Chitosan-PEG Gels Loaded with Jatropha mollissima (Pohl) Baill. Ethanolic Extract: An Efficient and Effective Biomaterial in Hemorrhage Control
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis
2.2. Total Concentration of Phenols and Condensed Tannins
2.3. Chemical Characterization of Raw Materials and CS-PEG-EES Gels
2.4. Rheological Analysis of CS-PEG-EES Gels
2.5. Thermal Stability of CS-PEG-EES Gels
2.6. Injectable Properties of CS-PEG-EES Gels
2.7. In Vivo Hemostatic Efficacy of CS-PEG-EES Gels
2.8. Cytotoxicity Experiments In Vitro
3. Materials and Methods
3.1. Chemicals
3.2. Ethics Committee
3.3. Jatropha mollissima Ethanolic Extract (EES) and Ethyl Acetate Fraction
3.4. Synthesizing CS-PEG-EES Gels
3.5. Phytochemical Analysis
3.5.1. Thin-Layer Chromatography (TLC)
3.5.2. Fractionation of the Ethyl Acetate Fraction
3.5.3. Nuclear Magnetic Resonance (NMR)
3.5.4. Mass Spectrometry (MS) by Direct Infusion
3.5.5. High-Performance Liquid Chromatography Coupled to Diode Array Detector (HPLC–DAD)
3.5.6. Determination of Phenolic Contents
- TPC: total phenolic content in mg GAE/g of the dry extract;
- C: gallic acid concentration in μg·mL−1 obtained for the EES sample through the calibration curve;
- V: volume in mL of solvent used in preparing the EES sample;
- M: EES mass in mg used in sample preparation.
3.5.7. Determination of Condensed Tannins Contents
- TTC: total tannin content in mg EC/g of the dry extract;
- C: catechin concentration in μg·mL−1 obtained for the EES sample through the calibration curve;
- V: volume in mL of solvent used in preparing the EES sample;
- M: EES mass in mg used in sample preparation.
3.6. Gels Characterizations
3.6.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.6.2. Rheological Analysis
3.6.3. Thermal Stability
3.6.4. Injectability
3.6.5. Cytotoxicity—MTT
3.6.6. Cytotoxicity—Agar Diffusion Method
3.6.7. In Vivo Hemostatic Activity Assay
- P(S): Weight of blood;
- G(1): Weight of gauze + 1 mL of gel + blood;
- G(0): Weight of gauze + 1 mL of gel.
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pourshahrestani, S.; Kadri, N.A.; Zeimaran, E.; Gargiulo, N.; Samuel, S.; Naveen, S.V.; Hasikin, K.; Kamarul, T.; Towler, M.R. Comparative efficacy of hemorrhage control of a novel mesoporous bioactive glass versus two commercial hemostats. Biomed. Mater. 2018, 13, 025020. [Google Scholar] [CrossRef] [PubMed]
- Baru, A.; Weldegiorgis, E.; Zewdu, T.; Hussien, H. Characteristics and outcome of traumatic chest injury patients visited a specialized hospital in Addis Ababa, Ethiopia: A one-year retrospective study. Chin. J. Traumatol. 2020, 23, 139–144. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, X.; Ma, X.; Cui, X.; Yi, Z.; Li, X. Cellulose/keratin–catechin nanocomposite hydrogel for wound hemostasis. J. Mater. Chem. B 2018, 6, 6133–6141. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, D.-Y.; Lu, S.-T.; Li, P.-W.; Li, S.-D. Chitosan-based composite materials for prospective hemostatic applications. Mar. Drugs 2018, 16, 273. [Google Scholar] [CrossRef]
