Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFκB-Centric Signaling Axis
Abstract
:1. Introduction
2. Results
2.1. Cologrit Phytochemical Profiling and Tablet Preparation
2.2. Anti-Inflammatory and Anti-Adhesion Activity of Cologrit
2.3. In Vitro Release of Phytocontituents from EC Cologrit Tablet
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Reagents
5.2. Preparation of Cologrit Formulation and Tablet
5.3. Enteric Coating of Cologrit Tablets
5.4. Physical Evaluation of Tablet
5.5. Simulated Gastrointestinal (GIT) Digestion Assay
5.6. HPLC-Based Phytochemical Analysis
5.7. UV Spectroscopy Analysis
5.8. Cell Culture
5.9. Digestae Preparation for Cell-Based Assays
5.10. Dose Response Analysis
5.11. ELISA-Based Pro-Inflammatory Cytokines Analysis
5.12. Evaluation of NFκB Response
5.13. RNA Isolation and RT-qPCR Analysis
5.14. Monocyte Adhesion Assay
5.15. Prophylactic Treatment with Cologrit Digestae
5.16. Oxidative Stress Analysis
5.17. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobayashi, T.; Siegmund, B.; Le Berre, C.; Wei, S.C.; Ferrante, M.; Shen, B.; Bernstein, C.N.; Danese, S.; Peyrin-Biroulet, L.; Hibi, T. Ulcerative colitis. Nat. Rev. Dis. Prim. 2020, 6, 74. [Google Scholar] [CrossRef]
- Caradonna, L.; Amati, L.; Magrone, T.; Pellegrino, N.M.; Jirillo, E.; Caccavo, D. Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: Biological and clinical significance. J. Endotoxin Res. 2000, 6, 205–214. [Google Scholar]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef] [PubMed]
- Dionne, S.; Hiscott, J.; D’Agata, I.; Duhaime, A.; Seidman, E.G. Quantitative PCR analysis of TNF-alpha and IL-1 beta mRNA levels in pediatric IBD mucosal biopsies. Dig. Dis. Sci. 1997, 42, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.P.; Singh, N.P.; Murphy, E.A.; Price, R.L.; Fayad, R.; Nagarkatti, M.; Nagarkatti, P.S. Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine 2016, 77, 44–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, T.; Kanda, T.; Ueda, N.; Ikebuchi, Y.; Hashiguchi, K.; Nakao, K.; Isomoto, H. IL-8 and LYPD8 expression levels are associated with the inflammatory response in the colon of patients with ulcerative colitis. Biomed. Rep. 2020, 12, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Mitsuyama, K.; Matsumoto, S.; Masuda, J.; Yamasakii, H.; Kuwaki, K.; Takedatsu, H.; Sata, M. Therapeutic strategies for targeting the IL-6/STAT3 cytokine signaling pathway in inflammatory bowel disease. Anticancer Res. 2007, 27, 3749–3756. [Google Scholar]
- Li, H.; Fan, C.; Lu, H.; Feng, C.; He, P.; Yang, X.; Xiang, C.; Zuo, J.; Tang, W. Protective role of berberine on ulcerative colitis through modulating enteric glial cells-intestinal epithelial cells-immune cells interactions. Acta Pharm. Sin. B 2020, 10, 447–461. [Google Scholar] [CrossRef]
- Talley, N.J.; Abreu, M.T.; Achkar, J.P.; Bernstein, C.N.; Dubinsky, M.C.; Hanauer, S.B.; Kane, S.V.; Sandborn, W.J.; Ullman, T.A.; Moayyedi, P.; et al. An evidence-based systematic review on medical therapies for inflammatory bowel disease. Am. J. Gastroenterol. 2011, 106 (Suppl. S1), S2–S25. [Google Scholar] [CrossRef]
