The Use of Shells of Marine Molluscs in Spanish Ethnomedicine: A Historical Approach and Present and Future Perspectives
Abstract
:1. Introduction
Symbolisms Associated with Shells
2. Taxonomy and Uses in Folk Medicine
2.1. Magical Uses
2.2. Empirical Remedies
2.2.1. The Cuttlebone in Spanish Ethnomedicine
2.2.2. Nacre in Spanish Ethnomedicine
3. Medical History: The Seashells and the Cuttlebone between Popular Pharmacology and Science
3.1. From Classical Civilisation to the Middle Ages
3.2. The Modern Age: The Renaissance, the Baroque and the Enlightenment
3.3. Marine Malacotherapy in the Contemporary Age
4. Medicinal Properties, Modern Uses and Perspectives
4.1. Cuttlebone
4.1.1. Pharmacological Activity and Pharmaceutical Applications
4.1.2. Environmental Utilization
4.2. Nacre
4.2.1. Pharmacological Activity and Pharmaceutical Applications
4.2.2. Environmental Utilization
5. Documentary Sources Selection Procedures
6. Final Considerations and Reflections
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barandiarán, J.M.; Manterola, A. (Eds.) Medicina Popular en Vasconia; Instituto Labayru–Etniker Euskalerria: Bilbao, Spain, 2004. [Google Scholar]
- Luján Navas, A.L. Aprovechamiento y Gestión de Recursos Malacológicos Marinos en la Fachada Mediterránea de la Península Ibérica Durante la Prehistoria Reciente. Ph.D. Thesis, Universidad de Alicante, Alicante, Spain, 2016. [Google Scholar]
- Pascual Benito, J.L. Les Jovades (Cocentàina). Notes per a l’estudi del poblament eneolitic a la conca de Riu d’Alcoi. In Actas del Coloquio “El Eneolítico en el País Valenciano”; Instituto de Estatuto “Juan Gil-Albert”: Alcoy, Spain, 1984; pp. 73–79. [Google Scholar]
- Batista, C. El marisqueo en la Prehistoria de Gran Canaria. Vector Plus 2001, 18, 67–76. [Google Scholar]
- Voultsiadou, E. Therapeutic properties and uses of marine invertebrates in the ancient Greek world and early Byzantium. J. Ethnopharmacol. 2010, 130, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Storm Hindley, K. Textual Magic: Charms and Written Amulets in Medieval England; The University of Chicago Press: Chicago, IL, USA, 2023. [Google Scholar]
- Hildburgh, W.L. Notes on Spanish amulets. Folklore 1906, 17, 454–471. [Google Scholar] [CrossRef]
- Mariño Ferro, X.R. El Simbolismo Animal: Creencias y Significados en la Cultura Occidental; Ediciones Encuentro: Madrid, Spain, 1996. [Google Scholar]
- Impelluso, L. La Naturaleza y sus Símbolos: Plantas, Flores y Animales; Electa: Barcelona, Spain, 2003. [Google Scholar]
- Ronnberg, A.; Martin, K. (Eds.) El Libro de los Símbolos. Reflexiones Sobre las Imágenes Arquetípicas; Taschen: Köln, Germany, 2011. [Google Scholar]
- Biedermann, H. Diccionario de Símbolos; Paidós: Barcelona, Spain, 2013. [Google Scholar]
- Sánchez Pérez, J.A. Supersticiones Españolas; Saeta: Madrid, Spain, 1948. [Google Scholar]
- Moreta Lara, M.A.; Álvarez Curiel, F. Supersticiones Populares Andaluzas; Arguval: Málaga, Spain, 1993. [Google Scholar]
- Guichot y Sierra, A. Supersticiones populares recogidas en Andalucía y comparadas con las portuguesas. In Biblioteca de las Tradiciones Populares Españolas, Tomo I; Machado Álvarez, A., Dir.; Francisco Álvarez y Cª Editores: Sevilla, Spain, 1883; pp. 201–300. [Google Scholar]
- Domínguez Moreno, J.M. La lactancia en la alta Extremadura. Rev. Folk. 1988, 89, 147–157. [Google Scholar]
- Quintía Pereira, R. Cornos, cairos, pezuños e outros amuletos de orixe animal. Galicia Encantada 2010. Available online: http://www.galiciaencantada.com/lenda.asp?cat=17&id=1662 (accessed on 18 April 2023).
- A Chave. Os Nomes Galegos dos Moluscos; A Chave: Xinzo de Limia, Spain, 2020; Available online: https://achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos_2020.pdf (accessed on 8 June 2023).