- Seo, Y.B.; Lee, O.J.; Sultan, M.T.; Lee, J.M.; Park, Y.R.; Yeon, Y.K.; Lee, J.S.; Lee, Y.J.; Kim, S.H.; Park, C.H. In vitro and in vivo evaluation of the duck’s feet collagen sponge for hemostatic applications. J. Biomater. Appl. 2017, 32, 484–491. [Google Scholar] [CrossRef]
- di Lena, F. Hemostatic polymers: The concept, state of the art and perspectives. J. Mater. Chem. B 2014, 2, 3567–3577. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, C.; Liu, F.; Du, S.; Li, G.; Wang, X. Eliminating Heat Injury of Zeolite in Hemostasis via Thermal Conductivity of Graphene Sponge. ACS Appl. Mater. Interfaces 2019, 11, 23848–23857. [Google Scholar] [CrossRef]
- Jung, H.Y.; Le Thi, P.; HwangBo, K.-H.; Bae, J.W.; Park, K.D. Tunable and high tissue adhesive properties of injectable chitosan based hydrogels through polymer architecture modulation. Carbohydr. Polym. 2021, 261, 117810. [Google Scholar] [CrossRef] [PubMed]
- Hänninen, A.; Sarlin, E.; Lyyra, I.; Salpavaara, T.; Kellomäki, M.; Tuukkanen, S. Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydr. Polym. 2018, 202, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, X.; Gong, Y.; Zhao, N.; Zhang, X. Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 2002, 23, 2641–2648. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Zhang, L.; Wang, X.; Li, L. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film. Int. J. Biol. Macromol. 2020, 143, 334–340. [Google Scholar] [CrossRef]
- Unni, R.; Reshmy, R.; Latha, M.S.; Philip, E.; Sindhu, R.; Binod, P.; Pandey, A.; Awasthi, M.K. Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system. Chemosphere 2022, 298, 134324. [Google Scholar] [CrossRef]
- Lima, D.B.; Almeida, R.D.; Pasquali, M.; Borges, S.P.; Fook, M.L.; Lisboa, H.M. Physical characterization and modeling of chitosan/peg blends for injectable scaffolds. Carbohydr. Polym. 2018, 189, 238–249. [Google Scholar] [CrossRef]
- Lih, E.; Lee, J.S.; Park, K.M.; Park, K.D. Rapidly curable chitosan–PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater. 2012, 8, 3261–3269. [Google Scholar] [CrossRef]
- Jin, X.; Fu, Q.; Gu, Z.; Zhang, Z.; Lv, H. Chitosan/PDLLA-PEG-PDLLA solution preparation by simple stirring and formation into a hydrogel at body temperature for whole wound healing. Int. J. Biol. Macromol. 2021, 184, 787–796. [Google Scholar] [CrossRef]
- He, Z.; Liu, H.; Gui, S.; Liu, H.; Yang, J.; Guo, Q.; Ye, X.; Zhang, B. Procoagulant substances and mechanisms of hemostatic herb Eclipta alba. Process Biochem. 2022, 122, 103–114. [Google Scholar] [CrossRef]
- de Queiroz Neto, R.F.; de Araújo Júnior, H.N.; Freitas, C.I.A.; Costa, K.M.d.F.M.; Abrantes, M.R.; de Almeida, J.G.L.; Torres, T.M.; Moura, G.H.F.; Batista, J.S. The Jatropha mollissima (Pohl) Baill: Chemical and pharmacological activities of the latex and its extracts. Semin. Ciênc. Agrár. 2019, 40, 2613–2624. [Google Scholar] [CrossRef]
- Dantas, M.V.O.; Nogueira, P.L.; de Oliveira Lima, F.; Oliveira, D.C.P.; Gomes, E.N.S.; Rodrigues, J.F.B.; Amoah, S.K.S.; Rosendo, R.A.; da Penha, E.S.; Dantas, A.F.M. In vivo Hemostatic Activity of Jatropha mollissima: A Triple-Blinded, Randomized, Controlled Trial in an Animal Model. Eur. J. Dent. 2021, 15, 741–745. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Shen, S.; Johnson, S.; Fang, Z. Comprehensive profiling of phenolic compounds by HPLC-DAD-ESI-QTOF-MS/MS to reveal their location and form of presence in different sorghum grain genotypes. Food Res. Int. 2020, 137, 109671. [Google Scholar] [CrossRef]
