Case Report and Literature Review: Bisphosphonate, Sirolimus, and Atenolol Treatment in a 4-Year-Old Child Diagnosed with Gorham–Stout Disease
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorham, L.W.; Stout, A.P. Massive osteolysis (acute spontaneous absorption of bone, phantom bone, disappearing bone): Its relation to hemangiomatosis. J. Bone Jt. Surg. Am. 1955, 37, 985–1004. [Google Scholar] [CrossRef]
- Ramaroli, D.A.; Cavarzere, P.; Cheli, M.; Provenzi, M.; Barillari, M.; Rodella, G.; Gaudino, R.; Antoniazzi, F. A child with early-onset gorham-stout disease complicated by chylothorax: Near-complete regression of bone lesions with interferon and bisphosphonate treatment. Horm. Res. Paediatr. 2019, 91, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Angelini, A.; Mosele, N.; Pagliarini, E.; Ruggieri, P. Current concepts from diagnosis to management in gorham-stout disease: A systematic narrative review of about 350 cases. EFORT Open Rev. 2022, 7, 35–48. [Google Scholar] [CrossRef]
- Momanu, A.; Caba, L.; Gorduza, N.C.; Arhire, O.E.; Popa, A.D.; Ianole, V.; Gorduza, E.V. Gorham-stout disease with multiple bone involvement-challenging diagnosis of a rare disease and literature review. Medicina 2021, 57, 681. [Google Scholar] [CrossRef] [PubMed]
- de Keyser, C.E.; Saltzherr, M.S.; Bos, E.M.; Zillikens, M.C. A large skull defect due to gorham-stout disease: Case report and literature review on pathogenesis, diagnosis, and treatment. Front. Endocrinol. 2020, 11, 37. [Google Scholar] [CrossRef]
- Heffez, L.; Doku, H.C.; Carter, B.L.; Feeney, J.E. Perspectives on massive osteolysis. Report of a case and review of the literature. Oral Surg. Oral Med. Oral Pathol. 1983, 55, 331–343. [Google Scholar] [CrossRef]
- Cramer, S.L.; Wei, S.; Merrow, A.C.; Pressey, J.G. Gorham-stout disease successfully treated with sirolimus and zoledronic acid therapy. J. Pediatr. Hematol. Oncol. 2016, 38, e129–e132. [Google Scholar] [CrossRef]
- Liang, Y.; Tian, R.; Wang, J.; Shan, Y.; Gao, H.; Xie, C.; Li, J.; Xu, M.; Gu, S. Gorham-stout disease successfully treated with sirolimus (rapamycin): A case report and review of the literature. BMC Musculoskelet. Disord. 2020, 21, 577. [Google Scholar] [CrossRef]
- Forero Saldarriaga, S.; Vallejo, C.; Urrea Pineda, L.; Osma, A.; Bonilla Gonzalez, C. Gorham-stout disease with clinical response to sirolimus treatment. Eur. J. Case Rep. Intern. Med. 2021, 8, 002740. [Google Scholar] [CrossRef]
- Wyness, S.P.; Roberts, W.L.; Straseski, J.A. Pediatric reference intervals for four serum bone markers using two automated immunoassays. Clin. Chim. Acta. 2013, 415, 169–172. [Google Scholar] [CrossRef]
- Lee, Y.A.; Kwon, A.; Kim, J.H.; Nam, H.-K.; Yoo, J.-H.; Lim, J.S.; Cho, S.Y.; Cho, W.K.; Shim, K.S. Clinical practice guidelines for optimizing bone health in korean children and adolescents. Ann. Pediatr. Endocrinol. Metab. 2022, 27, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Lawson, S.L.; Hogg, M.M.; Moore, C.G.; Anderson, W.E.; Osipoff, P.S.; Runyon, M.S.; Reynolds, S.L. Pediatric pain assessment in the emergency department: Patient and caregiver agreement using the wong-baker faces and the faces pain scale–revised. Pediatr. Emerg. Care. 2021, 37, e950–e954. [Google Scholar] [CrossRef] [PubMed]