- González, J.A.; Amich, F.; Postigo-Mota, S.; Vallejo, J.R. Therapeutic and prophylactic uses of invertebrates in contemporary Spanish ethnoveterinary medicine. J. Ethnobiol. Ethnomed. 2016, 12, 36. [Google Scholar] [CrossRef]
- de Arribas y Sánchez, C. A Través de las Islas Canarias; Ed. A. Delgado Yumar: Santa Cruz de Tenerife, Spain, 1900. [Google Scholar]
- Ojeda Guerra, A.; Martín Hernández, R. Remedios oftalmológicos populares de la tradición oral de Tenerife y La Palma. Arch. Soc. Canar. Oftalmol. 1976, 1, 89–94. [Google Scholar]
- Álvarez Peña, A. Melecina Máxico-Tradicional n’Asturies; VTP Editorial: Gijón, Spain, 2004. [Google Scholar]
- Alemany, S.; Francès, L.; Subirós, R. Recull de remeis tradicionals als pobles pescadors de la Costa Brava. Rev. Etnol. Catalunya 2010, 36, 151–154. [Google Scholar]
- Otero Fernández, J.M. Medicina popular en La Siberia. Alminar Rev. Cultura 1983, 44, 6. [Google Scholar]
- González Pozuelo, F. Rasgos culturales de la sociedad tradicional extremeña. Cuad. Realid. Soc. 1985, 25–26, 85–110. [Google Scholar]
- Domínguez Moreno, J.M. Dermatología popular en Extremadura (y IV) granos. Rev. Folk. 2005, 297, 88–97. [Google Scholar]
- Castillo de Lucas, A. Folkmedicina; Dossat: Madrid, Spain, 1958. [Google Scholar]
- Pérez Vidal, J. Contribución al Estudio de la Medicina Popular Canaria; Ediciones IDEA: Santa Cruz de Tenerife, Spain, 2007. [Google Scholar]
- Rodríguez Aguado, O. Un acercamiento a la medicina popular en Ubrique (1996–1997). Cult. Cuid. 2001, 10, 46–62. [Google Scholar] [CrossRef]
- Gregori, M.P. Medicina Popular en Valencia del Mombuey. Ph.D. Thesis, Universidad de Extremadura, Badajoz, Spain, 2006. [Google Scholar]
- Alcántara Montiel, J.F. La Medicina Popular en la Comarca del Alto Guadalhorce; Diputación Provincial de Málaga: Málaga, Spain, 1990. [Google Scholar]
- Vokou, D.; Katradi, K.; Kokkini, S. Ethnobotanical survey of Zagori (Epirus, Greece), a renewed centre of folk medicine in the past. J. Ethnopharmacol. 1993, 39, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Rich, T.C.G.; Lambrick, C.R.; McNab, C. Conservation of Britain’s biodiversity: Salvia pratensis L. (Lamiaceae), Meadow Clary. Watsonia 1999, 22, 405–411. [Google Scholar]
- Khouchlaa, A.; Et-Touys, A.; Lakhdar, F.; Lakhdar, F.E.; El Idrissi, A.E.Y.; Zaakour, F. Ethnomedicinal use, phytochemistry, pharmacology, and toxicology of Salvia verbenaca L.: A review. Biointerface Res. Appl. Chem. 2022, 12, 1437–1469. [Google Scholar]
- Alfayate, M.C.; Barrera, I.; Ron, E.; García Jiménez, R.; Pajarón, S.; Pérez-Alonso, M.J. La mixocarpia de Salvia aegyptiaca L. y su aplicación etnobotánica. Bot. Complut. 2008, 32, 213–216. [Google Scholar]
- González, J.A.; García-Barriuso, M.; Amich, F. Ethnobotanical study of medicinal plants traditionally used in the Arribes del Duero, western Spain. J. Ethnopharmacol. 2010, 131, 343–355. [Google Scholar] [CrossRef]
- López Cano, E. Supersticiones y creencias populares. Alminar Rev. Cultura 1984, 51, 5. [Google Scholar]
- Vallejo, J.R.; Peral, D.; Carrasco, M.C. Catálogo de Remedios de la Medicina Popular de Guadiana del Caudillo; Excmo. Ayuntamiento de Guadiana del Caudillo: Guadiana del Caudillo, Spain, 2008. [Google Scholar]
- Tejerina Gallardo, A. Usos y Saberes Sobre las Plantas de Monfragüe. Etnobotánica de la Comarca Natural; Itomonfragüe: Cáceres, Spain, 2010. [Google Scholar]
- Gordón, F. La Medicina Popular en Valencia del Ventoso. Ph.D. Thesis, Universidad de Extremadura, Badajoz, Spain, 2015. [Google Scholar]
- Gandía Hernández, E. Cuidados de la salud en el ámbito familiar y doméstico: Un rol de género. Remedios tradicionales usados en Villena (Alicante). Feminismo/s 2007, 10, 31–47. [Google Scholar] [CrossRef]
- García Arambilet, L.A. Medicina Popular en la Provincia de Soria: Descripción y Análisis de sus Prácticas. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 1990. [Google Scholar]
- Hualde Pascual, C.; Ormazábal Herraiz, A. Usos y prácticas de medicina y veterinaria popular en la Campiña de Guadalajara. Cuad. Etnol. Guadalaj. 2002, 34, 273–306. [Google Scholar]
- Vallejo, J.R.; González, J.A. The medical use of leeches in contemporary Spain: Between science and tradition. Acta Med.-Hist. Adriat. AMHA 2015, 13, 131–158. [Google Scholar]
- Bazaliński, D.; Kózka, M.; Karnas, M.; Więch, P. Effectiveness of chronic wound debridement with the use of larvae of Lucilia sericata. J. Clin. Med. 2019, 8, 1845. [Google Scholar] [CrossRef]
- Barriola, I.M. La Medicina Popular en el País Vasco; Biblioteca Vascongada de los Amigos del País: San Sebastián, Spain, 1952. [Google Scholar]
- Erkoreka, A. La medicina popular en el País Vasco. Anthropologica 1987, 1, 63–75. [Google Scholar]
- López Ruiz, J. Instrumentos complementarios de los cuidados enfermeros: Toma de posición. Enferm. Clin. 2003, 13, 227–236. [Google Scholar] [CrossRef]
- Grupo de Terapias Complementarias del Colegio Oficial de Enfermería de Barcelona (GTC-COE Barcelona). Instrumentos Complementarios de los Cuidados de Enfermería—Documento Marco; COIB: Barcelona, Spain, 2004. [Google Scholar]
- Perdiguero, E.; Comelles, J.M. El estudio del pluralismo médico en España: Una aproximación histórica. In Pluralismo Médico y Curas Alternativas; Cuadrada, C., Ed.; Publicacions Universitat Rovira i Virgili: Tarragona, Spain, 2020; pp. 7–50. [Google Scholar]
- Perdiguero, E.; Comelles, J.M. Cultura, salud y enfermedad: Una medicina plural. In Manual de Historia de la Medicina; Barona Vilar, J.L., Coord.; Tirant lo Blanch: Valencia, Spain, 2023; pp. 53–64. [Google Scholar]
- Brondizio, E.S.; O’Brien, K.; Bai, X.; Biermann, F.; Steffen, W.; Berkhout, F.; Cudennec, C.; Lemos, M.C.; Wolfe, A.; Palma-Oliveira, J.; et al. Re-Conceptualizing the Anthropocene: A Call for Collaboration. Glob. Environ. Chang. 2016, 39, 318–327. [Google Scholar] [CrossRef]
- Kitch, S.L. How Can Humanities Interventions Promote Progress in the Environmental Sciences? Humanities 2017, 6, 76. [Google Scholar] [CrossRef]
- García, V.M. Dioscórides: Plantas y Remedios Medicinales (De Materia Medica). Libros I–III; Gredos: Madrid, Spain, 1998. [Google Scholar]
- López Eire, A. Dioscórides Interactivo Sobre los Remedios Medicinales—Manuscrito de Salamanca; Project MICINN HUM-2006-08794; Ediciones Universidad de Salamanca: Salamanca, Spain, 2006; Available online: https://dioscorides.usal.es/ (accessed on 8 May 2023).