- Cren-Olivé, C.; Wieruszeski, J.-M.; Maes, E.; Rolando, C. Catechin and epicatechin deprotonation followed by 13C NMR. Tetrahedron Lett. 2002, 43, 4545–4549. [Google Scholar] [CrossRef]
- Oliver, S.; Jofri, A.; Thomas, D.S.; Vittorio, O.; Kavallaris, M.; Boyer, C. Tuneable catechin functionalisation of carbohydrate polymers. Carbohydr. Polym. 2017, 169, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.L.D.; Souza, A.F.; Rodrigues, E.D.; Garcez, F.R.; Garcez, W.S.; Abot, A. Constituintes químicos das folhas de Riedeliella graciliflora Harms (Leguminosae). Química Nova 2012, 35, 1306–1311. [Google Scholar] [CrossRef]
- Mukherjee, S.; Amarnath, N.; Ramkumar, M.; Lochab, B. Catechin and Furfurylamine Derived Biobased Benzoxazine with Latent-Catalyst Effect. Macromol. Chem. Phys. 2022, 223, 2100458. [Google Scholar] [CrossRef]
- Ferreira-Nunes, R.; Gratieri, T.; Gelfuso, G.M.; Cunha-Filho, M. Mixture design applied in compatibility studies of catechin and lipid compounds. J. Pharm. Biomed. Anal. 2018, 149, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Mudgil, P.; Gani, A.; Hamed, F.; Masoodi, F.A.; Maqsood, S. Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem. 2019, 270, 95–104. [Google Scholar] [CrossRef]
- da Silva Araújo, J.R.; Silva Morais, J.G.; Santos, C.M.; Araújo Rocha, K.C.; Rios Fagundes, A.; e Silva Filho, F.A.; Martins, F.A.; de Almeida, P.M. Phytochemical prospecting, isolation, and protective effect of the ethanolic extract of the leaves of Jatropha mollissima (Pohl) Baill. J. Toxicol. Environ. Health Part A 2021, 84, 743–760. [Google Scholar] [CrossRef]
- Gomes, J.A.d.S.; Félix-Silva, J.; Morais Fernandes, J.; Geraldo Amaral, J.; Lopes, N.P.; Tabosa do Egito, E.S.; da Silva-Júnior, A.A.; Maria Zucolotto, S.; Fernandes-Pedrosa, M.d.F. Aqueous leaf extract of Jatropha mollissima (Pohl) Bail decreases local effects induced by bothropic venom. BioMed Res. Int. 2016, 2016, 6101742. [Google Scholar] [CrossRef]
- Braquehais, I.; Vasconcelos, F.; Ribeiro, A.; Da Silva, A.; Franca, M.; De Lima, D.; De Paiva, C.; Guedes, M.; Magalhães, F. Estudo preliminar toxicológico, antibacteriano e fitoquímico do extrato etanólico das folhas de Jatropha mollissima (Pohl) Baill. (pinhão-bravo, Euphorbiaceae), coletada no Município de Tauá, Ceará, Nordeste Brasileiro. Rev. Bras. De Plantas Med. 2016, 18, 582–587. [Google Scholar] [CrossRef]
- Silveira, R.d.S.; Leal, G.C.; Molin, T.R.D.; Faccin, H.; Gobo, L.A.; Silveira, G.D.d.; Souza, M.T.d.S.; Lameira, O.A.; Carvalho, L.M.d.; Viana, C. Determination of phenolic and triterpenic compounds in Jatropha gossypiifolia L by Ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS). Braz. J. Pharm. Sci. 2020, 56, e17262. [Google Scholar] [CrossRef]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of catechins and their applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef]