- Adams, S.M.; Bornemann, P.H. Ulcerative colitis. Am. Fam. Physician 2013, 87, 699–705. [Google Scholar]
- De Cristofaro, E.; Salvatori, S.; Marafini, I.; Zorzi, F.; Alfieri, N.; Musumeci, M.; Calabrese, E.; Monteleone, G. Long-Term Risk of Colectomy in Patients with Severe Ulcerative Colitis Responding to Intravenous Corticosteroids or Infliximab. J. Clin. Med. 2022, 11, 1679. [Google Scholar] [CrossRef] [PubMed]
- Sina, C.; Kemper, C.; Derer, S. The intestinal complement system in inflammatory bowel disease: Shaping intestinal barrier function. Semin. Immunol. 2018, 37, 66–73. [Google Scholar] [CrossRef]
- Nepal, S.; Navaneethan, U.; Bennett, A.E.; Shen, B. De novo inflammatory bowel disease and its mimics after organ transplantation. Inflamm. Bowel Dis. 2013, 19, 1518–1527. [Google Scholar] [CrossRef]
- Lu, P.D.; Zhao, Y.H. Targeting NF-kappaB pathway for treating ulcerative colitis: Comprehensive regulatory characteristics of Chinese medicines. Chin. Med. 2020, 15, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.V.; Patel, K.B.; Gupta, S.N. Effects of Ayurvedic treatment on forty-three patients of ulcerative colitis. Ayu 2010, 31, 478–481. [Google Scholar] [CrossRef]
- Agnivesha. Charak Samhita, Revised by Charaka and Dridhabala with Ayurveda Dipika Commentary of Chakrapanidatta, 4th ed.; Chaukhambha Sanskrit Sansthan: Varanasi, India, 1994. [Google Scholar]
- Behera, J.P.; Mohanty, B.; Ramani, Y.R.; Rath, B.; Pradhan, S. Effect of aqueous extract of Aegle marmelos unripe fruit on inflammatory bowel disease. Indian J. Pharmacol. 2012, 44, 614–618. [Google Scholar] [CrossRef]
- Johari, S.; Gandhi, T. A Randomized Single Blind Parallel Group Study Comparing Monoherbal Formulation Containing Holarrhena Antidysenterica Extract with Mesalamine in Chronic Ulcerative Colitis Patients. Anc. Sci. Life 2016, 36, 19–27. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. Biomed. Res. Int. 2014, 2014, 842674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korinek, M.; Handoussa, H.; Tsai, Y.H.; Chen, Y.Y.; Chen, M.H.; Chiou, Z.W.; Fang, Y.; Chang, F.R.; Yen, C.H.; Hsieh, C.F.; et al. Anti-Inflammatory and Antimicrobial Volatile Oils: Fennel and Cumin Inhibit Neutrophilic Inflammation via Regulating Calcium and MAPKs. Front. Pharmacol. 2021, 12, 674095. [Google Scholar] [CrossRef]
- Maderuelo, C.; Lanao, J.M.; Zarzuelo, A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur. J. Pharm. Sci. 2019, 138, 105019. [Google Scholar] [CrossRef]
- Zu, Y.; Luo, Y.; Ahmed, S.U. Effect of neutralization of poly(methacrylic acid-co-ethyl acrylate) on drug release from enteric-coated pellets upon accelerated storage. Drug Dev. Ind. Pharm. 2007, 33, 457–473. [Google Scholar] [CrossRef]
- Bettaieb, I.; Bourgou, S.; Wannes, W.A.; Hamrouni, I.; Limam, F.; Marzouk, B. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J. Agric. Food Chem. 2010, 58, 10410–10418. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Ben Slimen Debez, I.; Jabri Karoui, I.; Hamrouni Sellami, I.; Msaada, K.; Limam, F.; Marzouk, B. Effects of Extraction Solvents and Provenances on Phenolic Contents and Antioxidant Activities of Cumin (Cuminum cyminum L.) Seeds. Food Bioproc. Tech. 2012, 5, 2827–2836. [Google Scholar] [CrossRef]
