The Potential of Purple Waxy Corn Cob (Zea mays L.) Extract Loaded-Sericin Hydrogel for Anti-Hyperpigmentation, UV Protection and Anti-Aging Properties as Topical Product Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of the C3G, Pn3G and Pg3G Contents by HPLC-MS/MS
2.2. Physical Properties of Sericin-Anthocyanin Hydrogels
2.2.1. Swelling Capacity
2.2.2. Skin Permeation
2.2.3. Skin Retention of Anthocyanin
2.2.4. Skin Hydration Capacity
2.3. Anti-Melanogenic Effects
2.3.1. Cytotoxicity to the B16F10 Cells
2.3.2. Tyrosinase Inhibition and the Melanin Production in the B16F10 Cells
2.4. UV Protection Effects
2.4.1. Cytotoxicity of the Extracts and Formulations in the HaCaT Cells
2.4.2. UV Protective Effects of the Extracts and Formulations on the UVB Irradiated HaCaT Cells
2.5. Anti-Aging Effects
2.5.1. Elastase and the Collagenase Inhibition
2.5.2. Cytotoxicity of the Extract and the Formulations in the NHDF Cells
2.5.3. Collagen Content of the NHDF Cells
2.5.4. Evaluation of Procollagen Type I from the NHDF Cells
2.5.5. The Effect of the Formulation S4 on the MMP-2 Expression in the NHDF Cells
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Extracts
3.3. Determination of Anthocyanins by High-Performance Liquid Chromatography with Mass Spectrometry (HPLC-MS/MS)
3.4. Preparation of the Sericin-Hydrogels with the Anthocyanin Extract
3.5. Physical Characterization of the Formulations
3.5.1. Swelling
3.5.2. In Vitro Permeation
3.5.3. Skin Anthocyanin Retention
3.5.4. Skin Hydration
3.6. Anti-Melanogenic Effect
3.6.1. Cytotoxicity on the B16F10 Cells by the MTT Assay
3.6.2. Determination of the Melanin Content
3.6.3. Tyrosinase Activity
3.7. UV Protection Effects
3.7.1. The Cytotoxicity on the HaCaT Cells by the MTT Assay
3.7.2. Effects of the UVB Irradiation on the HaCaT Cells
3.7.3. UV Protection Effects on the HaCaT Cells
3.8. Anti-Aging Effects
3.8.1. Elastase Inhibition Assay
3.8.2. Collagenase Inhibition Assay
3.8.3. The Cytotoxicity on the NHDF Cells by the MTT Assay
3.8.4. Collagen Production in the NHDF Cells
3.8.5. Measurement of the Human Procollagen Alpha I
3.8.6. MMP-2 Expression on the Zymography Technique
3.9. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simla, S.; Boontang, S.; Harakotr, B. Anthocyanin Content, Total Phenolic Content, and Antiradical Capacity in Different Ear Components of Purple Waxy Corn at Two Maturation Stages. Aust. J. Crop Sci. 2016, 10, 675–682. [Google Scholar] [CrossRef]
- Harakotr, B.; Suriharn, B.; Lertrat, K.; Scott, M.P. Genetic Analysis of Anthocyanin Content in Purple Waxy Corn (Zea mays L. Var. Ceratina Kulesh) Kernel and Cob. Sabrao J. Breed. Genet. 2016, 48, 230–239. [Google Scholar]
- Rimdusit, T.; Thapphasaraphong, S.; Puthongking, P.; Priprem, A. Effects of Anthocyanins and Melatonin from Purple Waxy Corn By-Products on Collagen Production by Cultured Human Fibroblasts. Nat. Prod. Commun. 2019, 14, 1934578X19863510. [Google Scholar] [CrossRef] [Green Version]
- Gde Putra Wiraguna, A.A.; Dianasari, R.; Pangkahila, W. The Topical Skin Application of Purple Corn Extract (Zea mays) Inhibited the Increase in MMP-1 Levels and Decreased Collagen in Wistar Rats (Rattus norvegicus) Exposed to UV-B Rays. Biomed. Pharmacol. J. 2019, 12, 297–304. [Google Scholar] [CrossRef]