- Tiwari, A.; Melchor-Martínez, E.M.; Saxena, A.; Kapoor, N.; Singh, K.J.; Saldarriaga-Hernández, S.; Parra-Saldívar, R.; Iqbal, H.M.N. Therapeutic attributes and applied aspects of biological macromolecules (polypeptides, fucoxanthin, sterols, fatty acids, polysaccharides, and polyphenols) from diatoms—A review. Int. J. Biol. Macromol. 2021, 171, 398–413. [Google Scholar] [CrossRef]
- Luo, X.; Du, C.; Cheng, H.; Chen, J.-h.; Lin, C. Study on the Anticoagulant or Procoagulant Activities of Type II Phenolic Acid Derivatives. Molecules 2017, 22, 2047. [Google Scholar] [CrossRef]
- Marcińczyk, N.; Gromotowicz-Popławska, A.; Tomczyk, M.; Chabielska, E. Tannins as Hemostasis Modulators. Front. Pharmacol. 2022, 12, 4055. [Google Scholar] [CrossRef]
- Mouffouk, C.; Mouffouk, S.; Oulmi, K.; Mouffouk, S.; Haba, H. In vitro photoprotective, hemostatic, anti-inflammatory and antioxidant activities of the species Linaria scariosa Desf. S. Afr. J. Bot. 2020, 130, 383–388. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Otero, P.; Cassani, L.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Chamorro, F.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods 2021, 10, 251. [Google Scholar] [CrossRef]
- Ghalandari, S.; Kariman, N.; Sheikhan, Z.; Mojab, F.; Mirzaei, M.; Shahrahmani, H. Effect of Hydroalcoholic Extract of Capsella bursa pastoris on Early Postpartum Hemorrhage: A Clinical Trial Study. J. Altern. Complement. Med. 2017, 23, 794–799. [Google Scholar] [CrossRef]
- Catanzano, O.; d’Ayala, G.G.; D’Agostino, A.; Di Lorenzo, F.; Schiraldi, C.; Malinconico, M.; Lanzetta, R.; Bonina, F.; Laurienzo, P. PEG-crosslinked-chitosan hydrogel films for in situ delivery of Opuntia ficus-indica extract. Carbohydr. Polym. 2021, 264, 117987. [Google Scholar] [CrossRef]
- Ali, N.; Khan, A.; Bilal, M.; Malik, S.; Badshah, S.; Iqbal, H. Chitosan-based bio-composite modified with thiocarbamate moiety for decontamination of cations from the aqueous media. Molecules 2020, 25, 226. [Google Scholar] [CrossRef]
- Deygen, I.M.; Kudryashova, E.V. New versatile approach for analysis of PEG content in conjugates and complexes with biomacromolecules based on FTIR spectroscopy. Colloids Surf. B Biointerfaces 2016, 141, 36–43. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Agatonovic-Kustrin, S.; Doyle, E.; Gegechkori, V.; Morton, D.W. High-performance thin-layer chromatography linked with (bio)assays and FTIR-ATR spectroscopy as a method for discovery and quantification of bioactive components in native Australian plants. J. Pharm. Biomed. Anal. 2020, 184, 113208. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; Oliveira, F.C.S.d.; Passos, T.M.; Quilty, B.; Thiré, R.M.d.S.M.; McGuinness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Qiao, C.; Ma, X.; Wang, X.; Liu, L. Structure and properties of chitosan films: Effect of the type of solvent acid. LWT 2021, 135, 109984. [Google Scholar] [CrossRef]
- Domjan, A.; Bajdik, J.; Pintye-Hodi, K. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy. Macromolecules 2009, 42, 4667–4673. [Google Scholar] [CrossRef]