- Dua, A.; Garg, G.; Mahajan, R. Polyphenols, flavonoids and antimicrobial properties of methanolic extract of fennel (Foeniculum vulgare Miller). J. Exp. Biol. 2013, 3, 203–208. [Google Scholar]
- Hazra, S.K.; Sarkar, T.; Salauddin, M.; Sheikh, H.I.; Pati, S.; Chakraborty, R. Characterization of phytochemicals, minerals and in vitro medicinal activities of bael (Aegle marmelos L.) pulp and differently dried edible leathers. Heliyon 2020, 6, e05382. [Google Scholar] [CrossRef]
- Mehesare, S.S.; Waghmare, S.P.; Thorat, M.G.; Hajare, S.W.; Hatzade, R.K.I.; Ingawale, M.V. Quantification of Gallic Acid, Rutin and Quercetin in Hydro-Ethanolic Extract of Holarrhena Antidysenterica using High Performance Thin Layer Chromatography (HPTLC). Acta Sci. Vet. Sci. 2022, 4, 43–49. [Google Scholar] [CrossRef]
- Modareskia, M.; Fattahi, M.; Mirjalili, M.H. Thymol screening, phenolic contents, antioxidant and antibacterial activities of Iranian populations of Trachyspermum ammi (L.) Sprague (Apiaceae). Sci. Rep. 2022, 12, 15645. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Upadhyay, G.; Pushpangadan, P.; Gupta, C. Antioxidant and free radical scavenging activities of some fruits. J. Complement. Integr. Med. 2011, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shang, A.; Gan, R.Y.; Zhang, J.R.; Xu, X.Y.; Luo, M.; Liu, H.Y.; Li, H.B. Optimization and Characterization of Microwave-Assisted Hydro-Distillation Extraction of Essential Oils from Cinnamomum camphora Leaf and Recovery of Polyphenols from Extract Fluid. Molecules 2020, 25, 3213. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Radha; Kumar, M.; Zhang, B.; Kumari, N.; Singh, D.; Chandran, D.; Sarkar, T.; Dhumal, S.; Sheri, V.; et al. Aegle marmelos (L.) Correa: An Underutilized Fruit with High Nutraceutical Values: A Review. Int. J. Mol. Sci. 2022, 23, 10889. [Google Scholar] [CrossRef]
- Zahid, K.; Ahmed, M.; Khan, F. Phytochemical screening, antioxidant activity, total phenolic and total flavonoid contents of seven local varieties of Rosa indica L. Nat. Prod. Res. 2018, 32, 1239–1243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yan, X.; Wu, S.; Ma, M.; Yu, P.; Gong, D.; Deng, S.; Zeng, Z. Ethanol extracts from Cinnamomum camphora seed kernel: Potential bioactivities as affected by alkaline hydrolysis and simulated gastrointestinal digestion. Food Res. Int. 2020, 137, 109363. [Google Scholar] [CrossRef]
- Merah, O.; Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Cerny, M.; Grivot, S.; Evon, P.; Hijazi, A. Biochemical Composition of Cumin Seeds, and Biorefining Study. Biomolecules 2020, 10, 1054. [Google Scholar] [CrossRef] [PubMed]
- Mirniyam, G.; Rahimmalek, M.; Arzani, A.; Matkowski, A.; Gharibi, S.; Szumny, A. Changes in Essential Oil Composition, Polyphenolic Compounds and Antioxidant Capacity of Ajowan (Trachyspermum ammi L.) Populations in Response to Water Deficit. Foods 2022, 11, 3084. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.B.; Aswathi, U.; Venugopal, V.V.; Madhavankutty, T.S.; Nisha, P. Nutraceutical properties of cumin residue generated from Ayurvedic industries using cell line models. J. Food Sci. Technol. 2016, 53, 3814–3824. [Google Scholar] [CrossRef] [Green Version]