- Poorahong, W.; Innalak, S.; Ungsurungsie, M.; Watanapokasin, R. Protective Effect of Purple Corn Silk Extract against Ultraviolet-B-Induced Cell Damage in Human Keratinocyte Cells. J. Adv. Pharm. Technol. Res. 2021, 12, 140. [Google Scholar] [CrossRef]
- Poorahong, W.; Innajak, S.; Ungsurungsie, M.; Watanapokasin, R. Purple Corn Silk Extract Attenuates UVB-Induced Inflammation in Human Keratinocyte Cells. Sci. Pharm. 2022, 90, 18. [Google Scholar] [CrossRef]
- Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.D.F.C.; Natali, M.R.M. Silkworm Sericin: Properties and Biomedical Applications. Biomed. Res. Int. 2016, 2016, 8175701. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.P.; Alam, S.; Jain, A.K.; Ansari, K.M.; Mandal, B.B. Protective Activity of Silk Sericin against UV Radiation-Induced Skin Damage by Downregulating Oxidative Stress. ACS Appl. Bio Mater. 2018, 1, 2120–2132. [Google Scholar] [CrossRef]
- Aramwit, P.; Kanokpanont, S.; de-Eknamkul, W.; Kamei, K.; Srichana, T. The Effect of Sericin with Variable Amino-Acid Content from Different Silk Strains on the Production of Collagen and Nitric Oxide. J. Biomater. Sci. Polym. Ed. 2009, 20, 1295–1306. [Google Scholar] [CrossRef]
- Aramwit, P.; Damrongsakkul, S.; Kanokpanont, S.; Srichana, T. Properties and Antityrosinase Activity of Sericin from Various Extraction Methods. Biotechnol. Appl. Biochem. 2010, 55, 91–98. [Google Scholar] [CrossRef]
- Kumar, J.P.; Mandal, B.B. The Inhibitory Effect of Silk Sericin against Ultraviolet-Induced Melanogenesis and Its Potential Use in Cosmeceutics as an Anti-Hyperpigmentation Compound. Photochem. Photobiol. Sci. 2019, 18, 2497–2508. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanpipit, N.; Nualkaew, N.; Kiatponglarp, W.; Priprem, A.; Thapphasaraphong, S. Development of a Sericin Hydrogel to Deliver Anthocyanins from Purple Waxy Corn Cob (Zea mays L.) Extract and In Vitro Evaluation of Anti-Inflammatory Effects. Pharmaceutics 2022, 14, 577. [Google Scholar] [CrossRef] [PubMed]
- Haltner-Ukomadu, E.; Sacha, M.; Richter, A.; Hussein, K. Hydrogel Increases Diclofenac Skin Permeation and Absorption. Biopharm. Drug Dispos. 2019, 40, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eghbali-Feriz, S.; Taleghani, A.; Al-Najjar, H.; Emami, S.A.; Rahimi, H.; Asili, J.; Hasanzadeh, S.; Tayarani-Najaran, Z. Anti-Melanogenesis and Anti-Tyrosinase Properties of Pistacia Atlantica Subsp. Mutica Extracts on B16F10 Murine Melanoma Cells. Res. Pharm. Sci. 2018, 13, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Park, H.Y.; Jung, K.H.; Kim, D.H.; Rho, H.S.; Choi, K. Anti-Melanogenic Effects of Kojic Acid and Hydroxycinnamic Acid Derivatives. Biotechnol. Bioprocess Eng. 2020, 25, 190–196. [Google Scholar] [CrossRef]
- Ebanks, J.P.; Wickett, R.R.; Boissy, R.E. Mechanisms Regulating Skin Pigmentation: The Rise and Fall of Complexion Coloration. Int. J. Mol. Sci. 2009, 10, 4066–4087. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Huh, Y.; Lim, K.-M. Anti-Pigmentary Natural Compounds and Their Mode of Action. Int. J. Mol. Sci. 2021, 22, 6206. [Google Scholar] [CrossRef]