- Laguna, A. Dioscórides P. Acerca de la Materia Medicinal… Salamanca. Traducción y Comentarios de Andrés Laguna; 1566 (facsimile edition); MRA: Barcelona, Spain, 1994. [Google Scholar]
- Cantó, J.; Gómez Santamaría, I.; González Marín, S.; Tarriño, E. Plinio: Historia Natural, 2nd ed.; Cátedra: Madrid, Spain, 2007. [Google Scholar]
- Valledor de Lozoya, A.; Araujo, R. How the naiad was drawn: A pre-Linnean iconography of freshwater mussels. Malacologia 2011, 53, 381–402. [Google Scholar] [CrossRef]
- Viñayo González, A.; Riesco Álvarez, H.B. Hortus Sanitatis, de Avibus, de Piscibus; facsimile ed.; Ediciones de la Universidad de León: León, Spain, 1998. [Google Scholar]
- Betlloch-Mas, I.; Chiner, E.; Chiner-Betlloch, J.; Llorca-Ibi, F.X.; Martín-Pascual, L. The use of animals in medicine of Latin tradition: Study of the Tresor de Beutat, a medieval treatise devoted to female cosmetics. J. Ethnobiol. Tradit. Med. Photon 2014, 121, 752–760. [Google Scholar]
- Ruiz Bravo-Villasante, C. Libro de las Utilidades Animales; Fundación Universitaria Española: Madrid, Spain, 1980. [Google Scholar]
- Dorveaux, P. L’antidotaire Nicolas. Deux Traductions Françaises de l’Antidotarium Nicolai. L’une du XIVè Siècle Suivie de Quelques Recettes de la Même Époque et d’un Glossaire. L’autre du XVè Siècle Incomplète. Publiées D’après les Manuscrits Français 25327 et 14827 de la Bibliothèque Nationale; H. Welter: Paris, France, 1896. [Google Scholar]
- Dorveaux, P. Antidotarium Nicolai; BiblioBazaar: Charleston, SC, USA, 2010. [Google Scholar]
- Vallejo, J.R.; Cobos, J.M. El recetario de la Escuela de Salerno conocido como el “Antidotarium Nicolai”. Med. Natur. 2013, 7, 35–41. [Google Scholar]
- Castell, F.A. Theorica y Pratica de Boticarios en que se Trata de la arte y Forma como se han de Componer las Confectiones Ansi Interiores Como Exteriores; Sebastian de Cormellas: Barcelona, Spain, 1592. [Google Scholar]
- Pensado, J.L. (Ed.) Colección de Voces y Frases Gallegas (De Fr. Martín Sarmiento); Ediciones Universidad de Salamanca: Salamanca, Spain, 1970. [Google Scholar]
- Vallejo, J.R.; Cobos, J.M. De la botánica médica a la Farmacia en España: La obra de Pedro Benedicto Mateo. Med. Natur. 2015, 9, 82–87. [Google Scholar]
- Saladino, F. Compendium Aromatariorum. … Saladino: [comie[n]ça el co[m]pendio de los Boticarios/Compuesto por el dotor Saladino…; Trasladado del latin en Lengua Vulgar Castellana por el lice[n]ciado Alfonso Rodriguez de Tudela]; Arnao Guillen de Brocar: Valladolid, Spain, 1515. [Google Scholar]
- Francés Causapé, M.C. Consideraciones Sobre Creencias, Farmacia y Terapéutica; Instituto de España—Real Academia Nacional de Farmacia, Discursos de la RANF: Madrid, Spain, 2009. [Google Scholar]
- Croll, O. La Royale Chymie de Crollius, Traduitte en François, par J. Marcel de Boulene; Pierre Drobet: Lyon, France, 1627. [Google Scholar]
- Costa-Neto, E.M. Os moluscos na zooterapia: Medicina tradicional e importância clínico-farmacológica. Biotemas 2006, 19, 71–78. [Google Scholar]
- Laval, E. Botica de los Jesuitas de Santiago; Asociación Chilena de Asistencia Social: Santiago, Chile, 1953. [Google Scholar]
- Fresquet Febrer, J.L. El uso de productos del reino mineral en la terapéutica del siglo XVI. El libro de los Medicamentos simples de Juan Fragoso (1581) y el Antidotario de Juan Calvo (1580). Asclepio 1999, 51, 55–92. [Google Scholar] [CrossRef] [PubMed]
- Osorio Oliveros, M.E. Curar el Alma y Medicar el Cuerpo: Ciencia Médica Jesuita en el Nuevo Reino de Granada (XVII–XVIII). El caso de la Botica del Colegio Máximo de Santafé. Ph.D. Thesis, Universidad de los Andes, Bogotá, Colombia, 2011. [Google Scholar]
- Bustos Rodríguez, M. Los Cirujanos del Real Colegio de Cádiz en la Encrucijada de la Ilustración (1740–1796); Universidad de Cádiz: Cádiz, Spain, 1983. [Google Scholar]
- Clavijo y Clavijo, S. Historia del Cuerpo de Sanidad Militar de la Armada (Génesis; Perspectiva de Siglos; Ruta de Libertad; Sus Celebridades); Tipografía de Fernando Espín: San Fernando, Spain, 1925. [Google Scholar]
- Laín Entralgo, P. (Ed.) Historia Universal de la Medicina; Salvat: Barcelona, Spain, 1971–1975. [Google Scholar]
- Granjel, L.S. Historia General de la Medicina Española; Ediciones Universidad de Salamanca: Salamanca, Spain, 1978–1986. [Google Scholar]
