Pathophysiology and Therapeutic Management of Bone Loss in Patients with Critical Illness
Abstract
:1. Introduction
2. Bone Metabolism and Remodeling in the Disease Setting of Critical Illness
3. BTMs in Critical Illness
4. The Aftermath of Altered Bone Metabolism in ICU Patients
4.1. Fragility Fractures in Critically Ill Patients
4.2. Morbidity and Mortality with Increased Bone Loss
5. Lifestyle Modifications and Prevention Strategies
- Consideration of bone loss in critically ill patients should be integrated into the framework of post-ICU syndrome.
- We strongly recommend conducting well-structured, sufficiently powered, and meticulously executed randomized controlled trials. These trials should compare early rehabilitation or proactive pharmacological interventions with standard care for critically ill patients, with a focus on measuring and reporting outcomes of significant clinical relevance to patients.
- We suggest identifying and evaluating risk factors for ICU-associated bone loss, including:
- -
- Duration of ICU stay;
- -
- Severity of illness;
- -
- Immobilization;
- -
- Medications causing bone loss (e.g., glucocorticoids);
- -
- Malnutrition;
- -
- Endocrine dysfunction;
- -
- Postmenopausal status.
- We suggest conducting radiological and serological diagnostic tests to assess bone mass status as early as possible, considering patients’ clinical conditions during their ICU stays.
- Strategies for preventing and treating bone loss in critically ill patients emphasize a comprehensive, multidisciplinary approach.
- Early mobilization and rehabilitation are recommended.
- Early assessment of nutritional status upon admission to the ICU is advisable, along with the provision of appropriate nutritional support (protein, vitamin D, calcium, and micronutrients).
- Consider pharmacological interventions for high-risk patients.
5.1. Early Mobilization and Rehabilitation
5.2. Cessation of Alcohol Intake and Cigarette Smoking
5.3. Nutritional Support
6. Pharmacological Intervention and Treatment of Osteoporosis
6.1. Vitamin D
6.2. Alteration of The Hypermetabolic State of ICU Patients
6.3. Anti-Resorptive Agents
6.3.1. Bisphosphonates
6.3.2. Denosumab
6.4. Anabolic Agents
Teriparatide
7. Novel Approaches and Future Considerations in the Treatment of Osteoporosis
7.1. Combination Regimens
7.2. Novel Pharmaceutical Approaches
7.2.1. Romosozumab
7.2.2. Donepezil
7.2.3. Regenerative Medicine and Stem Cell Therapy
8. Limitations in the Treatment of Osteoporosis in the Intensive Care Setting
8.1. Managing Therapeutic Compliance in ICU Patients
8.2. Multidisciplinary Approach in the Management of Post-ICU Survivors
8.3. Novel Management Strategies for Post-ICU Management
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chelluri, L.; Im, K.A.; Belle, S.H.; Schulz, R.; Rotondi, A.J.; Donahoe, M.P.; Sirio, C.A.; Mendelsohn, A.B.; Pinsky, M.R. Long-term mortality and quality of life after prolonged mechanical ventilation. Crit. Care Med. 2004, 32, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Garland, A.; Olafson, K.; Ramsey, C.D.; Yogendran, M.; Fransoo, R. Distinct determinants of long-term and short-term survival in critical illness. Intensive Care Med. 2014, 40, 1097–1105. [Google Scholar] [CrossRef]
- Williams, T.A.; Dobb, G.J.; Finn, J.C.; Knuiman, M.W.; Geelhoed, E.; Lee, K.Y.; Webb, S.A. Determinants of long-term survival after intensive care. Crit. Care Med. 2008, 36, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Dowdy, D.W.; Eid, M.P.; Sedrakyan, A.; Mendez-Tellez, P.A.; Pronovost, P.J.; Herridge, M.S.; Needham, D.M. Quality of life in adult survivors of critical illness: A systematic review of the literature. Intensive Care Med. 2005, 31, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Herridge, M.S.; Cheung, A.M.; Tansey, C.M.; Matte-Martyn, A.; Diaz-Granados, N.; Al-Saidi, F.; Cooper, A.B.; Guest, C.B.; Mazer, C.D.; Mehta, S.; et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N. Engl. J. Med. 2003, 348, 683–693. [Google Scholar] [CrossRef]
- Cuthbertson, B.H.; Scott, J.; Strachan, M.; Kilonzo, M.; Vale, L. Quality of life before and after intensive care. Anaesthesia 2005, 60, 332–339. [Google Scholar] [CrossRef]
- Pandharipande, P.P.; Girard, T.D.; Ely, E.W. Long-term cognitive impairment after critical illness. N. Engl. J. Med. 2014, 370, 185–186. [Google Scholar] [CrossRef]
- Bienvenu, O.J.; Colantuoni, E.; Mendez-Tellez, P.A.; Shanholtz, C.; Dennison-Himmelfarb, C.R.; Pronovost, P.J.; Needham, D.M. Cooccurrence of and remission from general anxiety, depression, and posttraumatic stress disorder symptoms after acute lung injury: A 2-year longitudinal study. Crit. Care Med. 2015, 43, 642–653. [Google Scholar] [CrossRef]
- Jackson, J.C.; Hart, R.P.; Gordon, S.M.; Hopkins, R.O.; Girard, T.D.; Ely, E.W. Post-traumatic stress disorder and post-traumatic stress symptoms following critical illness in medical intensive care unit patients: Assessing the magnitude of the problem. Crit. Care 2007, 11, R27. [Google Scholar] [CrossRef]
- Orford, N.; Cattigan, C.; Brennan, S.L.; Kotowicz, M.; Pasco, J.; Cooper, D.J. The association between critical illness and changes in bone turnover in adults: A systematic review. Osteoporos. Int. 2014, 25, 2335–2346. [Google Scholar] [CrossRef]