- Kammoun, M.; Haddar, M.; Kallel, T.K.; Dammak, M.; Sayari, A. Biological properties and biodegradation studies of chitosan biofilms plasticized with PEG and glycerol. Int. J. Biol. Macromol. 2013, 62, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Campos, L.M.; de Oliveira Lemos, A.S.; da Cruz, L.F.; de Freitas Araújo, M.G.; de Mello Botti, G.C.R.; Júnior, J.L.R.; Rocha, V.N.; Denadai, Â.M.L.; da Silva, T.P.; Tavares, G.D. Development and in vivo evaluation of chitosan-gel containing Mitracarpus frigidus methanolic extract for vulvovaginal candidiasis treatment. Biomed. Pharmacother. 2020, 130, 110609. [Google Scholar] [CrossRef]
- Risaliti, L.; Yu, X.; Vanti, G.; Bergonzi, M.C.; Wang, M.; Bilia, A.R. Hydroxyethyl cellulose hydrogel for skin delivery of khellin loaded in ascosomes: Characterization, in vitro/in vivo performance and acute toxicity. Int. J. Biol. Macromol. 2021, 179, 217–229. [Google Scholar] [CrossRef]
- Fang, W.; Yang, L.; Hong, L.; Hu, Q. A chitosan hydrogel sealant with self-contractile characteristic: From rapid and long-term hemorrhage control to wound closure and repair. Carbohydr. Polym. 2021, 271, 118428. [Google Scholar] [CrossRef]
- Katoch, A.; Choudhury, A.R. Understanding the rheology of novel guar-gellan gum composite hydrogels. Mater. Lett. 2020, 263, 127234. [Google Scholar] [CrossRef]
- Weber, L.M.; Lopez, C.G.; Anseth, K.S. Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J. Biomed. Mater. Res. Part A 2009, 90, 720–729. [Google Scholar] [CrossRef]
- Cruz, R.d.C.A.L.; Diniz, L.G.M.; Lisboa, H.M.; Fook, M.V.L. Effect of different carboxylic acids as solvent on chitosan fibers production by wet spinning. Matéria 2016, 21, 525–531. [Google Scholar] [CrossRef]
- Srinivasa, P.C.; Ramesh, M.N.; Tharanathan, R.N. Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocoll. 2007, 21, 1113–1122. [Google Scholar] [CrossRef]
- Lakehal, I.; Montembault, A.; David, L.; Perrier, A.; Vibert, R.; Duclaux, L.; Reinert, L. Prilling and characterization of hydrogels and derived porous spheres from chitosan solutions with various organic acids. Int. J. Biol. Macromol. 2019, 129, 68–77. [Google Scholar] [CrossRef]
- Sofla, M.S.K.; Mortazavi, S.; Seyfi, J. Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol. Carbohydr. Polym. 2020, 232, 115784. [Google Scholar] [CrossRef]
- Talebi, H.; Ashenai Ghasemi, F.; Ashori, A. The Effect of Solvent and Plasticizer on Mechanical Properties of Chitosan-Based Biocomposites. Basparesh 2019, 9, 62–71. [Google Scholar]
- Hamdine, M.; Heuzey, M.-C.; Bégin, A. Effect of organic and inorganic acids on concentrated chitosan solutions and gels. Int. J. Biol. Macromol. 2005, 37, 134–142. [Google Scholar] [CrossRef]
- Hejazi, M.; Behzad, T.; Heidarian, P.; Nasri-Nasrabadi, B. A study of the effects of acid, plasticizer, cross-linker, and extracted chitin nanofibers on the properties of chitosan biofilm. Compos. Part A Appl. Sci. Manuf. 2018, 109, 221–231. [Google Scholar] [CrossRef]
- Moreira, C.D.F.; Carvalho, S.M.; Sousa, R.G.; Mansur, H.S.; Pereira, M.M. Nanostructured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injectable matrix for bone tissue engineering. Mater. Chem. Phys. 2018, 218, 304–316. [Google Scholar] [CrossRef]