- Ferrer, D. Historia del Real Colegio de Cirugía de la Armada de Cádiz, 2nd ed.; Universidad de Cádiz: Cádiz, Spain, 1983. [Google Scholar]
- Cabrera Afonso, J.R. La Medicina española del siglo XVIII: El Real Colegio de Cirugía de Cádiz. Real Acad. Nac. Med. 2008, 4, 581–606. [Google Scholar]
- Redruello-Guerrero, P. Los Reales Colegios de Cirugía de Barcelona y Madrid en el siglo XVIII. Actual Med. 2020, 105, 202–208. [Google Scholar] [CrossRef]
- de Vega, L. Pharmacopea de la Armada o Real Catálogo de Medicamentos Pertenecientes a las Enfermedades Medicas…; Imp. D. Manuel Ximenez Carreño: Cádiz, Spain, 1759. [Google Scholar]
- Márquez Espinos, C. Las Juntas Literarias del Real Colegio de Cirugía; Universidad de Cádiz: Cádiz, Spain, 1986. [Google Scholar]
- Orozco Acuaviva, A. El modelo de Enseñanza en el Real Colegio de Cirugía de Cádiz en el siglo XVIII. Gades 1988, 18, 87–108. [Google Scholar]
- Cabrera Afonso, J.R. El libro Médico-Quirúrgico de los Reales Colegios de Cirugía Españoles en la Ilustración; Servicio de Publicaciones de la Universidad de Cádiz: Cádiz, Spain, 1990. [Google Scholar]
- Gestido del Olmo, M.R. Los Fondos Bibliográficos y Humanísticos del Real Colegio de Cirugía de Cádiz. Catalogación y Estudio Crítico. Cádiz.-(1994): Una Biblioteca Ilustrada Gaditana. Los Fondos Bibliográficos Humanísticos del Real Colegio de Cirugía de la Armada; Universidad de Cádiz: Cádiz, Spain, 1991. [Google Scholar]
- Remón Rodríguez, A. El Libro Médico-Científico en la Biblioteca del Real Colegio de Cirugía de Cádiz (1748–1844); Universidad de Cádiz: Cádiz, Spain, 2017. [Google Scholar]
- Pérez Pérez, A.; Vallejo, J.R. The smallpox vaccine in Latin America: A new approach (1801–1804). Medicina 2023, 59, 1093. [Google Scholar] [CrossRef]
- Mercant Ramírez, J. Historia de la Farmacoterapia: Siglos XVIII y XIX. La Farmacia Monástica de la Real Cartuja de Valldemossa; Universitat Autònoma de Barcelona: Barcelona, Spain, 2009. [Google Scholar]
- Archivo de la Facultad de Medicina de Cádiz (AFMC). Registro 8353, Libro de Cuentas del Real Colegio de Cirugía de Cádiz que Tiene Principio en año de 1751. Tomo 1º (1751–1780), f. 27; Facultad de Medicina—Universidad de Cádiz: Cádiz, Spain, 1751–1780. [Google Scholar]
- Ruiz Vega, P. La farmacia en la Real Academia de Medicina y Cirugía de Cádiz (Siglo XIX). Ph.D. Thesis, Universidad de Cádiz, Cádiz, Spain, 2016. [Google Scholar]
- Álvarez Alcalá, F. Formulario Universal o Guía Práctica del Médico, del Cirujano y del Farmacéutico; Librería de Don Ángel Calleja: Madrid, Spain, 1850. [Google Scholar]
- Nysten, P.H. Diccionario de Medicina, Cirugía, Farmacia, Medicina Legal, Física, Química, Botánica, Mineralogía, Zoología y Veterinaria: Por P. H. Nysten, Sucesivamente Aumentado […] por Bricheteau [et al. …]. Traducido Libremente al Castellano por José Castells; Imprenta de J. Roger: Barcelona, Spain, 1848. [Google Scholar]
- Gómez Pamo, J.R. Elementos de Materia Farmacéutica Mineral, Animal y Vegetal; Moya y Plaza: Madrid, Spain, 1871. [Google Scholar]
- Benkendorff, K. Molluscan biological and chemical diversity: Secondary metabolites and medicinal resources produced by marine molluscs. Biol. Rev. 2010, 85, 757–775. [Google Scholar] [CrossRef]
- Leal, M.C.; Madeira, C.; Brandão, C.A.; Puga, J.; Calado, R. Bioprospecting of marine invertebrates for new natural products—A chemical and zoogeographical perspective. Molecules 2012, 17, 9842–9854. [Google Scholar] [CrossRef]
- Benkendorff, K.; Rudd, D.; Nongmaithem, B.D.; Liu, L.; Young, F.; Edwards, V.; Ávila, C.; Abbott, C.A. Are the traditional medical uses of Muricidae molluscs substantiated by their pharmacological properties and bioactive compounds? Mar. Drugs 2015, 13, 5237–5275. [Google Scholar] [CrossRef]
- Ahmad, T.B.; Liu, L.; Kotiw, M.; Benkendorff, K. Review of anti-inflammatory, immune-modulatory and wound healing properties of molluscs. J. Ethnopharmacol. 2017, 210, 156–178. [Google Scholar] [CrossRef]
- Derby, C.D.; Kicklighter, C.E.; Johnson, P.M.; Zhang, X. Chemical composition of inks of diverse marine molluscs suggests convergent chemical defenses. J. Chem. Ecol. 2007, 33, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Dang, V.T.; Benkendorff, K.; Green, T.; Speck, P. Marine snails and slugs: A great place to look for antiviral drugs. J. Virol. 2015, 89, 8114–8118. [Google Scholar] [CrossRef] [PubMed]