- Orford, N.R.; Saunders, K.; Merriman, E.; Henry, M.; Pasco, J.; Stow, P.; Kotowicz, M. Skeletal morbidity among survivors of critical illness. Crit. Care Med. 2011, 39, 1295–1300. [Google Scholar] [CrossRef]
- Orford, N.R.; Lane, S.E.; Bailey, M.; Pasco, J.A.; Cattigan, C.; Elderkin, T.; Brennan-Olsen, S.L.; Bellomo, R.; Cooper, D.J.; Kotowicz, M.A. Changes in Bone Mineral Density in the Year after Critical Illness. Am. J. Respir. Crit. Care Med. 2016, 193, 736–744. [Google Scholar] [CrossRef]
- Gavala, A.; Makris, K.; Korompeli, A.; Myrianthefs, P. Evaluation of Bone Metabolism in Critically Ill Patients Using CTx and PINP. Biomed. Res. Int. 2016, 2016, 1951707. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.L. Burn-induced bone loss: Importance, mechanisms, and management. J. Burn. Wounds 2006, 5, e5. [Google Scholar]
- Orford, N.R.; Bailey, M.; Bellomo, R.; Pasco, J.A.; Cattigan, C.; Elderkin, T.; Brennan-Olsen, S.L.; Cooper, D.J.; Kotowicz, M.A. The association of time and medications with changes in bone mineral density in the 2 years after critical illness. Crit. Care 2017, 21, 69. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Sambrook, P.N. Bone loss: Epidemiology of bone loss. Arthritis Res. Ther. 2000, 2, 441–445. [Google Scholar] [CrossRef]
- Raisz, L.G. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J. Clin. Investig. 2005, 115, 3318–3325. [Google Scholar] [CrossRef]
- Parfitt, A.; Mathews, C.; Villanueva, A.; Kleerekoper, M.; Frame, B.; Rao, D. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J. Clin. Investig. 1983, 72, 1396–1409. [Google Scholar] [CrossRef] [PubMed]
- Compston, J. Glucocorticoid-induced osteoporosis: An update. Endocrine 2018, 61, 7–16. [Google Scholar] [CrossRef]
- Fardet, L.; Petersen, I.; Nazareth, I. Prevalence of long-term oral glucocorticoid prescriptions in the UK over the past 20 years. Rheumatology 2011, 50, 1982–1990. [Google Scholar] [CrossRef]
- Wang, L.; Heckmann, B.L.; Yang, X.; Long, H. Osteoblast autophagy in glucocorticoid-induced osteoporosis. J. Cell. Physiol. 2019, 234, 3207–3215. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.S.; Jilka, R.L.; Parfitt, A.M.; Manolagas, S.C. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J. Clin. Investig. 1998, 102, 274–282. [Google Scholar] [CrossRef]
- Buckley, L.; Guyatt, G.; Fink, H.A.; Cannon, M.; Grossman, J.; Hansen, K.E.; Humphrey, M.B.; Lane, N.E.; Magrey, M.; Miller, M. 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol. 2017, 69, 1521–1537. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef]
- Friedrich, O.; Reid, M.; Van den Berghe, G.; Vanhorebeek, I.; Hermans, G.; Rich, M.; Larsson, L. The sick and the weak: Neuropathies/myopathies in the critically ill. Physiol. Rev. 2015, 95, 1025–1109. [Google Scholar] [CrossRef] [PubMed]
- Lecka-Czernik, B.; Rosen, C.J. Energy excess, glucose utilization, and skeletal remodeling: New insights. J. Bone Miner. Res. 2015, 30, 1356–1361. [Google Scholar] [CrossRef]
- Cavalier, E.; Bergmann, P.; Bruyere, O.; Delanaye, P.; Durnez, A.; Devogelaer, J.P.; Ferrari, S.L.; Gielen, E.; Goemaere, S.; Kaufman, J.M.; et al. The role of biochemical of bone turnover markers in osteoporosis and metabolic bone disease: A consensus paper of the Belgian Bone Club. Osteoporos. Int. 2016, 27, 2181–2195. [Google Scholar] [CrossRef] [PubMed]
- Orford, N.R.; Pasco, J.A.; Kotowicz, M.A. Osteoporosis and the Critically Ill Patient. Crit. Care Clin. 2019, 35, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.J.; Pasco, J.A.; Korn, S.; Gibson, J.E.; Kotowicz, M.A.; Nicholson, G.C. Bone mineral density reference ranges for Australian men: Geelong Osteoporosis Study. Osteoporos. Int. 2010, 21, 909–917. [Google Scholar] [CrossRef]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7–29, 2000: Highlights of the conference. South Med. J. 2001, 94, 569–573.
- Lee, P.; Nair, P.; Eisman, J.A.; Center, J.R. Bone Failure in Critical Illness. Crit. Care Med. 2016, 44, 2270–2274. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Li, P.; Yao, Z.; Zhang, Q.; Badell, I.R.; Schwarz, E.M.; O’Keefe, R.J.; Xing, L. TNF-alpha and pathologic bone resorption. Keio J. Med. 2005, 54, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Amin, U.; McPartland, A.; O’Sullivan, M.; Silke, C. An overview of the management of osteoporosis in the aging female population. Womens Health 2023, 19, 17455057231176655. [Google Scholar] [CrossRef] [PubMed]
- Nierman, D.M.; Mechanick, J.I. Bone hyperresorption is prevalent in chronically critically ill patients. Chest 1998, 114, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Nierman, D.M.; Mechanick, J.I. Biochemical response to treatment of bone hyperresorption in chronically critically ill patients. Chest 2000, 118, 761–766. [Google Scholar] [CrossRef]
- Van den Berghe, G.; Baxter, R.C.; Weekers, F.; Wouters, P.; Bowers, C.Y.; Iranmanesh, A.; Veldhuis, J.D.; Bouillon, R. The combined administration of GH-releasing peptide-2 (GHRP-2), TRH and GnRH to men with prolonged critical illness evokes superior endocrine and metabolic effects compared to treatment with GHRP-2 alone. Clin. Endocrinol. 2002, 56, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Van den Berghe, G.; Weekers, F.; Baxter, R.C.; Wouters, P.; Iranmanesh, A.; Bouillon, R.; Veldhuis, J.D. Five-day pulsatile gonadotropin-releasing hormone administration unveils combined hypothalamic-pituitary-gonadal defects underlying profound hypoandrogenism in men with prolonged critical illness. J. Clin. Endocrinol. Metab. 2001, 86, 3217–3226. [Google Scholar] [CrossRef]