- Pathirana, C.K.; Madhujith, T.; Eeswara, J. Bael (Aegle marmelos L. Corrêa), a medicinal tree with immense economic potentials. Adv. Agr. 2020, 2020, 8814018. [Google Scholar] [CrossRef]
- Pandey, S.; Patel, M.K.; Mishra, A.; Jha, B. Physio-Biochemical Composition and Untargeted Metabolomics of Cumin (Cuminum cyminum L.) Make It Promising Functional Food and Help in Mitigating Salinity Stress. PLoS ONE 2015, 10, e0144469. [Google Scholar] [CrossRef] [Green Version]
- Stephens, M.; von der Weid, P.Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes 2020, 11, 421–432. [Google Scholar] [CrossRef]
- Sands, B.E.; Kaplan, G.G. The role of TNFalpha in ulcerative colitis. J. Clin. Pharmacol. 2007, 47, 930–941. [Google Scholar] [CrossRef]
- Baeuerle, P.A.; Henkel, T. Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 1994, 12, 141–179. [Google Scholar] [CrossRef]
- Aoudjit, F.; Brochu, N.; Belanger, B.; Stratowa, C.; Hiscott, J.; Audette, M. Regulation of intercellular adhesion molecule-1 gene by tumor necrosis factor-alpha is mediated by the nuclear factor-kappaB heterodimers p65/p65 and p65/c-Rel in the absence of p50. Cell Growth Differ. 1997, 8, 335–342. [Google Scholar] [PubMed]
- Kurokouchi, K.; Kambe, F.; Yasukawa, K.; Izumi, R.; Ishiguro, N.; Iwata, H.; Seo, H. TNF-alpha increases expression of IL-6 and ICAM-1 genes through activation of NF-kappaB in osteoblast-like ROS17/2.8 cells. J. Bone Miner. Res. 1998, 13, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.M.; Sundar, U.M.; Hui, C.K.; Aminuddin, A.; Ugusman, A. Piper sarmentosum attenuates TNF-alpha-induced VCAM-1 and ICAM-1 expression in human umbilical vein endothelial cells. J. Taibah. Univ. Med. Sci. 2018, 13, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Thapa, D.; Lee, J.S.; Park, M.A.; Cho, M.Y.; Park, Y.J.; Choi, H.G.; Jeong, T.C.; Kim, J.A. Inhibitory effects of clotrimazole on TNF-alpha-induced adhesion molecule expression and angiogenesis. Arch. Pharm. Res. 2009, 32, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Antoni, L.; Nuding, S.; Wehkamp, J.; Stange, E.F. Intestinal barrier in inflammatory bowel disease. World J. Gastroenterol. 2014, 20, 1165–1179. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Wang, Y.; Kapronezai, K.; Lorente, L.R.; Zhang, R.; Pyrgiotakis, G.; Konduru, N.V.; Ericsson, M.; White, J.C.; De La Torre-Roche, R.; et al. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Part. Fibre Toxicol. 2017, 14, 40. [Google Scholar] [CrossRef]
- Tan, S.R.S.; Eser, B.E.; Han, J. Gut Metabolism of Furanocoumarins: Proposed Function of Co O-Methyltransferase. ACS Omega 2020, 5, 30696–30703. [Google Scholar] [CrossRef]
- Li, J.; Wang, F.; Zhang, H.J.; Sheng, J.Q.; Yan, W.F.; Ma, M.X.; Fan, R.Y.; Gu, F.; Li, C.F.; Chen, D.F.; et al. Corticosteroid therapy in ulcerative colitis: Clinical response and predictors. World J. Gastroenterol. 2015, 21, 3005–3015. [Google Scholar] [CrossRef]
- Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv. 2013, 2013, 340315. [Google Scholar] [CrossRef]