- Nir, V.; Guralnik, L.; Livnat, G.; Bar-Yoseph, R.; Hakim, F.; Ilivitzki, A.; Bentur, L. Propranolol as a treatment option in gorham-stout syndrome: A case report. Pediatr. Pulmonol. 2014, 49, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Koto, K.; Inui, K.; Itoi, M.; Itoh, K. Gorham-stout disease in the rib and thoracic spine with spinal injury treated with radiotherapy, zoledronic acid, vitamin d, and propranolol: A case report and literature review. Mol. Clin. Oncol. 2019, 11, 551–556. [Google Scholar] [CrossRef]
- Baud, J.; Lomri, A.; Graber, D.; Bikfalvi, A. The therapeutic response in gorham’s syndrome to the beta-blocking agent propranolol is correlated to vegf-a, but not to vegf-c or flt1 expression. BMC Res. Notes 2015, 8, 333. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, C.; Song, D.; Wang, L.; Li, J.; Wang, C.; Guo, L. Atenolol vs. Propranolol for the treatment of infantile haemangiomas: A systematic review and meta-analysis. Exp. Ther. Med. 2020, 20, 1644–1652. [Google Scholar] [CrossRef]
- Ballona, R.; Zevallos, J.; Núñez, J. Clinical evaluation of infantile hemangiomas treated with atenolol. Dermatol. Online J. 2020, 26. [Google Scholar] [CrossRef]
- Rossi, M.; Buonuomo, P.S.; Battafarano, G.; Conforti, A.; Mariani, E.; Algeri, M.; Pelle, S.; D’Agostini, M.; Macchiaiolo, M.; De Vito, R.; et al. Dissecting the mechanisms of bone loss in gorham-stout disease. Bone 2020, 130, 115068. [Google Scholar] [CrossRef]
- van Beek, E.R.; Cohen, L.H.; Leroy, I.M.; Ebetino, F.H.; Lowik, C.W.; Papapoulos, S.E. Differentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates. Bone 2003, 33, 805–811. [Google Scholar] [CrossRef]
- Russell, R.G.; Rogers, M.J.; Frith, J.C.; Luckman, S.P.; Coxon, F.P.; Benford, H.L.; Croucher, P.I.; Shipman, C.; Fleisch, H.A. The pharmacology of bisphosphonates and new insights into their mechanisms of action. J. Bone Miner. Res. 1999, 14 (Suppl. S2), 53–65. [Google Scholar] [CrossRef]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef]
- Choi, Y.; Hwang, S.; Kim, G.-H.; Lee, B.H.; Yoo, H.-W.; Choi, J.-H. Genotype-phenotype correlations and long-term efficacy of pamidronate therapy in patients with osteogenesis imperfecta. Ann. Pediatr. Endocrinol. Metab. 2022, 27, 22–29. [Google Scholar] [CrossRef]
- Santini, D.; Schiavon, G.; Angeletti, S.; Vincenzi, B.; Gasparro, S.; Grilli, C.; La Cesa, A.; Virzí, V.; Leoni, V.; Budillon, A.; et al. Last generation of amino-bisphosphonates (n-bps) and cancer angio-genesis: A new role for these drugs? Recent. Pat. Anticancer. Drug Discov. 2006, 1, 383–396. [Google Scholar] [CrossRef]
- Hammer, F.; Kenn, W.; Wesselmann, U.; Hofbauer, L.C.; Delling, G.; Allolio, B.; Arlt, W. Gorham-stout disease—Stabilization during bisphosphonate treatment. J. Bone Miner. Res. 2005, 20, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.N.; Masthoff, M.; Gosheger, G.; Klingebiel, S.; Schorn, D.; Roder, J.; Vogler, T.; Wildgruber, M.; Andreou, D. Gorham-stout disease: Good results of bisphosphonate treatment in 6 of 7 patients. Acta Orthop. 2020, 91, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, H.; Chakravarthy, V.; Whiting, B.; Kilpatrick, S.E.; Chen, T.; Krishnaney, A. Gorham-stout disease of the spine presenting with intracranial hypotension and cerebrospinal fluid leak: A case report and review of the literature. Surg. Neurol. Int. 2020, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-H.; Choi, Y.; Lee, Y.; Yoo, H.-W.; Choi, J.-H. Efficacy and safety of intravenous pamidronate infusion for treating osteoporosis in children and adolescents. Ann. Pediatr. Endocrinol. Metab. 2021, 26, 105–111. [Google Scholar] [CrossRef]