- Karunarathne, W.A.H.M.; Molagoda, I.M.N.; Park, S.R.; Kim, J.W.; Lee, O.-K.; Kwon, H.Y.; Oren, M.; Choi, Y.H.; Ryu, H.W.; Oh, S.-R.; et al. Anthocyanins from Hibiscus syriacus L. Inhibit Melanogenesis by Activating the ERK Signaling Pathway. Biomolecules 2019, 9, 645. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-M.; Kuo, H.-C.; Lin, C.-T.; Kao, E.-S. Inhibitory Effect of Liposome-Encapsulated Anthocyanin on Melanogenesis in Human Melanocytes. Pharm. Biol. 2013, 51, 941–947. [Google Scholar] [CrossRef]
- Shin, K.K.; Park, S.H.; Lim, H.Y.; Lorza, L.R.; Qomaladewia, N.P.; You, L.; Aziz, N.; Kim, S.A.; Lee, J.S.; Choung, E.S.; et al. In Vitro Anti-Photoaging and Skin Protective Effects of Licania macrocarpa Cuatrec Methanol Extract. Plants 2022, 11, 1383. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kwon, S.S.; Jeon, S.H.; Yu, E.R.; Park, S.N. Enhanced Skin Delivery of Liquiritigenin and Liquiritin-Loaded Liposome-in-Hydrogel Complex System. Int. J. Cosmet. Sci. 2014, 36, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Zagórska-Dziok, M.; Sobczak, M. Hydrogel-Based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics 2020, 12, 396. [Google Scholar] [CrossRef] [PubMed]
- Iozumi, K.; Hoganson, G.E.; Pennella, R.; Everett, M.A.; Fuller, B.B. Role of Tyrosinase as the Determinant of Pigmentation in Cultured Human Melanocytes. J. Investig. Dermatol. 1993, 100, 806–811. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural Skin-whitening Compounds for the Treatment of Melanogenesis (Review). Exp. Ther. Med. 2020, 20, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.P.; Mandal, B.B. Inhibitory Role of Silk Cocoon Extract against Elastase, Hyaluronidase and UV Radiation-Induced Matrix Metalloproteinase Expression in Human Dermal Fibroblasts and Keratinocytes. Photochem. Photobiol. Sci. 2019, 18, 1259–1274. [Google Scholar] [CrossRef]
- Correia, P.; Araújo, P.; Ribeiro, C.; Oliveira, H.; Pereira, A.R.; Mateus, N.; de Freitas, V.; Brás, N.F.; Gameiro, P.; Coelho, P.; et al. Anthocyanin-Related Pigments: Natural Allies for Skin Health Maintenance and Protection. Antioxidants 2021, 10, 1038. [Google Scholar] [CrossRef]
- Aramwit, P.; Kanokpanont, S.; Nakpheng, T.; Srichana, T. The Effect of Sericin from Various Extraction Methods on Cell Viability and Collagen Production. Int. J. Mol. Sci. 2010, 11, 2200–2211. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.; Kundu, S.C. Sericin-Carboxymethyl Cellulose Porous Matrices as Cellular Wound Dressing Material: Sericin-Carboxymethyl Cellulose Porous Matrices. J. Biomed. Mater. Res. 2014, 102, 1928–1940. [Google Scholar] [CrossRef]
- Harakotr, B.; Suriharn, B.; Tangwongchai, R.; Scott, M.P.; Lertrat, K. Anthocyanins and Antioxidant Activity in Coloured Waxy Corn at Different Maturation Stages. J. Funct. Foods 2014, 9, 109–118. [Google Scholar] [CrossRef]
- Han, M.; Bae, J.; Ban, J.; Shin, H.; Lee, D.; Chung, J. Black Rice (Oryza sativa L.) Extract Modulates Ultraviolet-Induced Expression of Matrix Metalloproteinases and Procollagen in a Skin Cell Model. Int. J. Mol. Med. 2018, 41, 3073–3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangwong, G.; Sumida, M.; Sutthikhum, V. Antioxidant Activity of Chemically and Enzymatically Modified Sericin Extracted from Cocoons of Bombyx Mori. Biocatal. Agric. Biotechnol. 2016, 5, 155–161. [Google Scholar] [CrossRef]