- Liu, L.; Yao, W.; Rao, Y.; Lu, X.; Gao, J. pH-Responsive carriers for oral drug delivery: Challenges and opportunities of current platforms. Drug Deliv. 2017, 24, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Zhang, X.; Bi, Y.; Miao, R.; Zhang, Z.; Su, H. Anti-Inflammatory Effects of Cumin Essential Oil by Blocking JNK, ERK, and NF-kappaB Signaling Pathways in LPS-Stimulated RAW 264.7 Cells. Evid. Based Complement. Alternat. Med. 2015, 2015, 474509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izadpanah, S.; Abdolghaffari, A.H.; Farjadmand, F.; Eftekhari, M.; Baeeri, M.; Rahimifard, M.; Momtaz, S.; Abdollahi, M.; Rahimi, R.; Ardekani, M.S. Beneficial Effects of Trachyspermum ammi (L.) Sprague on Rat Irritable Bowel Syndrome. Res. J. Pharmacog. 2019, 6, 57–66. [Google Scholar] [CrossRef]
- Rezayat, S.M.; Dehpour, A.R.; Motamed, S.M.; Yazdanparast, M.; Chamanara, M.; Sahebgharani, M.; Rashidian, A. Foeniculum vulgare essential oil ameliorates acetic acid-induced colitis in rats through the inhibition of NF-kB pathway. Inflammopharmacology 2018, 26, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Gu, P.; Shen, H. Corrigendum to “Gallic acid improved inflammation via NF-kappaB pathway in TNBS-induced ulcerative colitis” [Int. Immunopharmacol. 67 (2019) 129–137]. Int. Immunopharmacol. 2021, 99, 107815. [Google Scholar] [CrossRef]
- Pandurangan, A.K.; Mohebali, N.; Esa, N.M.; Looi, C.Y.; Ismail, S.; Saadatdoust, Z. Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: Possible mechanisms. Int. Immunopharmacol. 2015, 28, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.; Maria Giner, R.; Rios, J.L.; Recio, M.C. Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. J. Ethnopharmacol. 2013, 150, 925–934. [Google Scholar] [CrossRef]
- Luo, M.; Luo, Y. Imperatorin Relieved Ulcerative Colitis by Regulating the Nrf-2/ARE/HO-1 Pathway in Rats. Inflammation 2021, 44, 558–569. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, G.; Zheng, C.; Song, M.; Liu, F.; Huang, X.; Bai, S.; Huang, X.; Lin, C.; Zhu, C.; et al. Activating the pregnane X receptor by imperatorin attenuates dextran sulphate sodium-induced colitis in mice. Br. J. Pharmacol. 2018, 175, 3563–3580. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Van Quickelberghe, E.; De Sutter, D.; van Loo, G.; Eyckerman, S.; Gevaert, K. A protein-protein interaction map of the TNF-induced NF-kappaB signal transduction pathway. Sci. Data 2018, 5, 180289. [Google Scholar] [CrossRef] [Green Version]
- Pynam, H.; Dharmesh, S.M. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-alpha mediated inflammatory/tumor markers. Biomed. Pharmacother. 2018, 106, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, A.G.; Shirke, S.S.; Phadke, A.S. Effect of polyherbal formulation on experimental models of inflammatory bowel diseases. J. Ethnopharmacol. 2004, 90, 195–204. [Google Scholar] [CrossRef]
- Kasinathan, N.K.; Subramaniya, B.R.; Pandian, I.; Sivasithamparam, N.D. Aegle marmelos fruit extract abates dextran sodium sulfate induced acute colitis in mice: Repression of pro-inflammatory cytokines during colonic inflammation. Biomed. Prev. Nutr. 2014, 4, 307–317. [Google Scholar] [CrossRef]
