390/ph15080936