- Florek, M.; Fornal, E.; Gómez-Romero, P.; Zieba, E.; Paszkowicz, W.; Lekki, J.; Nowak, J.; Kuczumow, A. Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton. Mater. Sci. Eng. C 2009, 29, 1220–1226. [Google Scholar] [CrossRef]
- Cadman, J.; Zhou, S.; Chen, Y.; Li, Q. Cuttlebone: Characterisation, application and development of biomimetic materials. J. Bionic. Eng. 2012, 9, 367–376. [Google Scholar] [CrossRef]
- Le Pabic, C.; Marie, A.; Marie, B.; Percot, A.; Bonnaud-Ponticelli, L.; López, P.J.; Luquet, G. First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone. J. Proteom. 2017, 150, 63–73. [Google Scholar] [CrossRef]
- North, L.; Labonte, D.; Oyen, M.L.; Coleman, M.P.; Caliskan, H.B.; Johnston, R.E. Interrelated chemical-microstructural-nanomechanical variations in the structural units of the cuttlebone of Sepia officinalis. APL Mater. 2017, 5, 116103. [Google Scholar] [CrossRef]
- Sundaram, S. The various uses of cephalopods. Fish. Chimes 2009, 29, 23–25. [Google Scholar]
- García-Enríquez, S.; Guadarrama, H.E.; Reyes-González, I.; Mendizábal, E.; Jasso-Gastinel, C.F.; García-Enríquez, B.; Rembao-Boiorquez, D.; Pane-Pianese, C. Mechanical performance and in vivo tests of an acrylic bone cement filled with bioactive Sepia officinalis cuttlebone. J. Biomater. Sci. Polym. Ed. 2010, 21, 113–125. [Google Scholar] [CrossRef]
- Curti, F.; Serafim, A.; Olaret, E.; Dinescu, S.; Samoila, I.; Vasile, B.S.; Iovu, H.; Lungu, A.; Stancu, I.C.; Marinescu, R. Development of biocomposite alginate-cuttlebone-gelatin 3D printing inks designed for scaffolds with bone regeneration potential. Mar. Drugs 2022, 20, 670. [Google Scholar] [CrossRef]
- Hongmin, L.; Wei, Z.; Xingrong, Y.; Jing, W.; Wenxin, G.; Jihong, C.; Xin, X.; Fulin, C. Osteoinductive nanohydroxyapatite bone substitute prepared via in situ hydrothermal transformation of cuttlefish bone. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 816–824. [Google Scholar] [CrossRef]
- Mansouri, K.; Fattahian, H.; Mansouri, N.; Mostafavi, P.G.; Kajbafzadef, A. The role of cuttlebone and cuttlebone derived hydroxyapatite with platelet rich plasma on tibial bone defect healing in rabbit: An experimental study. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 107–115. [Google Scholar] [CrossRef]
- Won, S.; Lee, J.M.; Park, H.; Seo, J.; Cheong, J. Evaluation of the bone defect regeneration after implantation with cuttlebone in rabbit. J. Vet. Clin. 2015, 32, 410–416. [Google Scholar] [CrossRef]
- Palaveniene, A.; Lebedevaite, M.; Liesiene, J. Alginate capsules with cuttlebone-derived fillers as an integrated solution for bone repair. Mater. Sci. 2018, 24, 295–300. [Google Scholar] [CrossRef]
- Palaveniene, A.; Songailiene, K.; Baniukaitiene, O.; Tamburaci, S.; Kimna, C.; Tihminlioglu, F.; Liesiene, J. The effect of biomimetic coating and cuttlebone microparticle reinforcement on the osteoconductive properties of cellulose-based scaffolds. Int. J. Biol. Macromol. 2020, 152, 1194–1204. [Google Scholar] [CrossRef]
- Kumar, M.N.V.R.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004, 104, 6017–6084. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A.; Muzzarelli, C. Chitosan chemistry: Relevance to the biomedical sciences. Adv. Polymer Sci. 2005, 186, 151–209. [Google Scholar]
- Rinaudo, M. Chitin and chitosan: Properties and application. Prog. Polymer Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Vino, A.B.; Ramasamy, P.; Shanmugam, V.; Shanmugam, A. Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pac. J. Trop. Biomed. 2012, 2 (Suppl. S1), S334–S341. [Google Scholar] [CrossRef]
- Garcinuño, S.; Aranaz, I.; Civera, C.; Arias, C.; Acosta, N. Evaluating non-conventional chitosan sources for controlled release of risperidone. Polymers 2022, 14, 1355. [Google Scholar] [CrossRef]
- Karthik, R.; Manigandan, V.; Saravanan, R.; Rajesh, R.P.; Chandrika, B. Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonis. Int. J. Biol. Macromol. 2016, 84, 319–328. [Google Scholar] [CrossRef]
- Narasimman, V.; Ramachandran, S. In silico analysis of low molecular weight sulfated chitosan from Sepia brevimana as potential inhibitors of white spot syndrome envelope proteins. Biomass Conv. Bioref. 2023. [Google Scholar] [CrossRef]