- Kong, B.J.; Kim, A.; Park, S.N. Properties and In Vitro Drug Release of Hyaluronic Acid-Hydroxyethyl Cellulose Hydrogels for Transdermal Delivery of Isoliquiritigenin. Carbohydr. Polym. 2016, 147, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Cilurzo, F.; Minghetti, P.; Sinico, C. Newborn Pig Skin as Model Membrane in in Vitro Drug Permeation Studies: A Technical Note. AAPS PharmSciTech 2007, 8, 97–100. [Google Scholar] [CrossRef]
Formulation | Conc of PWCCS (%) | pH | Viscosity (Pa.S) | Total Anthocyanin (mg C3GE/L) |
---|---|---|---|---|
S1 | - | 6.55 ± 0.00 | 35.52 ± 0.00 e | - |
S2 | - | 6.62 ± 0.10 | 37.51 ± 0.01 f | - |
S3 | 0.15 | 6.57 ± 0.02 | 35.39 ± 0.02 c | 41.48 ± 6.62 a |
S4 | 0.15 | 6.71 ± 0.28 | 35.50 ± 0.03 d | 39.21 ± 3.26 a |
S5 | 0.50 | 6.47 ± 0.00 | 34.27 ± 0.04 a | 107.61 ± 11.98 b |
S6 | 0.50 | 6.45 ± 0.05 | 34.49 ± 0.05 b | 102.87 ± 1.53 b |
Formulation | Flux (μg/cm²/h) | Q24 (μg/cm²) | ER | P (cm2/h) | Tlag/h |
---|---|---|---|---|---|
PWCCS0.15 | 0.94 ± 0.00 b | 7.02 ± 0.00 a | 1.00 | 0.12 ± 0.00 b | 0.29 ± 0.00 a |
S3 | 0.52 ± 0.32 a | 7.73 ± 2.65 a | 0.55 | 0.04 ± 0.03 a | 1.63 ± 0.37 b |
S4 | 0.57 ± 0.06 a | 6.98 ± 0.64 a | 0.60 | 0.07 ± 0.01 a | 2.98 ± 1.06 c |
PWCCS0.5 | 1.07 ± 0.06 a’ | 17.35 ± 1.72 a’ | 1.00 | 0.02 ± 0.00 a’ | 2.20 ± 0.91 a’ |
S5 | 2.10 ± 0.09 b’ | 28.54 ± 6.98 b’ | 1.96 | 0.04 ± 0.00 b’ | 3.57 ± 2.76 a’ |
S6 | 2.12 ± 0.41 b’ | 31.36 ± 2.14 b’ | 1.98 | 0.05 ± 0.02 b’ | 3.89 ± 2.76 a’ |
Formulation | 5% w/v Sericin (mL) | 10% w/v PVA (mL) | 5% w/v Alginate (mL) | 10% w/v PWCCS (mL) | Final Volume (mL) | Final Conc. of Alginate (%) | Final Conc. of PWCCS (%) |
---|---|---|---|---|---|---|---|
S1 | 2.00 | 2.00 | 0.00 | 0.000 | 5.00 | 0.00 | 0.00 |
S2 | 2.00 | 2.00 | 0.20 | 0.000 | 5.00 | 0.20 | 0.00 |
S3 | 2.00 | 2.00 | 0.00 | 0.075 | 5.00 | 0.00 | 0.15 |
S4 | 2.00 | 2.00 | 0.20 | 0.075 | 5.00 | 0.20 | 0.15 |
S5 | 2.00 | 2.00 | 0.00 | 0.250 | 5.00 | 0.00 | 0.50 |
S6 | 2.00 | 2.00 | 0.20 | 0.250 | 5.00 | 0.20 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanpipit, N.; Nualkaew, N.; Thapphasaraphong, S. The Potential of Purple Waxy Corn Cob (Zea mays L.) Extract Loaded-Sericin Hydrogel for Anti-Hyperpigmentation, UV Protection and Anti-Aging Properties as Topical Product Applications. Pharmaceuticals 2023, 16, 35. https://doi.org/10.3390/ph16010035
Kanpipit N, Nualkaew N, Thapphasaraphong S. The Potential of Purple Waxy Corn Cob (Zea mays L.) Extract Loaded-Sericin Hydrogel for Anti-Hyperpigmentation, UV Protection and Anti-Aging Properties as Topical Product Applications. Pharmaceuticals. 2023; 16(1):35. https://doi.org/10.3390/ph16010035
Chicago/Turabian StyleKanpipit, Nattawadee, Natsajee Nualkaew, and Suthasinee Thapphasaraphong. 2023. "The Potential of Purple Waxy Corn Cob (Zea mays L.) Extract Loaded-Sericin Hydrogel for Anti-Hyperpigmentation, UV Protection and Anti-Aging Properties as Topical Product Applications" Pharmaceuticals 16, no. 1: 35. https://doi.org/10.3390/ph16010035
APA StyleKanpipit, N., Nualkaew, N., & Thapphasaraphong, S. (2023). The Potential of Purple Waxy Corn Cob (Zea mays L.) Extract Loaded-Sericin Hydrogel for Anti-Hyperpigmentation, UV Protection and Anti-Aging Properties as Topical Product Applications. Pharmaceuticals, 16(1), 35. https://doi.org/10.3390/ph16010035