- Morais, M.C.; Luqman, S.; Kondratyuk, T.P.; Petronio, M.S.; Regasini, L.O.; Silva, D.H.; Bolzani, V.S.; Soares, C.P.; Pezzuto, J.M. Suppression of TNF-alpha induced NFkappaB activity by gallic acid and its semi-synthetic esters: Possible role in cancer chemoprevention. Nat. Prod. Res. 2010, 24, 1758–1765. [Google Scholar] [CrossRef]
- Wang, K.S.; Lv, Y.; Wang, Z.; Ma, J.; Mi, C.; Li, X.; Xu, G.H.; Piao, L.X.; Zheng, S.Z.; Jin, X. Imperatorin efficiently blocks TNF-alpha-mediated activation of ROS/PI3K/Akt/NF-kappaB pathway. Oncol. Rep. 2017, 37, 3397–3404. [Google Scholar] [CrossRef] [Green Version]
- Persson, T.; Monsef, N.; Andersson, P.; Bjartell, A.; Malm, J.; Calafat, J.; Egesten, A. Expression of the neutrophil-activating CXC chemokine ENA-78/CXCL5 by human eosinophils. Clin. Exp. Allergy 2003, 33, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, N.; Pathak, M.; Lal, G. Role of chemokine receptors and intestinal epithelial cells in the mucosal inflammation and tolerance. J. Leukoc. Biol. 2017, 101, 377–394. [Google Scholar] [CrossRef]
- Yang, S.K.; Choi, M.S.; Kim, O.H.; Myung, S.J.; Jung, H.Y.; Hong, W.S.; Kim, J.H.; Min, Y.I. The increased expression of an array of C-X-C and C-C chemokines in the colonic mucosa of patients with ulcerative colitis: Regulation by corticosteroids. Am. J. Gastroenterol. 2002, 97, 126–132. [Google Scholar] [CrossRef]
- Cai, M.; Chen, S.; Hu, W. MicroRNA-141 Is Involved in Ulcerative Colitis Pathogenesis via Aiming at CXCL5. J. Interferon Cytokine Res. 2017, 37, 415–420. [Google Scholar] [CrossRef]
- Chang, M.S.; McNinch, J.; Basu, R.; Simonet, S. Cloning and characterization of the human neutrophil-activating peptide (ENA-78) gene. J. Biol. Chem. 1994, 269, 25277–25282. [Google Scholar] [CrossRef]
- Jobin, C.; Hellerbrand, C.; Licato, L.L.; Brenner, D.A.; Sartor, R.B. Mediation by NF-kappa B of cytokine induced expression of intercellular adhesion molecule 1 (ICAM-1) in an intestinal epithelial cell line, a process blocked by proteasome inhibitors. Gut 1998, 42, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfgang, M.; Stranzinger, S.; Khinast, J.G. Ascertain a minimum coating thickness for acid protection of enteric coatings by means of optical coherence tomography. Int. J. Pharm. 2022, 618, 121680. [Google Scholar] [CrossRef]
- Monschke, M.; Kayser, K.; Wagner, K.G. Influence of Particle Size and Drug Load on Amorphous Solid Dispersions Containing pH-Dependent Soluble Polymers and the Weak Base Ketoconazole. AAPS PharmSciTech 2021, 22, 44. [Google Scholar] [CrossRef] [PubMed]
- Barba, A.A.; Dalmoro, A.; d’Amore, M.; Lamberti, G. In vitro dissolution of pH sensitive microparticles for colon-specific drug delivery. Pharm. Dev. Technol. 2013, 18, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xie, Z.; Gao, T.; Li, L.; Chen, Y.; Xiao, D.; Liu, W.; Zou, B.; Lu, B.; Tian, X.; et al. A holistic view of gallic acid-induced attenuation in colitis based on microbiome-metabolomics analysis. Food Funct. 2019, 10, 4046–4061. [Google Scholar] [CrossRef] [PubMed]
- De Medeiros, D.C.; Mizokami, S.S.; Sfeir, N.; Georgetti, S.R.; Urbano, A.; Casagrande, R.; Verri, W.A.; Baracat, M.M. Preclinical Evaluation of Rutin-Loaded Microparticles with an Enhanced Analgesic Effect. ACS Omega 2019, 4, 1221–1227. [Google Scholar] [CrossRef]