- Shanmugam, A.; Mahalakshmi, T.S.; Barwin, V.A. Antimicrobial activity of polysaccharides isolated from the cuttlebone of Sepia aculeate and Sepia brevimana: An approach to selected antimicrobial activity for human pathogenic microorganisms. J. Fish Aquat. Sci. 2008, 3, 268–274. [Google Scholar]
- Yazdanpanah, G.; Javid, N.; Honarmandrad, Z.; Amirmahani, N.; Nasiri, A. Evaluation of antimicrobial activities of powdered cuttlebone against Klebsiella oxytoca, Staphylococcus aureus, and Aspergillus flavus. Environ. Health Eng. Manag. J. 2021, 8, 39–45. [Google Scholar] [CrossRef]
- Jang, J.K.; Lee, O.S.; Kang, T.J.; Lim, S.C. Wound healing effect of cuttlebone extract in burn injury of rat. Food Sci. Biotechnol. 2013, 22 (Suppl. S1), 99–105. [Google Scholar] [CrossRef]
- Lee, K.M.; Shim, H.; Lee, G.S.; Park, I.H.; Lee, O.S.; Lim, S.C.; Kang, T.J. Chitin from the extract of cuttlebone induces acute inflammation and enhances MMP1 expression. Biomol. Ther. 2013, 21, 246–250. [Google Scholar] [CrossRef]
- Mostoufi, A.; Bavarsad, N.; Aryanfar, S.; Akhgari, A. New natural marine antacid drug from cuttlebone. Pharm. Sci. 2018, 24, 227–234. [Google Scholar] [CrossRef]
- Bettencourt, V.; Guerra, A. Carbon- and oxygen-isotope composition of the cuttlebone of Sepia officinalis: A tool for predicting ecological information? Mar. Biol. 1999, 133, 651–657. [Google Scholar] [CrossRef]
- Dance, M.A.; Bello, G.; Furey, N.B.; Rooker, J.R. Species-specific variation in cuttlebone δ13C and δ18O for three species of Mediterranean cuttlefish. Mar. Biol. 2014, 161, 489–494. [Google Scholar] [CrossRef]
- Vibhatabandhu, P.; Srithongouthai, S. Removal of copper (II) from aqueous solutions using cuttlebone as bio-adsorbent. App. Envi. Res. 2016, 38, 39–47. [Google Scholar] [CrossRef]
- Xu, J.; Che, P.; Zhang, H.; Zhang, Y.; Wu, J.; Li, W.; He, J.; Ma, Z.; Li, T.; Dong, Y.; et al. Superhydrophobic modification of biomass cuttlebone applied to oil spill remediation. Materials 2022, 15, 4401. [Google Scholar] [CrossRef]
- Mirzabagheri, S.; Derhamjani, G.; Maharati, S.; Ziaee, Z.; Vatankhah, F.; Mirzabagheri, D. Using cuttlebone powder to produce green concrete. J. Appl. Eng. Sci. 2018, 8, 25–28. [Google Scholar] [CrossRef]
- Sun, J.; Bhushan, B. Hierarchical structure and mechanical properties of nacre: A review. RSC Adv. 2012, 2, 7617–7632. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Q.; Tang, Z. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 2012, 41, 1111–1129. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, E.M.; Wang, W.; Li, C.; Guo, J.; Ozbolat, I.T.; Rahn, K.M.; Armstrong, A.D.; Xia, J.; Qian, G.; Yang, J. Design strategies and applications of nacre-based biomaterials. Acta Biomater. 2017, 54, 21–34. [Google Scholar] [CrossRef]
- Ben-Nissan, B.; Choi, A.H.; Green, D.W. Marine derived biomaterials for bone regeneration and tissue engineering: Learning from nature. In Marine-Derived Biomaterials for Tissue Engineering Applications; Choi, A.H., Ben-Nissan, B., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 51–78. [Google Scholar]
- Sumitomo, T.; Kakisawa, H.; Owaki, Y.; Kagawa, Y. Transmission electron microscopy observation of nanoscale deformation structures in nacre. J. Mater. Res. 2008, 23, 3213–3221. [Google Scholar] [CrossRef]
- Yao, N.; Epstein, A.K.; Liu, W.W.; Sauer, F.; Yang, N. Organic-inorganic interfaces and spiral growth in nacre. J. R. Soc. Interface 2009, 6, 367. [Google Scholar] [CrossRef]
- Barthelat, F. Nacre from mollusk shells: A model for high-performance structural materials. Bioinspir. Biomim. 2010, 5, 035001. [Google Scholar] [CrossRef]
- Cartwright, J.H.; Checa, A.G. The dynamics of nacre self-assembly. J. R. Soc. Interface 2007, 4, 491–504. [Google Scholar] [CrossRef]
- Luz, G.M.; Mano, J.F. Biomimetic design of materials and biomaterials inspired by the structure of nacre. Phil. Trans. R. Soc. A 2009, 367, 1587–1605. [Google Scholar] [CrossRef]
- Stempflé, P.; Pantalé, O.; Rousseau, M.; Lopez, E.; Bourrat, X. Mechanical properties of the elemental nanocomponents of nacre structure. Mater. Sci. Eng. C 2010, 30, 715–721. [Google Scholar] [CrossRef]
- Sarkar, R.; Banerjee, G. Ceramic based bio-medical implants. Interceram 2010, 59, 98–102. [Google Scholar]
- Barthelat, F.; Zhu, D. A novel biomimetic material duplicating the structure and mechanics of natural nacre. J. Mater. Res. 2011, 26, 1203–1215. [Google Scholar] [CrossRef]