- Baroncelli, G.I.; Bertelloni, S. The use of bisphosphonates in pediatrics. Horm. Res. Paediatr. 2014, 82, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Kreutle, V.; Blum, C.; Meier, C.; Past, M.; Müller, B.; Schütz, P.; Borm, K. Bisphosphonate induced hypocalcaemia-report of six cases and review of the literature. Swiss Med. Wkly. 2014, 144, w13979. [Google Scholar] [CrossRef]
- Peter, R.; Mishra, V.; Fraser, W.D. Severe hypocalcaemia after being given intravenous bisphosphonate. BMJ. 2004, 328, 335–336. [Google Scholar] [CrossRef]
- Duarte, N.T.; Rech, B.O.; Martins, I.G.; Franco, J.B.; Ortega, K.L. Can children be affected by bisphosphonate-related osteonecrosis of the jaw? A systematic review. Int. J. Oral. Maxillofac. Surg. 2020, 49, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Celin, M.R.; Simon, J.C.; Krzak, J.J.; Fial, A.V.; Kruger, K.M.; Smith, P.A.; Harris, G.F. Do bisphosphonates alleviate pain in children? A systematic review. Curr. Osteoporos. Rep. 2020, 18, 486–504. [Google Scholar] [CrossRef] [PubMed]
- Nagae, M.; Hiraga, T.; Wakabayashi, H.; Wang, L.; Iwata, K.; Yoneda, T. Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone 2006, 39, 1107–1115. [Google Scholar] [CrossRef]
- Yoneda, T.; Hata, K.; Nakanishi, M.; Nagae, M.; Nagayama, T.; Wakabayashi, H.; Nishisho, T.; Sakurai, T.; Hiraga, T. Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain. Bone 2011, 48, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.; Fu, Y.; Zhang, C.; Ford, N.C.; Wu, X.; Wu, Q.; Yan, D.; Chen, X.; Cao, X.; Guan, Y. Mechanisms of bone pain: Progress in research from bench to bedside. Bone Res. 2022, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Maksymowych, P.W. Bisphosphonates-anti-inflammatory properties. Curr. Med. Chem.-Anti-Inflamm. Anti-Allergy Agents 2002, 1, 15–28. [Google Scholar] [CrossRef]
- Boyer, P.; Bourgeois, P.; Boyer, O.; Catonné, Y.; Saillant, G. Massive gorham-stout syndrome of the pelvis. Clin. Rheumatol. 2005, 24, 551–555. [Google Scholar] [CrossRef]
- Campbell, J.; Almond, H.G.A.; Johnson, R. Massive osteolysis of the humerus with spontaneous recovery. J. Bone Jt. Surg. Br. Vol. 1975, 57-B, 238–240. [Google Scholar] [CrossRef]
- Ricci, K.W.; Hammill, A.M.; Mobberley-Schuman, P.; Nelson, S.C.; Blatt, J.; Bender, J.L.G.; McCuaig, C.C.; Synakiewicz, A.; Frieden, I.J.; Adams, D.M. Efficacy of systemic sirolimus in the treatment of generalized lymphatic anomaly and gorham-stout disease. Pediatr. Blood Cancer. 2019, 66, e27614. [Google Scholar] [CrossRef]
- Triana, P.; Dore, M.; Cerezo, V.N.; Cervantes, M.; Sánchez, A.V.; Ferrero, M.M.; González, M.D.; Lopez-Gutierrez, J.C. Sirolimus in the treatment of vascular anomalies. Eur. J. Pediatr. Surg. 2017, 27, 86–90. [Google Scholar]
- Moriceau, G.; Ory, B.; Mitrofan, L.; Riganti, C.; Blanchard, F.; Brion, R.; Charrier, C.; Battaglia, S.; Pilet, P.; Denis, M.G.; et al. Zoledronic acid potentiates mtor inhibition and abolishes the resistance of osteosarcoma cells to rad001 (everolimus): Pivotal role of the prenylation process. Cancer Res. 2010, 70, 10329–10339. [Google Scholar] [CrossRef] [PubMed]