- Van den Berghe, G.; Wouters, P.; Weekers, F.; Mohan, S.; Baxter, R.C.; Veldhuis, J.D.; Bowers, C.Y.; Bouillon, R. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J. Clin. Endocrinol. Metab. 1999, 84, 1311–1323. [Google Scholar] [CrossRef]
- Via, M.A.; Potenza, M.V.; Hollander, J.; Liu, X.; Peng, Y.; Li, J.; Sun, L.; Zaidi, M.; Mechanick, J.I. Intravenous ibandronate acutely reduces bone hyperresorption in chronic critical illness. J. Intensive Care Med. 2012, 27, 312–318. [Google Scholar] [CrossRef]
- Schwetz, V.; Schnedl, C.; Urbanic-Purkart, T.; Trummer, C.; Dimai, H.P.; Fahrleitner-Pammer, A.; Putz-Bankuti, C.; Christopher, K.B.; Obermayer-Pietsch, B.; Pieber, T.R.; et al. Effect of vitamin D3 on bone turnover markers in critical illness: Post hoc analysis from the VITdAL-ICU study. Osteoporos. Int. 2017, 28, 3347–3354. [Google Scholar] [CrossRef]
- Barnadas, A.; Manso, L.; de la Piedra, C.; Meseguer, C.; Crespo, C.; Gomez, P.; Calvo, L.; Martinez, P.; Ruiz-Borrego, M.; Perello, A.; et al. Bone turnover markers as predictive indicators of outcome in patients with breast cancer and bone metastases treated with bisphosphonates: Results from a 2-year multicentre observational study (ZOMAR study). Bone 2014, 68, 32–40. [Google Scholar] [CrossRef]
- Doherty, Z.; Kippen, R.; Bevan, D.; Duke, G.; Williams, S.; Wilson, A.; Pilcher, D. Long-term outcomes of hospital survivors following an ICU stay: A multi-centre retrospective cohort study. PLoS ONE 2022, 17, e0266038. [Google Scholar] [CrossRef]
- Rousseau, A.-F.; Prescott, H.C.; Brett, S.J.; Weiss, B.; Azoulay, E.; Creteur, J.; Latronico, N.; Hough, C.L.; Weber-Carstens, S.; Vincent, J.-L. Long-term outcomes after critical illness: Recent insights. Crit. Care 2021, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.F.; Kerschan-Schindl, K.; Scherkl, M.; Amrein, K. Bone metabolism and fracture risk during and after critical illness. Curr. Opin. Crit. Care 2020, 26, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.F.; Cavalier, E.; Reginster, J.Y.; Damas, P.; Bruyere, O. Occurrence of Clinical Bone Fracture Following a Prolonged Stay in Intensive Care Unit: A Retrospective Controlled Study. Calcif. Tissue Int. 2017, 101, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Parry, S.; Denehy, L.; Granger, C.; McGinley, J.; Files, D.C.; Berry, M.; Dhar, S.; Bakhru, R.; Larkin, J.; Puthucheary, Z.; et al. The fear and risk of community falls in patients following an intensive care admission: An exploratory cohort study. Aust. Crit. Care 2020, 33, 144–150. [Google Scholar] [CrossRef]
- Patman, S.M.; Dennis, D.; Hill, K. The incidence of falls in intensive care survivors. Aust. Crit. Care 2011, 24, 167–174. [Google Scholar] [CrossRef]
- Oppl, B.; Michitsch, G.; Misof, B.; Kudlacek, S.; Donis, J.; Klaushofer, K.; Zwerina, J.; Zwettler, E. Low bone mineral density and fragility fractures in permanent vegetative state patients. J. Bone Miner. Res. 2014, 29, 1096–1100. [Google Scholar] [CrossRef]
- Lew, C.C.H.; Yandell, R.; Fraser, R.J.L.; Chua, A.P.; Chong, M.F.F.; Miller, M. Association Between Malnutrition and Clinical Outcomes in the Intensive Care Unit: A Systematic Review. J. Parenter. Enter. Nutr. 2017, 41, 744–758. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J. Efficacy of EWINDOW for prevention of delirium at intensive care units: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e28598. [Google Scholar] [CrossRef]
- Lerchbaum, E.; Schwetz, V.; Pilz, S.; Boehm, B.O.; Marz, W. Association of bone turnover markers with mortality in women referred to coronary angiography: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Osteoporos. Int. 2014, 25, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Schwetz, V.; Pilz, S.; Grammer, T.B.; Look, M.; Boehm, B.O.; Obermayer-Pietsch, B.; Marz, W. Association of bone turnover markers with mortality in men referred to coronary angiography. Osteoporos. Int. 2013, 24, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, P.N.; Chen, C.J.; March, L.; Cameron, I.D.; Cumming, R.G.; Lord, S.R.; Simpson, J.M.; Seibel, M.J. High bone turnover is an independent predictor of mortality in the frail elderly. J. Bone Miner. Res. 2006, 21, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Tacey, A.; Qaradakhi, T.; Brennan-Speranza, T.; Hayes, A.; Zulli, A.; Levinger, I. Potential Role for Osteocalcin in the Development of Atherosclerosis and Blood Vessel Disease. Nutrients 2018, 10, 1426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, Y.; Xu, Y.; Xiong, Q.; Lu, Z.; Ma, X.; Bao, Y.; Jia, W. Association of serum osteocalcin levels with major adverse cardiovascular events: A 4.4-year retrospective cohort study. Clin. Exp. Pharmacol. Physiol. 2018, 45, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Jarolim, P.; Scirica, B.M.; Braunwald, E.; Park, J.G.; Das, S.; Sabatine, M.S.; Morrow, D.A. Biomarker of Collagen Turnover (C-Terminal Telopeptide) and Prognosis in Patients With Non- ST -Elevation Acute Coronary Syndromes. J. Am. Heart Assoc. 2019, 8, e011444. [Google Scholar] [CrossRef]