- Rathore, S.P.S.; Sharma, A.D.; Garg, A.K.; Sisodiya, D.S. Formulation and evaluation of enteric coated tablet of Ilaprazole. Int. Curr. Pharm. J. 2013, 2, 126–130. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Ingredients | Quantity (% w/w) | CSIR—NISCAIR (Voucher No.) |
---|---|---|
Aegle marmelos (L.) Corrêa | 50% | NISCAIR/RHMD/Consult/2019/3453-54-27 |
Holarrhena antidysenterica (L.) Wall. ex A. DC | 25% | NISCAIR/RHMD/Consult/2019/3453-54-110 |
Cuminum cyminum L. | 10% | NISCAIR/RHMD/Consult/2019/3453-54-82 |
Trachyspermum ammi (L.) Sprague | 5% | NISCAIR/RHMD/Consult/2019/3453-54-4 |
Foeniculum vulgare Mill. | 5% | NISCAIR/RHMD/Consult/2019/3453-54-172 |
Rosa indica L. | 3% | NISCAIR/RHMD/Consult/2022/3988-89-66 |
Cinnamomum camphora (L.) J. Presl | 2% | NISCAIR/RHMD/Consult/2018/3134-83-75 |
Sample Name | Gallic Acid (µg/mg) | Rutin (µg/mg) | Ellagic Acid (µg/mg) | Imperatorin (µg/mg) |
---|---|---|---|---|
Cologrit tablet powder | 0.194 | 0.336 | 0.393 | 1.527 |
EC Cologrit tablet in Gastric Phase (t = 0 min) | ND | ND | ND | ND |
EC Cologrit tablet in Gastric Phase (t = 60 min) | ND | ND | ND | ND |
EC Cologrit tablet in Gastric Phase (t = 120 min)/Intestine Phase (t = 0 min) | ND | ND | ND | ND |
EC Cologrit tablet in Intestine Phase (t = 60 min) | 0.09 ± 0.06 | 0.25 ± 0.02 | 0.21 ± 0.04 | 0.04 ± 0.02 |
EC Cologrit tablet in Intestine Phase (t = 120 min) | 0.12 ± 0.05 | 0.29 ± 0.007 | 0.28 ± 0.07 | 0.07 ± 0.02 |
Plants associated with detected phytochemicals [References] | Am [26,29,31] Ha [27] Cc [23,24,38] Ta [28] Fv [19,25] Ri [32] Cca [30,33] | Am [26,31] Ha [27] Cc [34] Ta [35] Cca [33] | Am [29,31] Cc [36] Fv [25] | Am [31,37] Fv [19] |
Ingredients | Quantity (% w/w) |
---|---|
Cologrit powder | 70.55 |
Gum acacia | 13.88 |
Microcrystalline cellulose | 0.64 |
Polyvinylpyrrolidone (PVP) | 2.77 |
Corn starch | 5.18 |
Isomalt | 6.48 |
Talcum | 0.09 |
Parameters | Results |
---|---|
Diameter (mm) | 6.42–6.44 |
Thickness (mm) | 10.82–10.91 |
Average wt. (mg) | 542 ± 3.20 |
Wt. variation (mg) | 537–549 |
Hardness (Kg/cm2) | 6.96 ± 0.15 |
Friability (%) | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balkrishna, A.; Singh, R.; Gohel, V.; Arora, S.; Dev, R.; Bhattacharya, K.; Varshney, A. Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFκB-Centric Signaling Axis. Pharmaceuticals 2023, 16, 63. https://doi.org/10.3390/ph16010063
Balkrishna A, Singh R, Gohel V, Arora S, Dev R, Bhattacharya K, Varshney A. Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFκB-Centric Signaling Axis. Pharmaceuticals. 2023; 16(1):63. https://doi.org/10.3390/ph16010063
Chicago/Turabian StyleBalkrishna, Acharya, Rani Singh, Vivek Gohel, Sagar Arora, Rishabh Dev, Kunal Bhattacharya, and Anurag Varshney. 2023. "Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFκB-Centric Signaling Axis" Pharmaceuticals 16, no. 1: 63. https://doi.org/10.3390/ph16010063
APA StyleBalkrishna, A., Singh, R., Gohel, V., Arora, S., Dev, R., Bhattacharya, K., & Varshney, A. (2023). Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFκB-Centric Signaling Axis. Pharmaceuticals, 16(1), 63. https://doi.org/10.3390/ph16010063