- Storch, C.H.; Hoeger, P.H. Propranolol for infantile haemangiomas: Insights into the molecular mechanisms of action. Br. J. Dermatol. 2010, 163, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, M.; Fukao, T.; Kondo, N. Propranolol for intractable diffuse lymphangiomatosis. N. Engl. J. Med. 2011, 364, 1380–1382. [Google Scholar] [CrossRef]
- Ward, L.M.; Konji, V.N.; Ma, J. The management of osteoporosis in children. Osteoporos. Int. 2016, 27, 2147–2179. [Google Scholar] [CrossRef] [PubMed]
- Bowden, S.A.; Mahan, J.D. Zoledronic acid in pediatric metabolic bone disorders. Transl. Pediatr. 2017, 6, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Vuorimies, I.; Toiviainen-Salo, S.; Hero, M.; Mäkitie, O. Zoledronic acid treatment in children with osteogenesis imperfecta. Horm. Res. Paediatr. 2011, 75, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Barros, E.R.; Saraiva, G.L.; de Oliveira, T.P.; Lazaretti-Castro, M. Safety and efficacy of a 1-year treatment with zoledronic acid compared with pamidronate in children with osteogenesis imperfecta. J. Pediatr. Endocrinol. Metab. 2012, 25, 485–491. [Google Scholar] [CrossRef]
- Glorieux, F.; Bishop, N.; Bober, M.; Brain, C.; Devogelaer, J.; Fekete, G.; Forin, V.; Hopkin, R.; Kaitila, I.; Lee, B.; et al. Intravenous zoledronic acid (zol) compared to iv pamidronate (pam) in children with severe osteogenesis imperfecta (oi). Calcif. Tissue Int. 2008, 82, S85. [Google Scholar]
- Green, J.R. Zoledronic acid: Pharmacologic profile of a potent bisphosphonate. J. Organomet. Chem. 2005, 690, 2439–2448. [Google Scholar] [CrossRef]
- Scala, R.; Maqoud, F.; Antonacci, M.; Dibenedetto, J.R.; Perrone, M.G.; Scilimati, A.; Castillo, K.; Latorre, R.; Conte, D.; Bendahhou, S.; et al. Bisphosphonates targeting ion channels and musculoskeletal effects. Front. Pharmacol. 2022, 13, 837534. [Google Scholar] [CrossRef]
- Scala, R.; Maqoud, F.; Angelelli, M.; Latorre, R.; Perrone, M.G.; Scilimati, A.; Tricarico, D. Zoledronic acid modulation of trpv1 channel currents in osteoblast cell line and native rat and mouse bone marrow-derived osteoblasts: Cell proliferation and mineralization effect. Cancers 2019, 11, 206. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.J.; Yoo, J.W.; Ahn, M.B. Case Report and Literature Review: Bisphosphonate, Sirolimus, and Atenolol Treatment in a 4-Year-Old Child Diagnosed with Gorham–Stout Disease. Pharmaceuticals 2023, 16, 1504. https://doi.org/10.3390/ph16101504
Park SJ, Yoo JW, Ahn MB. Case Report and Literature Review: Bisphosphonate, Sirolimus, and Atenolol Treatment in a 4-Year-Old Child Diagnosed with Gorham–Stout Disease. Pharmaceuticals. 2023; 16(10):1504. https://doi.org/10.3390/ph16101504
Chicago/Turabian StylePark, Su Jin, Jae Won Yoo, and Moon Bae Ahn. 2023. "Case Report and Literature Review: Bisphosphonate, Sirolimus, and Atenolol Treatment in a 4-Year-Old Child Diagnosed with Gorham–Stout Disease" Pharmaceuticals 16, no. 10: 1504. https://doi.org/10.3390/ph16101504
APA StylePark, S. J., Yoo, J. W., & Ahn, M. B. (2023). Case Report and Literature Review: Bisphosphonate, Sirolimus, and Atenolol Treatment in a 4-Year-Old Child Diagnosed with Gorham–Stout Disease. Pharmaceuticals, 16(10), 1504. https://doi.org/10.3390/ph16101504