- Asadi, M.; Razi, F.; Fahimfar, N.; Shirani, S.; Behzad, G.; Salari, P. The Association of Coronary Artery Calcium Score and Osteoporosis in Postmenopausal Women: A Cross-Sectional Study. J. Bone Metab. 2022, 29, 245–254. [Google Scholar] [CrossRef]
- Tran, T.; Bliuc, D.; van Geel, T.; Adachi, J.D.; Berger, C.; van den Bergh, J.; Eisman, J.A.; Geusens, P.; Goltzman, D.; Hanley, D.A.; et al. Population-Wide Impact of Non-Hip Non-Vertebral Fractures on Mortality. J. Bone Miner. Res. 2017, 32, 1802–1810. [Google Scholar] [CrossRef]
- Morin, S.; Lix, L.M.; Azimaee, M.; Metge, C.; Caetano, P.; Leslie, W.D. Mortality rates after incident non-traumatic fractures in older men and women. Osteoporos. Int. 2011, 22, 2439–2448. [Google Scholar] [CrossRef]
- Bliuc, D.; Nguyen, N.D.; Milch, V.E.; Nguyen, T.V.; Eisman, J.A.; Center, J.R. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 2009, 301, 513–521. [Google Scholar] [CrossRef]
- Dittmer, D.K.; Teasell, R. Complications of immobilization and bed rest. Part 1: Musculoskeletal and cardiovascular complications. Can. Fam. Physician 1993, 39, 1428–1432, 1435–1437. [Google Scholar] [PubMed]
- Stiller, K. Safety issues that should be considered when mobilizing critically ill patients. Crit. Care Clin. 2007, 23, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.; Thomsen, G.E.; Spuhler, V.J.; Blair, R.; Jewkes, J.; Bezdjian, L.; Veale, K.; Rodriquez, L.; Hopkins, R.O. Early activity is feasible and safe in respiratory failure patients. Crit. Care Med. 2007, 35, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Bourdin, G.; Barbier, J.; Burle, J.F.; Durante, G.; Passant, S.; Vincent, B.; Badet, M.; Bayle, F.; Richard, J.C.; Guérin, C. The feasibility of early physical activity in intensive care unit patients: A prospective observational one-center study. Respir. Care 2010, 55, 400–407. [Google Scholar]
- McWilliams, D.; Jones, C.; Atkins, G.; Hodson, J.; Whitehouse, T.; Veenith, T.; Reeves, E.; Cooper, L.; Snelson, C. Earlier and enhanced rehabilitation of mechanically ventilated patients in critical care: A feasibility randomised controlled trial. J. Crit. Care 2018, 44, 407–412. [Google Scholar] [CrossRef]
- Pohlman, M.C.; Schweickert, W.D.; Pohlman, A.S.; Nigos, C.; Pawlik, A.J.; Esbrook, C.L.; Spears, L.; Miller, M.; Franczyk, M.; Deprizio, D.; et al. Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation. Crit. Care Med. 2010, 38, 2089–2094. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.A.; Cheifetz, I.M.; Rehder, K.J.; Williford, W.L.; Bonadonna, D.; Banuelos, S.J.; Peterson-Carmichael, S.; Lin, S.S.; Davis, R.D.; Zaas, D. Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: A practical approach. Crit. Care Med. 2011, 39, 2593–2598. [Google Scholar] [CrossRef]
- Hodgson, C.; Bellomo, R.; Berney, S.; Bailey, M.; Buhr, H.; Denehy, L.; Harrold, M.; Higgins, A.; Presneill, J.; Saxena, M.; et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: A bi-national, multi-centre, prospective cohort study. Crit. Care 2015, 19, 81. [Google Scholar] [CrossRef]
- Tipping, C.J.; Harrold, M.; Holland, A.; Romero, L.; Nisbet, T.; Hodgson, C.L. The effects of active mobilisation and rehabilitation in ICU on mortality and function: A systematic review. Intensive Care Med. 2017, 43, 171–183. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, W.; Cai, Z.; Liu, J.; Wu, J.; Deng, Y.; Yu, K.; Chen, X.; Zhu, L.; Ma, J.; et al. Early mobilization of critically ill patients in the intensive care unit: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0223185. [Google Scholar] [CrossRef]
- Anekwe, D.E.; Biswas, S.; Bussières, A.; Spahija, J. Early rehabilitation reduces the likelihood of developing intensive care unit-acquired weakness: A systematic review and meta-analysis. Physiotherapy 2020, 107, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Menges, D.; Seiler, B.; Tomonaga, Y.; Schwenkglenks, M.; Puhan, M.A.; Yebyo, H.G. Systematic early versus late mobilization or standard early mobilization in mechanically ventilated adult ICU patients: Systematic review and meta-analysis. Crit. Care 2021, 25, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Lang, J.K.; Haines, K.J.; Skinner, E.H.; Haines, T.P. Physical Rehabilitation in the ICU: A Systematic Review and Meta-Analysis. Crit. Care Med. 2022, 50, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.W.; Skrobik, Y.; Gelinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, e825–e873. [Google Scholar] [CrossRef]
- Wollersheim, T.; Grunow, J.J.; Carbon, N.M.; Haas, K.; Malleike, J.; Ramme, S.F.; Schneider, J.; Spies, C.D.; Märdian, S.; Mai, K. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: An explorative trial. J. Cachexia Sarcopenia Muscle 2019, 10, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Aas, V.; Torblå, S.; Andersen, M.H.; Jensen, J.; Rustan, A.C. Electrical stimulation improves insulin responses in a human skeletal muscle cell model of hyperglycemia. Ann. N. Y. Acad. Sci. 2002, 967, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.-S.; Cheung, K.-K.; Yeung, S.S.; Zhang, B.-T.; Yeung, E.W. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS ONE 2012, 7, e30348. [Google Scholar] [CrossRef] [PubMed]
- Grunow, J.J.; Goll, M.; Carbon, N.M.; Liebl, M.E.; Weber-Carstens, S.; Wollersheim, T. Differential contractile response of critically ill patients to neuromuscular electrical stimulation. Crit. Care 2019, 23, 1–12. [Google Scholar] [CrossRef]