- Rodríguez-Núñez, J.R.; Madera-Santana, T.J.; Sánchez-Machado, D.I.; López-Cervantes, J.; Soto Valdez, H. Chitosan/Hydrophilic Plasticizer-Based Films: Preparation, Physicochemical and Antimicrobial Properties. J. Polym. Environ. 2014, 22, 41–51. [Google Scholar] [CrossRef]
- Chel-Guerrero, L.; Betancur, A.D. Cross-Linkage of Canavalia ensiformis Starch with Adipic Acid: Chemical and Functional Properties. J. Agric. Food Chem. 1998, 46, 2087–2091. [Google Scholar] [CrossRef]
- Chen, R.H.; Lin, W.C.; Lin, J.H. Effects of pH, ionic strength, and type of anion on the rheological properties of chitosan solutions. Acta Polym. 1994, 45, 41–46. [Google Scholar] [CrossRef]
- Burckbuchler, V.; Mekhloufi, G.; Giteau, A.P.; Grossiord, J.; Huille, S.; Agnely, F. Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur. J. Pharm. Biopharm. 2010, 76, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, S.; Lo, M.K.; Bajracharya, S.; Roldo, M. Injectable Scaffolds for Bone Regeneration. Langmuir 2014, 30, 12977–12985. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, N.B.; da Conceição Santos, A.D.; da Silva Almeida, J.R.G. The genus Jatropha (Euphorbiaceae): A review on secondary chemical metabolites and biological aspects. Chem.-Biol. Interact. 2020, 318, 108976. [Google Scholar] [CrossRef] [PubMed]
- Klotoe, J.R.; Ategbo, J.M.; Dougnon, V.; Loko, F.; Dramane, K. Hemostatic effect of Jatropha multifida L. (Euphorbiaceae) in rats having coagulation disorders. J. Appl. Biol. Biotechnol. 2017, 5, 26–29. [Google Scholar] [CrossRef]
- Oduola, T.; Adeosun, G.O.; Oduola, T.A.; Ovie, G. Mechanism of action of Jatropha gossypifolia stem latex as a haemostatic agent. Eur. J. Gen. Med. 2005, 2, 140–143. [Google Scholar] [CrossRef]
- Pang, K. Study on Chemical Composition and Biological Activity of Salvia Haematodes-a. Front. Med. Sci. Res. 2020, 2, 62–66. [Google Scholar]
- Salim, M.N.; Silvia, M.; Aliza, D.; Masyitha, D.; Iskandar, C.D.; Rusli, R.; Sugito, S.; Hasan, M.; Sabri, M.; Harris, A. Efficacy of Jatropha curcas latex cream in the epithelialization phase of wound healing in mice skin. In Proceedings of the E3S Web of Conferences, Yogyakarta, Indonesia, 7–8 September 2020; p. 01038. [Google Scholar] [CrossRef]
- Lewis, K.M.; Schiviz, A.; Hedrich, H.-C.; Regenbogen, J.; Goppelt, A. Hemostatic efficacy of a novel, PEG-coated collagen pad in clinically relevant animal models. Int. J. Surg. 2014, 12, 940–944. [Google Scholar] [CrossRef]
- Delyanee, M.; Solouk, A.; Akbari, S.; Daliri Joupari, M. Engineered hemostatic bionanocomposite of poly (lactic acid) electrospun mat and amino-modified halloysite for potential application in wound healing. Polym. Adv. Technol. 2021, 32, 3934–3947. [Google Scholar] [CrossRef]
- Imhof, L.; Leuthard, D. Topical Over-the-Counter Antiaging Agents: An Update and Systematic Review. Dermatology 2021, 237, 217–229. [Google Scholar] [CrossRef]
- Dowling, M.B.; Kumar, R.; Keibler, M.A.; Hess, J.R.; Bochicchio, G.V.; Raghavan, S.R. A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials 2011, 32, 3351–3357. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In vitro Cytotoxicity. International Organization for Standardization (ISO): Geneva, Switzerland, 2009.