- Lalzawmliana, V.; Mukherjee, P.; Kundu, B.; Nandi, S.K. Clinical application of biomimetic marine-derived materials for tissue engineering. In Marine-Derived Biomaterials for Tissue Engineering Applications; Choi, A.H., Ben-Nissan, B., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 329–356. [Google Scholar]
- Pei, J.; Wang, Y.; Zou, X.; Ruan, H.; Tang, C.; Liao, J.; Si, G.; Sun, P. Extraction, purification, bioactivities and application of matrix proteins from pearl powder and nacre powder: A review. Front. Bioeng. Biotechnol. 2021, 9, 649665. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, I.; Samata, T. Bivalve shell structure and organic matrix. Mater. Sci. Eng. C 2006, 6, 692–698. [Google Scholar] [CrossRef]
- Corni, I.; Harvey, T.J.; Wharton, J.A.; Stokes, K.R.; Walsh, F.C.; Wood, R.J.K. A review of experimental techniques to produce a nacre-like structure. Bioinspir. Biomim. 2012, 7, 031001. [Google Scholar] [CrossRef] [PubMed]
- Bouville, F.; Maire, E.; Meille, S.; Van de Moortèle, B.; Stevenson, A.J.; Deville, S. Strong, tough and brittle bioinspired ceramics from brittle constituents. Nat. Mater. 2014, 13, 508–524. [Google Scholar] [CrossRef]
- Tang, Z.; Kotov, N.A.; Magonov, S.; Ozturk, B. Nanostructured artificial nacre. Nat. Mater. 2003, 2, 413–418. [Google Scholar] [CrossRef]
- Wei, H.; Ma, N.; Shi, F.; Wang, Z.; Zhang, X. Artificial nacre by alternating preparation of layer-by-layer polymer films and CaCO3 strata. Chem. Mater. 2007, 19, 1974–1978. [Google Scholar] [CrossRef]
- Schoeppler, V.; Lemanis, R.; Reich, E.; Pusztai, T.; Gránásy, L.; Zlotnikov, I. Crystal growth kinetics as an architectural constraint on the evolution of molluscan shells. Proc. Natl. Acad. Sci. USA 2019, 116, 20388–20397. [Google Scholar] [CrossRef]
- Wan, M.C.; Qin, W.; Lei, C.; Li, Q.H.; Meng, M.; Fang, M.; Song, W.; Chen, J.H.; Tay, F.; Niu, L.N. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact. Mater. 2021, 6, 4255–4285. [Google Scholar] [CrossRef]
- Mao, Q.H.; Xu, P. Research progress of pearl/nacre in bone tissue repair. J. Oral Sci. Res. 2016, 32, 311–313. [Google Scholar]
- Duplat, D.; Chabadel, A.; Gallet, M.; Berland, S.; Bédouet, L.; Rousseau, M.; Kamel, S.; Milet, C.; Jurdic, P.; Brazier, M.; et al. The in vitro osteoclastic degradation of nacre. Biomaterials 2007, 28, 2155–2162. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.J.; Milet, C.; Peduzzi, J.; Pereira, L.; Haigle, J.; Barthelemy, M.; Lopez, E. Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. J. Exp. Zool. 2000, 288, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, M.; Pereira-Mouries, L.; Almeida, M.J.; Milet, C.; Lopez, E. The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp. Biochem. Phys. B 2003, 135, 1–7. [Google Scholar] [CrossRef]
- Lamghari, M.; Antonietti, P.; Berland, S.; Laurent, A.; Lopez, E. Arthrodesis of lumbar spine transverse processes using nacre in rabbit. J. Bone Miner. Res. 2001, 16, 2232–2237. [Google Scholar] [CrossRef]
- Asvanund, P.; Chunhabundit, P.; Suddhasthira, T. Potential induction of bone regeneration by nacre: An in vitro study. Implant Dent. 2011, 20, 32–39. [Google Scholar] [CrossRef]
- Zhang, G.; Brion, A.; Willemin, A.S.; Piet, M.H.; Moby, V.; Bianchi, A.; Mainard, D.; Galois, L.; Gillet, P.; Rousseau, M. Nacre, a natural, multi-use, and timely biomaterial for bone graft substitution. J. Biomed. Mater. Res. A 2017, 105, 662–671. [Google Scholar] [CrossRef]
- Atlan, G.; Delattre, O.; Berland, S.; LeFaou, A.; Nabias, G.; Cot, D.; Lopez, E. Interface between bone and nacre implants in sheep. Biomaterials 1999, 20, 1017–1022. [Google Scholar] [CrossRef]
- Brion, A.; Zhang, G.; Dossot, M.; Moby, V.; Dumas, D.; Hupont, S.; Piet, M.H.; Bianchi, A.; Mainard, D.; Galois, L.; et al. Nacre extract restores the mineralization capacity of subchondral osteoarthritis osteoblasts. J. Struct. Biol. 2015, 192, 500–509. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Singha, P.K.; Dey, S. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation. PLoS ONE 2013, 8, e84584. [Google Scholar] [CrossRef]