- Zhu, K.; Prince, R.L. Lifestyle and osteoporosis. Curr. Osteoporos. Rep. 2015, 13, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.M.; Kunins, H.V.; Jackson, J.L.; Nahvi, S.; Chaudhry, A.; Harris, K.A., Jr.; Malik, R.; Arnsten, J.H. Association between alcohol consumption and both osteoporotic fracture and bone density. Am. J. Med. 2008, 121, 406–418. [Google Scholar] [CrossRef]
- Jugdaohsingh, R.; O’connell, M.; Sripanyakorn, S.; Powell, J. Moderate alcohol consumption and increased bone mineral density: Potential ethanol and non-ethanol mechanisms. Proc. Nutr. Soc. 2006, 65, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Sripanyakorn, S.; Jugdaohsingh, R.; Mander, A.; Davidson, S.L.; Thompson, R.P.; Powell, J.J. Moderate ingestion of alcohol is associated with acute ethanol-induced suppression of circulating CTX in a PTH-independent fashion. J. Bone Miner. Res. 2009, 24, 1380–1388. [Google Scholar] [CrossRef]
- Ward, K.D.; Klesges, R.C. A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif. Tissue Int. 2001, 68, 259–270. [Google Scholar] [CrossRef]
- Kanis, J.A.; Johnell, O.; Odén, A.; Johansson, H.; De Laet, C.; Eisman, J.A.; Fujiwara, S.; Kroger, H.; McCloskey, E.V.; Mellstrom, D. Smoking and fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 155–162. [Google Scholar] [CrossRef]
- Tansavatdi, K.; McClain, B.; Herrington, D. The effects of smoking on estradiol metabolism. Minerva Ginecol. 2004, 56, 105–114. [Google Scholar] [PubMed]
- Tarantino, U.; Cariati, I.; Greggi, C.; Gasbarra, E.; Belluati, A.; Ciolli, L.; Maccauro, G.; Momoli, A.; Ripanti, S.; Falez, F. Skeletal system biology and smoke damage: From basic science to medical clinic. Int. J. Mol. Sci. 2021, 22, 6629. [Google Scholar] [CrossRef] [PubMed]
- Hankenson, K.D.; Dishowitz, M.; Gray, C.; Schenker, M. Angiogenesis in bone regeneration. Injury 2011, 42, 556–561. [Google Scholar] [CrossRef]
- Hill, A.; Elke, G.; Weimann, A. Nutrition in the Intensive Care Unit—A Narrative Review. Nutrients 2021, 13, 2851. [Google Scholar] [CrossRef]
- Mogensen, K.M.; Robinson, M.K.; Casey, J.D.; Gunasekera, N.S.; Moromizato, T.; Rawn, J.D.; Christopher, K.B. Nutritional Status and Mortality in the Critically Ill*. Crit. Care Med. 2015, 43, 2605–2615. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Phadke, R.; Dew, T.; Sidhu, P.S.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Chung, M.; Du, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; Shapses, S.A.; Sackey, J.; Wallace, T.C.; et al. Dietary protein and bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation. Am. J. Clin. Nutr. 2017, 105, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.T. Essential fatty acid deficiency. Prog. Chem. Fats Other Lipids 1971, 9, 275–348. [Google Scholar] [CrossRef]
- Watkins, B.; Lippman, H.; Le Bouteiller, L.; Li, Y.; Seifert, M. Bioactive fatty acids: Role in bone biology and bone cell function. Prog. Lipid Res. 2001, 40, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Watkins, B.A.; Li, Y.; Lippman, H.E.; Feng, S. Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot. Essent. Fat. Acids 2003, 68, 387–398. [Google Scholar] [CrossRef]
- Lukas, R.; Gigliotti, J.C.; Smith, B.J.; Altman, S.; Tou, J.C. Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture. Bone 2011, 49, 455–462. [Google Scholar] [CrossRef]
- Lau, B.Y.; Cohen, D.J.; Ward, W.E.; Ma, D.W. Investigating the role of polyunsaturated fatty acids in bone development using animal models. Molecules 2013, 18, 14203–14227. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Freystätter, G.; Vellas, B.; Dawson-Hughes, B.; Kressig, R.W.; Kanis, J.A.; Willett, W.C.; Manson, J.E.; Rizzoli, R.; Theiler, R.; et al. Effects of vitamin D, omega-3 fatty acids, and a simple home strength exercise program on fall prevention: The DO-HEALTH randomized clinical trial. Am. J. Clin. Nutr. 2022, 115, 1311–1321. [Google Scholar] [CrossRef]
- Vanlint, S.J.; Ried, K. Efficacy and tolerability of calcium, vitamin D and a plant-based omega-3 oil for osteopenia: A pilot RCT. Maturitas 2012, 71, 44–48. [Google Scholar] [CrossRef]
- Tartibian, B.; Maleki, B.H.; Abbasi, A. Omega-3 fatty acids supplementation attenuates inflammatory markers after eccentric exercise in untrained men. Clin. J. Sport Med. 2011, 21, 131–137. [Google Scholar] [CrossRef]
- Dou, Y.; Wang, Y.; Chen, Z.; Yu, X.; Ma, D. Effect of n-3 polyunsaturated fatty acid on bone health: A systematic review and meta-analysis of randomized controlled trials. Food Sci. Nutr. 2022, 10, 145–154. [Google Scholar] [CrossRef]
- Hernandez, C.J.; Guss, J.D.; Luna, M.; Goldring, S.R. Links between the microbiome and bone. J. Bone Miner. Res. 2016, 31, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- D’Amelio, P.; Sassi, F. Gut microbiota, immune system, and bone. Calcif. Tissue Int. 2018, 102, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, A.R.; Kullberg, R.F.; Wiersinga, W.J. Probiotics in the intensive care unit. Antibiotics 2022, 11, 217. [Google Scholar] [CrossRef]
- Whisner, C.M.; Castillo, L.F. Prebiotics, bone and mineral metabolism. Calcif. Tissue Int. 2018, 102, 443–479. [Google Scholar] [CrossRef]