- Ren, Y.; Zhao, X.; Liang, X.; Ma, P.X.; Guo, B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int. J. Biol. Macromol. 2017, 105, 1079–1087. [Google Scholar] [CrossRef]
- de Souza, M.F.; da Silva, H.N.; Rodrigues, J.F.B.; Macêdo, M.D.M.; de Sousa, W.J.B.; Barbosa, R.C.; Fook, M.V.L. Chitosan/Gelatin Scaffolds Loaded with Jatropha mollissima Extract as Potential Skin Tissue Engineering Materials. Polymers 2023, 15, 603. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Palacios, C.E.; Nagai, A.; Torres, P.; Rodrigues, J.A.; Salatino, A. Contents of tannins of cultivars of sorghum cultivated in Brazil, as determined by four quantification methods. Food Chem. 2021, 337, 127970. [Google Scholar] [CrossRef]
- ISO 10993-12:2021; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Sogut, O.; Erdogan, M.O.; Kose, R.; Boleken, M.E.; Kaya, H.; Gokdemir, M.T.; Ozgonul, A.; Iynen, I.; Albayrak, L.; Dokuzoglu, M.A. Hemostatic efficacy of a traditional medicinal plant extract (Ankaferd Blood Stopper) in bleeding control. Clin. Appl. Thromb./Hemost. 2015, 21, 348–353. [Google Scholar] [CrossRef]
- Gomes, L.H.L.S.; Drummond, L.R.; Campos, H.O.; Rezende, L.M.T.d.; Carneiro-Júnior, M.A.; Oliveira, A.; Natali, A.J.; Prímola-Gomes, T.N. Thermoregulation in hypertensive rats during exercise: Effects of physical training. Arq. Bras. De Cardiol. 2019, 112, 534–542. [Google Scholar] [CrossRef]
Position | Fraction A9, DMSO-d6 | Literature–Catechin, DMSO-d6 | ||
---|---|---|---|---|
δC | δH | δC | δH | |
2 | 81.42 | 4.47 (1H, d, J = 7.2 Hz) | 81.1 | 4.46 (d) |
3 | 66.74 | 3.80 (1H, m) | 66.4 | 3.82 (m) |
4 | 28.26 | 2.64 (Ha) (1H, dd, J = 16.0; 5.2 Hz); 2.34 (Hb) (1H, dd, J = 16; 8.0 Hz) | 28.0 | 2.66 (dd); 2.37 (dd) |
5 | 156.62 | - | 156.3 | - |
6 | 95.58 | 5.87 (1H, d, J = 2.3 Hz) | 95.2 | 5.88 (d) |
7 | 156.88 | - | 156.6 | - |
8 | 94.31 | 5.68 (1H, d, J = 2.3 Hz) | 94.0 | 5.68 (d) |
9 | 155.79 | - | 155.5 | - |
10 | 99.54 | - | 99.2 | - |
1′ | 131.02 | - | 130.7 | - |
2′ | 114.94 | 6.70 (1H, d, J = 2.3 Hz) | 114.6 | 6.72 (d) |
3′ | 144.88 | - | 145.0 | - |
4′ | 145.29 | - | 145.0 | - |
5′ | 115.53 | 6.67 (1H, d, J = 8.0 Hz) | 115.2 | 6.69 (d) |
6′ | 118.90 | 6.58 (1H, dd, J = 8.0; 2.3 Hz) | 118.6 | 6.60 (d) |
3-OH | - | 4.90 (1H, d, J = 5.2 Hz) | - | 4.86 (d) |
5-OH | - | 9.15 (1H, s) | - | 9.18 (s) |
7-OH | - | 8.91 (1H, s) | - | 8.94 (s) |
3′-OH | - | 8.79 (1H, s) | - | 8.86 (s) |
4′-OH | - | 8.84 (1H, s) | - | 8.82 (s) |
Sample | TPC (mg GAE/g Dry Extract) | TTC (mg CE/g Dry Extract) |
---|---|---|
EES | 242.84 ± 0.90 | 512.30 ± 6.83 |