- Lao, Y.; Zhang, X.; Zhou, J.; Su, W.; Chen, R.; Wang, Y.; Zhou, W.; Xu, Z.F. Characterization and in vitro mineralization function of a soluble protein complex P60 from the nacre of Pinctada fucata. Comp. Biochem. Physiol. B 2007, 148, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Berland, S.; Delattre, O.; Borzeix, S.; Catonne, Y.; Lopez, E. Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials 2005, 26, 2767–2773. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, M.; Boulzaguet, H.; Biagianti, J.; Duplat, D.; Milet, C.; Lopez, E.; Bedouet, L. Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1 cells. Biomed. Mater. Res. A 2008, 85, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.Q.; Wang, H.M.; Xu, J.H.; Wei, D.; Zhao, W.Q.; Wang, X.X.; Wu, N.P. Effects of titanium implant surface coated with natural nacre on MC3T3E1 cell line in vitro. Prog. Biochem. Biophys. 2008, 35, 671–675. [Google Scholar]
- Lopez, E.; Vidal, B.; Berland, S.; Camprasse, S.; Camprasse, G.; Silve, C. Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 1992, 24, 667–679. [Google Scholar] [CrossRef]
- Lamghari, M.; Berland, S.; Laurent, A.; Huet, H.; Lopez, E. Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 2001, 22, 555–562. [Google Scholar] [CrossRef]
- Kün-Darbois, J.D.; Libouban, H.; Camprasse, G.; Camprasse, S.; Chappard, D. In vivo osseointegration and erosion of nacre screws in an animal model. J. Biomed. Mater. Res. B 2021, 109, 780–788. [Google Scholar] [CrossRef]
- Song, F.; Soh, A.K.; Bai, Y.L. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 2003, 24, 3623–3631. [Google Scholar] [CrossRef]
- Lopez, E.; Le Faou, A.; Borzeix, S.; Berland, S. Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl). Tissue Cell 2000, 32, 95–101. [Google Scholar] [CrossRef]
- Lee, K.; Kim, H.; Kim, J.M.; Chung, Y.H.; Lee, T.Y.; Lim, H.S.; Lim, J.H.; Kim, T.; Bae, J.S.; Woo, C.H.; et al. Nacre-driven water-soluble factors promote wound healing of the deep burn porcine skin by recovering angiogenesis and fibroblast function. Mol. Biol. Rep. 2012, 39, 3211–3218. [Google Scholar] [CrossRef]
- Santhana Vignesh, T.; Suja, C.P. Marine molluscan shell for dermal regeneration: A review. Pro. Aqua Farm. Mar. Biol. 2019, 2, 180025. [Google Scholar]
- Agarwal, V.; Tjandra, E.S.; Iyer, K.S.; Humfrey, B.; Fear, M.; Wood, F.M.; Dunlop, S.; Raston, C.L. Evaluating the effects of nacre on human skin and scar cells in culture. Toxicol. Res. 2014, 3, 223–227. [Google Scholar] [CrossRef]
- Rousseau, M.; Bedouet, L.; Lati, E.; Gasser, P.; Le Ny, K.; Lopez, E. Restoration of stratum corneum with nacre lipids. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006, 145, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.X.; Li, S.R.; Yao, S.; Bi, Q.R.; Hou, J.J.; Cai, L.Y.; Han, S.M.; Wu, W.Y.; Guo, D.A. Anticonvulsant and sedative-hypnotic activity screening of pearl and nacre (mother of pearl). J. Ethnopharmacol. 2016, 181, 229–235. [Google Scholar] [CrossRef]
- Fuji, T.; Inoue, T.; Hasegawa, Y. Nacre extract prevents scopolamine-induced memory deficits in rodents. Asian Pac. J. Trop. Med. 2018, 11, 202–208. [Google Scholar]
- Yamagami, H.; Fuji, T.; Wako, M.; Hasegawa, Y. Sulfated polysaccharide isolated from the nacre of pearl oyster improves scopolamine-induced memory impairment. Antioxidants 2021, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.F.; Yang, H.B.; Han, Z.M.; Ling, Z.C.; Yu, S.H. An all-natural bioinspired structural material for plastic replacement. Nat. Commun. 2020, 11, 5401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, J.A.; Vallejo, J.R. The Use of Shells of Marine Molluscs in Spanish Ethnomedicine: A Historical Approach and Present and Future Perspectives. Pharmaceuticals 2023, 16, 1503. https://doi.org/10.3390/ph16101503
González JA, Vallejo JR. The Use of Shells of Marine Molluscs in Spanish Ethnomedicine: A Historical Approach and Present and Future Perspectives. Pharmaceuticals. 2023; 16(10):1503. https://doi.org/10.3390/ph16101503
Chicago/Turabian StyleGonzález, José A., and José Ramón Vallejo. 2023. "The Use of Shells of Marine Molluscs in Spanish Ethnomedicine: A Historical Approach and Present and Future Perspectives" Pharmaceuticals 16, no. 10: 1503. https://doi.org/10.3390/ph16101503
APA StyleGonzález, J. A., & Vallejo, J. R. (2023). The Use of Shells of Marine Molluscs in Spanish Ethnomedicine: A Historical Approach and Present and Future Perspectives. Pharmaceuticals, 16(10), 1503. https://doi.org/10.3390/ph16101503