- Amrein, K.; Papinutti, A.; Mathew, E.; Vila, G.; Parekh, D. Vitamin D and critical illness: What endocrinology can learn from intensive care and vice versa. Endocr. Connect. 2018, 7, R304–R315. [Google Scholar] [CrossRef]
- Reid, I.R.; Bolland, M.J.; Grey, A. Effects of vitamin D supplements on bone mineral density: A systematic review and meta-analysis. Lancet 2014, 383, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.J. Vitamin D supplementation: Bones of contention. Lancet 2014, 383, 108–110. [Google Scholar] [CrossRef]
- Van den Berghe, G.; Van Roosbroeck, D.; Vanhove, P.; Wouters, P.J.; De Pourcq, L.; Bouillon, R. Bone turnover in prolonged critical illness: Effect of vitamin D. J. Clin. Endocrinol. Metab. 2003, 88, 4623–4632. [Google Scholar] [CrossRef]
- Ginde, A.A.; Brower, R.G.; Caterino, J.M.; Finck, L.; Banner-Goodspeed, V.M.; Grissom, C.K.; Hayden, D.; Hough, C.L.; Hyzy, R.C.; Khan, A.; et al. Early High-Dose Vitamin D(3) for Critically Ill, Vitamin D-Deficient Patients. N. Engl. J. Med. 2019, 381, 2529–2540. [Google Scholar] [CrossRef]
- Gamrin, L.; Essén, P.; Hultman, E.; McNurlan, M.A.; Garlick, P.J.; Wernerman, J. Protein-sparing effect in skeletal muscle of growth hormone treatment in critically ill patients. Ann. Surg. 2000, 231, 577. [Google Scholar] [CrossRef]
- Pichard, C.; Kyle, U.; Chevrolet, J.-C.; Jolliet, P.; Slosman, D.; Mensi, N.; Temler, E.; Ricou, B. Lack of effects of recombinant growth hormone on muscle function in patients requiring prolonged mechanical ventilation: A prospective, randomized, controlled study. Crit. Care Med. 1996, 24, 403–413. [Google Scholar] [CrossRef]
- Takala, J.; Ruokonen, E.; Webster, N.R.; Nielsen, M.S.; Zandstra, D.F.; Vundelinckx, G.; Hinds, C.J. Increased mortality associated with growth hormone treatment in critically ill adults. N. Engl. J. Med. 1999, 341, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.W.; Herndon, D.N.; Klein, G.; Lee, S.B.; Celis, M.; Mohan, S.; Chinkes, D.L.; Wolf, S.E. Attenuation of posttraumatic muscle catabolism and osteopenia by long-term growth hormone therapy. Ann. Surg. 2001, 233, 827. [Google Scholar] [CrossRef] [PubMed]
- Ring, J.; Heinelt, M.; Sharma, S.; Letourneau, S.; Jeschke, M.G. Oxandrolone in the treatment of burn injuries: A systematic review and meta-analysis. J. Burn. Care Res. 2020, 41, 190–199. [Google Scholar] [CrossRef]
- Qaseem, A.; Forciea, M.A.; McLean, R.M.; Denberg, T.D.; Clinical Guidelines Committee of the American College of Physicians. Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update From the American College of Physicians. Ann. Intern. Med. 2017, 166, 818–839. [Google Scholar] [CrossRef]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Ng, C.; Slattery, A.; Nair, P.; Eisman, J.A.; Center, J.R. Preadmission Bisphosphonate and Mortality in Critically Ill Patients. J. Clin. Endocrinol. Metab. 2016, 101, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, U.; Cariati, I.; Greggi, C.; Iundusi, R.; Gasbarra, E.; Iolascon, G.; Kurth, A.; Akesson, K.E.; Bouxsein, M.; Tranquilli Leali, P. Gaps and alternative surgical and non-surgical approaches in the bone fragility management: An updated review. Osteoporos. Int. 2022, 33, 2467–2478. [Google Scholar] [CrossRef]
- Abrahamsen, B. Adverse effects of bisphosphonates. Calcif. Tissue Int. 2010, 86, 421–435. [Google Scholar] [CrossRef]
- Sudha, S.; Gopinath, D.; Shameena, P.; Dhanalakshmi, J. Numb chin syndrome associated with metastatic invasive ductal carcinoma of breast. J. Oral Maxillofac. Pathol. JOMFP 2015, 19, 239. [Google Scholar]
- Lo, J.C.; O’Ryan, F.S.; Gordon, N.P.; Yang, J.; Hui, R.L.; Martin, D.; Hutchinson, M.; Lathon, P.V.; Sanchez, G.; Silver, P. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J. Oral Maxillofac. Surg. 2010, 68, 243–253. [Google Scholar] [CrossRef]
- Bramati, A.; Girelli, S.; Farina, G.; Dazzani, M.C.; Torri, V.; Moretti, A.; Piva, S.; Dimaiuta, M.; La Verde, N. Prospective, mono-institutional study of the impact of a systematic prevention program on incidence and outcome of osteonecrosis of the jaw in patients treated with bisphosphonates for bone metastases. J. Bone Miner. Metab. 2015, 33, 119–124. [Google Scholar] [CrossRef]
- Black, D.M.; Geiger, E.J.; Eastell, R.; Vittinghoff, E.; Li, B.H.; Ryan, D.S.; Dell, R.M.; Adams, A.L. Atypical femur fracture risk versus fragility fracture prevention with bisphosphonates. N. Engl. J. Med. 2020, 383, 743–753. [Google Scholar] [CrossRef]
- Kostenuik, P.J. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr. Opin. Pharmacol. 2005, 5, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Kendler, D.L.; Cosman, F.; Stad, R.K.; Ferrari, S. Denosumab in the Treatment of Osteoporosis: 10 Years Later: A Narrative Review. Adv. Ther. 2022, 39, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Wadiura, L.I.; Butylina, M.; Reinprecht, A.; Aretin, M.B.; Mischkulnig, M.; Gleiss, A.; Pietschmann, P.; Kerschan-Schindl, K. Denosumab for Prevention of Acute Onset Immobilization-Induced Alterations of Bone Turnover: A Randomized Controlled Trial. J. Bone Miner. Res. 2022, 37, 2156–2164. [Google Scholar] [CrossRef] [PubMed]
- Australian and New Zealand Intensive Care Research Centre. Bone Loss Prevention with Zoledronic Acid or Denosumab in Critically Ill Adults. 2021. Available online: https://classic.clinicaltrials.gov/show/NCT04608630 (accessed on 28 November 2023).