Sample | Initial Glide Force (N) | Dynamic Glide Force (N) | Maximum Force (N) |
---|---|---|---|
G20AE | 5.02 ± 0.04 | 1.75 ± 0.02 | 1.79 ± 0.02 |
G20LE | 4.32 ± 0.10 | 3.11 ± 0.01 | 3.12 ± 0.02 |
G25AE | 4.59 ± 0.37 | 3.19 ± 0.01 | 3.32 ± 0.01 |
G25LE | 4.48 ± 0.04 | 3.30 ± 0.01 | 3.39 ± 0.02 |
G30AE | 3.90 ± 0.11 | 2.98 ± 0.01 | 3.02 ± 0.01 |
G30LE | 5.90 ± 0.23 | 1.37 ± 0.01 | 1.43 ± 0.01 |
Compositions | Raw Materials | ||||
---|---|---|---|---|---|
Acetic Acid (v/v) | Lactic Acid (v/v) | PEG 400 (v/v) | Chitosan (w/v) | EES (mg·mL−1) | |
G15AE | 1% | – | 15% | 1% | 25 |
G20AE | 1% | – | 20% | 1% | 25 |
G25AE | 1% | – | 25% | 1% | 25 |
G30AE | 1% | – | 30% | 1% | 25 |
G15LE | – | 2% | 15% | 1% | 25 |
G20LE | – | 2% | 20% | 1% | 25 |
G25LE | – | 2% | 25% | 1% | 25 |
G30LE | – | 2% | 30% | 1% | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.F.B.; Queiroz, J.V.S.d.A.; Medeiros, R.P.; Santos, R.O.; Fialho, D.A.; Neto, J.E.S.; Santos, R.L.d.; Barbosa, R.C.; Sousa, W.J.B.; Torres, M.d.C.d.M.; et al. Chitosan-PEG Gels Loaded with Jatropha mollissima (Pohl) Baill. Ethanolic Extract: An Efficient and Effective Biomaterial in Hemorrhage Control. Pharmaceuticals 2023, 16, 1399. https://doi.org/10.3390/ph16101399
Rodrigues JFB, Queiroz JVSdA, Medeiros RP, Santos RO, Fialho DA, Neto JES, Santos RLd, Barbosa RC, Sousa WJB, Torres MdCdM, et al. Chitosan-PEG Gels Loaded with Jatropha mollissima (Pohl) Baill. Ethanolic Extract: An Efficient and Effective Biomaterial in Hemorrhage Control. Pharmaceuticals. 2023; 16(10):1399. https://doi.org/10.3390/ph16101399
Chicago/Turabian StyleRodrigues, José F. B., João V. S. de A. Queiroz, Rebeca P. Medeiros, Rafaela O. Santos, Djair A. Fialho, João E. S. Neto, Rogério L. dos Santos, Rossemberg C. Barbosa, Wladymyr J. B. Sousa, Maria da C. de M. Torres, and et al. 2023. "Chitosan-PEG Gels Loaded with Jatropha mollissima (Pohl) Baill. Ethanolic Extract: An Efficient and Effective Biomaterial in Hemorrhage Control" Pharmaceuticals 16, no. 10: 1399. https://doi.org/10.3390/ph16101399
APA StyleRodrigues, J. F. B., Queiroz, J. V. S. d. A., Medeiros, R. P., Santos, R. O., Fialho, D. A., Neto, J. E. S., Santos, R. L. d., Barbosa, R. C., Sousa, W. J. B., Torres, M. d. C. d. M., Medeiros, L. A. D. M., Silva, S. M. d. L., Montazerian, M., Fook, M. V. L., & Amoah, S. K. S. (2023). Chitosan-PEG Gels Loaded with Jatropha mollissima (Pohl) Baill. Ethanolic Extract: An Efficient and Effective Biomaterial in Hemorrhage Control. Pharmaceuticals, 16(10), 1399. https://doi.org/10.3390/ph16101399