- Quattrocchi, E.; Kourlas, H. Teriparatide: A review. Clin. Ther. 2004, 26, 841–854. [Google Scholar] [CrossRef]
- Neer, R.M.; Arnaud, C.D.; Zanchetta, J.R.; Prince, R.; Gaich, G.A.; Reginster, J.Y.; Hodsman, A.B.; Eriksen, E.F.; Ish-Shalom, S.; Genant, H.K.; et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 2001, 344, 1434–1441. [Google Scholar] [CrossRef]
- Díez-Pérez, A.; Marin, F.; Eriksen, E.F.; Kendler, D.L.; Krege, J.H.; Delgado-Rodríguez, M. Effects of teriparatide on hip and upper limb fractures in patients with osteoporosis: A systematic review and meta-analysis. Bone 2019, 120, 1–8. [Google Scholar] [CrossRef]
- Minisola, S.; Cipriani, C.; Grotta, G.D.; Colangelo, L.; Occhiuto, M.; Biondi, P.; Sonato, C.; Vigna, E.; Cilli, M.; Pepe, J. Update on the safety and efficacy of teriparatide in the treatment of osteoporosis. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720X19877994. [Google Scholar] [CrossRef]
- Lou, S.; Lv, H.; Yin, P.; Li, Z.; Tang, P.; Wang, Y. Combination therapy with parathyroid hormone analogs and antiresorptive agents for osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Osteoporos. Int. 2019, 30, 59–70. [Google Scholar] [CrossRef]
- Tsai, J.N.; Uihlein, A.V.; Lee, H.; Kumbhani, R.; Siwila-Sackman, E.; McKay, E.A.; Burnett-Bowie, S.A.; Neer, R.M.; Leder, B.Z. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: The DATA study randomised trial. Lancet 2013, 382, 50–56. [Google Scholar] [CrossRef]
- McClung, M.R. Using Osteoporosis Therapies in Combination. Curr. Osteoporos. Rep. 2017, 15, 343–352. [Google Scholar] [CrossRef]
- Lim, S.Y.; Bolster, M.B. Profile of romosozumab and its potential in the management of osteoporosis. Drug Des. Devel. Ther. 2017, 11, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Vasiliadis, E.S.; Evangelopoulos, D.S.; Kaspiris, A.; Benetos, I.S.; Vlachos, C.; Pneumaticos, S.G. The Role of Sclerostin in Bone Diseases. J. Clin. Med. 2022, 11, 806. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Nagao, M.; Yonemoto, N.; Guo, S.; Tanigawa, T.; Nishizaki, Y. Evaluation of the efficacy and safety of romosozumab (evenity) for the treatment of osteoporotic vertebral compression fracture in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials (CDM-J). Pharmacoepidemiol. Drug Saf. 2023, 32, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; Lewiecki, E.M.; Ebeling, P.R.; Hesse, E.; Napoli, N.; Matsumoto, T.; Crittenden, D.B.; Rojeski, M.; Yang, W.; Libanati, C. T-score as an indicator of fracture risk during treatment with romosozumab or alendronate in the ARCH trial. J. Bone Miner. Res. 2020, 35, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, I.; Ojea, T.; Sanchez-Siles, J.M.; Rojas, F.; Martin, I.; Gormaz, I.; Perez, A.; Dawid-Milner, M.S.; Mendez, L.; Tamimi, F. Acetylcholinesterase inhibitors and the risk of hip fracture in Alzheimer’s disease patients: A case-control study. J. Bone Miner. Res. 2012, 27, 1518–1527. [Google Scholar] [CrossRef] [PubMed]
- Inkson, C.A.; Brabbs, A.C.; Grewal, T.S.; Skerry, T.M.; Genever, P.G. Characterization of acetylcholinesterase expression and secretion during osteoblast differentiation. Bone 2004, 35, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Bruder, S.P.; Fink, D.J.; Caplan, A.I. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell Biochem. 1994, 56, 283–294. [Google Scholar] [CrossRef]
- Li, F.; Zhou, C.; Xu, L.; Tao, S.; Zhao, J.; Gu, Q. Effect of Stem Cell Therapy on Bone Mineral Density: A Meta-Analysis of Preclinical Studies in Animal Models of Osteoporosis. PLoS ONE 2016, 11, e0149400. [Google Scholar] [CrossRef]
- Su, P.; Tian, Y.; Yang, C.; Ma, X.; Wang, X.; Pei, J.; Qian, A. Mesenchymal Stem Cell Migration during Bone Formation and Bone Diseases Therapy. Int. J. Mol. Sci. 2018, 19, 2343. [Google Scholar] [CrossRef]
- Aghebati-Maleki, L.; Dolati, S.; Zandi, R.; Fotouhi, A.; Ahmadi, M.; Aghebati, A.; Nouri, M.; Kazem Shakouri, S.; Yousefi, M. Prospect of mesenchymal stem cells in therapy of osteoporosis: A review. J. Cell. Physiol. 2019, 234, 8570–8578. [Google Scholar] [CrossRef]
- Martin-Del-Campo, M.; Sampedro, J.G.; Flores-Cedillo, M.L.; Rosales-Ibanez, R.; Rojo, L. Bone Regeneration Induced by Strontium Folate Loaded Biohybrid Scaffolds. Molecules 2019, 24, 1660. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Sobue, T.; Esliger, A.; Kronenberg, M.S.; Coffin, J.D.; Doetschman, T.; Hurley, M.M. Disruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cells. Bone 2010, 47, 360–370. [Google Scholar] [CrossRef]
- James, A.W. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. Scientifica 2013, 2013, 684736. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Gao, W.; Papadimitriou, J.M.; Zhang, C.; Gao, J.; Zheng, M. Exosomes-the enigmatic regulators of bone homeostasis. Bone Res. 2018, 6, 36. [Google Scholar] [CrossRef]
- Chu, C.; Wei, S.; Wang, Y.; Wang, Y.; Man, Y.; Qu, Y. Extracellular vesicle and mesenchymal stem cells in bone regeneration: Recent progress and perspectives. J. Biomed. Mater. Res. A 2019, 107, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.T.; Lee, M.J.; Chen, C.H.; Chuang, S.C.; Chang, L.F.; Ho, M.L.; Hung, S.H.; Fu, Y.C.; Wang, Y.H.; Wang, H.I.; et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J. Cell. Mol. Med. 2012, 16, 582–593. [Google Scholar] [CrossRef]
- Liu, H.Y.; Chiou, J.F.; Wu, A.T.; Tsai, C.Y.; Leu, J.D.; Ting, L.L.; Wang, M.F.; Chen, H.Y.; Lin, C.T.; Williams, D.F.; et al. The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells. Biomaterials 2012, 33, 6105–6112. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, W.; Yi, D.Y.; Xue, B.Z.; Wen, W.W.; Abdelmaksoud, A.; Xiong, N.X.; Jiang, X.B.; Zhao, H.Y.; Fu, P. Current status and potential challenges of mesenchymal stem cell-based therapy for malignant gliomas. Stem Cell Res. Ther. 2018, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Nimiritsky, P.P.; Eremichev, R.Y.; Alexandrushkina, N.A.; Efimenko, A.Y.; Tkachuk, V.A.; Makarevich, P.I. Unveiling Mesenchymal Stromal Cells’ Organizing Function in Regeneration. Int. J. Mol. Sci. 2019, 20, 823. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yin, C.; Zhao, F.; Ali, A.; Ma, J.; Qian, A. Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int. J. Mol. Sci. 2018, 19, 360. [Google Scholar] [CrossRef] [PubMed]
- Antebi, B.; Pelled, G.; Gazit, D. Stem cell therapy for osteoporosis. Curr. Osteoporos. Rep. 2014, 12, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Gani, L.U.; Tan, F.C.L.; King, T.F.J. Telecarers improve osteoporosis treatment and compliance rates in secondary osteoporosis prevention for elderly hip fracture patients. Singap. Med. J. 2023, 64, 244. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.P.; Chou, S.-H.; Sierra, M.F.; Shuman, T.P.; McWilliams, A.D.; Taylor, B.T.; Russo, M.; Evans, S.L.; Rossman, W.; Murphy, S. Association between adherence to recommended care and outcomes for adult survivors of sepsis. Ann. Am. Thorac. Soc. 2020, 17, 89–97. [Google Scholar] [CrossRef]
- Rosa, R.G.; Ferreira, G.E.; Viola, T.W.; Robinson, C.C.; Kochhann, R.; Berto, P.P.; Biason, L.; Cardoso, P.R.; Falavigna, M.; Teixeira, C. Effects of post-ICU follow-up on subject outcomes: A systematic review and meta-analysis. J. Crit. Care 2019, 52, 115–125. [Google Scholar] [CrossRef]
- Walsh, T.S.; Salisbury, L.G.; Merriweather, J.L.; Boyd, J.A.; Griffith, D.M.; Huby, G.; Kean, S.; Mackenzie, S.J.; Krishan, A.; Lewis, S.C. Increased hospital-based physical rehabilitation and information provision after intensive care unit discharge: The RECOVER randomized clinical trial. JAMA Intern. Med. 2015, 175, 901–910. [Google Scholar] [CrossRef]
- Cuthbertson, B.; Rattray, J.; Campbell, M.K.; Gager, M.; Roughton, S.; Smith, A.; Hull, A.; Breeman, S.; Norrie, J.; Jenkinson, D. The PRaCTICaL study of nurse led, intensive care follow-up programmes for improving long term outcomes from critical illness: A pragmatic randomised controlled trial. BMJ 2009, 339, b3723. [Google Scholar] [CrossRef]
- Cox, C.E.; Hough, C.L.; Carson, S.S.; White, D.B.; Kahn, J.M.; Olsen, M.K.; Jones, D.M.; Somers, T.J.; Kelleher, S.A.; Porter, L.S. Effects of a telephone-and web-based coping skills training program compared with an education program for survivors of critical illness and their family members. A randomized clinical trial. Am. J. Respir. Crit. Care Med. 2018, 197, 66–78. [Google Scholar] [CrossRef]
- Prescott, H.C.; Langa, K.M.; Iwashyna, T.J. Readmission diagnoses after hospitalization for severe sepsis and other acute medical conditions. JAMA 2015, 313, 1055–1057. [Google Scholar] [CrossRef] [PubMed]
- Boudou, L.; Gerbay, B.; Chopin, F.; Ollagnier, E.; Collet, P.; Thomas, T. Management of osteoporosis in fracture liaison service associated with long-term adherence to treatment. Osteoporos. Int. 2011, 22, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
Class | Drugs | Dose Adjustment | Regimen | Side Effect |
---|---|---|---|---|
Nutrient | ||||
Vitamin D | Vitamin D2/D3 | No | 600–2000 IU PO daily | Hypercalcemia |
Anti-resorptive agents | ||||
Bisphosphonates | Alendronate | Dose adjustment in kidney impairment | 10 mg PO daily or 70 mg PO weekly | Hypocalcemia GI mucosal irritation Osteonecrosis of the Jaw Atypical Femoral Fractures |
Ibandronate | Contraindicated in kidney impairment | 150 mg PO monthly or 3 mg IV every 3 months | ||
Risendronate | 5 mg PO daily, 35 mg PO weekly, or 150 mg PO monthly | |||
Zoledronic acid | Monthly/every 3 months Daily/weekly/monthly One time per year | Atrial fibrillation Hypocalcemia GI mucosal irritation | ||
RANKL inhibitor | Denosumab | No | 60 mg SC every 6 months | Hypocalcemia Infection |
Anabolic agents | ||||
PTH analog | Teriparatide | No | 20 µg SC daily | Hypercalcemia Osteosarcoma |
Scclerostin inhibitor | Romosozumab | No | 210 mg monthly for 12 months | Myocardial infarction Stroke Cardiovascular death |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, H. Pathophysiology and Therapeutic Management of Bone Loss in Patients with Critical Illness. Pharmaceuticals 2023, 16, 1718. https://doi.org/10.3390/ph16121718
Kim T, Kim H. Pathophysiology and Therapeutic Management of Bone Loss in Patients with Critical Illness. Pharmaceuticals. 2023; 16(12):1718. https://doi.org/10.3390/ph16121718
Chicago/Turabian StyleKim, Taejin, and Hyojin Kim. 2023. "Pathophysiology and Therapeutic Management of Bone Loss in Patients with Critical Illness" Pharmaceuticals 16, no. 12: 1718. https://doi.org/10.3390/ph16121718
APA StyleKim, T., & Kim, H. (2023). Pathophysiology and Therapeutic Management of Bone Loss in Patients with Critical Illness. Pharmaceuticals, 16(12), 1718. https://doi.org/10.3390/ph16121718