Immunomodulatory, Antioxidant, and Anti-Inflammatory Activities of Green Synthesized Copper Nanoparticles for Treatment of Chronic Toxoplasma gondii Infection
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Green Synthesis of CNP
3.1.1. Plant Extract
3.1.2. Synthesis of CNP
3.1.3. UV-Vis Spectroscopy Analysis
3.1.4. Physical Characterization of CNP
3.1.5. X-ray Diffraction (XRD) Study
3.1.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.2. Parasite
3.3. Cell Culture
3.4. In Vitro Anti-Toxoplasma Effects of CNP
3.4.1. Effects of CNP on T. gondii Tachyzoite Forms
3.4.2. Cytotoxicity Effects of CNP on THP-1 Cells
3.4.3. Effect of CNP on Infectivity Rate of THP-1 Cells
3.4.4. Effect of CNP on Parasites Inside THP-1 Cells
3.4.5. Estimating the Nitric Oxide (NO) Generating
3.4.6. Assessing the Activity of CNP on iNOS and IFN-γ Expression Genes
3.5. In Vivo Anti-Toxoplasma Effects
3.5.1. Animals
3.5.2. Ethics
3.5.3. T. gondii Infection Induction in Mice and Their Treatment
- Normal saline.
- PYM at 10 mg/kg (PYM).
- CNP at 5 mg/kg.
- CNP at 10 mg/kg.
- CNP at 5 mg/kg + PYM
- CNP at 10 mg/kg + PYM
3.5.4. Assessing the Efficacy of CNP Therapy on Oxidant/Antioxidant Enzymes
3.5.5. Brain Tissue Collection
3.5.6. Effect of CNP Treatment on Parasite Load
3.5.7. Effects of CNP Treatment on the Bradyzoite Surface Antigen 1 (BAG1) Gene
3.6. Safety of the Green Synthesized CNP
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saadatnia, G.; Golkar, M. A review on human toxoplasmosis. Scand. J. Infect. Dis. 2012, 44, 805–814. [Google Scholar] [CrossRef]
- Molan, A.; Nosaka, K.; Hunter, M.; Wang, W. Global status of Toxoplasma gondii infection: Systematic review and prevalence snapshots. Trop. Biomed. 2019, 36, 898–925. [Google Scholar]
- Martinez, V.O.; Lima, F.W.d.M.; de Carvalho, C.F.; Menezes-Filho, J.A. Toxoplasma gondii infection and behavioral outcomes in humans: A systematic review. Parasitol. Res. 2018, 117, 3059–3065. [Google Scholar] [CrossRef] [PubMed]
- Hampton, M.M. Congenital Toxoplasmosis: A Review. Neonatal Netw. 2015, 34, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Tiao, N.; Gebreyes, W.A.; Jones, J.L. A review of toxoplasmosis in humans and animals in Ethiopia. Epidemiol. Infect. 2012, 140, 1935–1938. [Google Scholar] [CrossRef] [PubMed]
- McCabe, R.E. Antitoxoplasma chemotherapy. In Toxoplasmosis: A Comprehensive Clinical Guide; McCabe RE: Stockholm, Sweden, 2001; pp. 319–359. [Google Scholar]
- Montazeri, M.; Mehrzadi, S.; Sharif, M.; Sarvi, S.; Tanzifi, A.; Aghayan, S.A.; Daryani, A. Drug Resistance in Toxoplasma gondii. Front. Microbiol. 2018, 9, 2587. [Google Scholar] [CrossRef]
- Jones, J.L.; Lopez, A.; Wilson, M.; Schulkin, J.; Gibbs, R. Congenital Toxoplasmosis: A Review. Obstet. Gynecol. Surv. 2001, 56, 296–305. [Google Scholar] [CrossRef]
- Dunay, I.R.; Gajurel, K.; Dhakal, R.; Liesenfeld, O.; Montoya, J.G. Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. Clin. Microbiol. Rev. 2018, 31, e00057-17. [Google Scholar] [CrossRef]
- Marra, C.M. Central nervous system infection with Toxoplasma gondii. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 152, pp. 117–122. [Google Scholar]
- Formoso, P.; Muzzalupo, R.; Tavano, L.; De Filpo, G.; Nicoletta, F.P. Nanotechnology for the Environment and Medicine. Mini Rev. Med. Chem. 2016, 16, 668–675. [Google Scholar] [CrossRef]
- Mahmoudvand, H.; Mohebali, M.; Sharifi, I.; Keshavarz, H.; Hajjaran, H.; Akhoundi, B.; Jahanbakhsh, S.; Zarean, M.; Javadi, A. Epidemiological aspects of visceral leishmaniasis in Baft district, Kerman Province, Southeast of Iran. Iran. J. Parasitol. 2011, 6, 1–11. [Google Scholar]
- Din, M.I.; Rehan, R. Synthesis, Characterization, and Applications of Copper Nanoparticles. Anal. Lett. 2016, 50, 50–62. [Google Scholar] [CrossRef]
- Khodashenas, B.; Ghorbani, H.R. Synthesis of copper nanoparticles: An overview of the various methods. Korean J. Chem. Eng. 2014, 31, 1105–1109. [Google Scholar] [CrossRef]
- Rafique, M.; Shaikh, A.J.; Rasheed, R.; Tahir, M.B.; Bakhat, H.F.; Rafique, M.S.; Rabbani, F. A review on synthesis, characterization and applications of copper nanoparticles using green method. Nano 2017, 12, 1750043. [Google Scholar] [CrossRef]
- Graham, S.A.; Turkington, R. Population dynamics response of Lupinus arcticus to fertilization, clipping, and neighbour removal in the understory of the boreal forest. Can. J. Bot. 2000, 78, 753–758. [Google Scholar] [CrossRef]
- Ingham, J.L.; Tahara, S.; Harborne, J.B. Fungitoxic Isoflavones from Lupinus albus and other Lupinus Species. Z. Naturforsch. C 1983, 38, 194–200. [Google Scholar] [CrossRef]
- Cheraghipour, K.; Masoori, L.; Ezzatkhah, F.; Salimikia, I.; Amiri, S.; Makenali, A.S.; Taherpour, F.; Mahmoudvand, H. Effect of chitosan on Toxoplasma gondii infection: A systematic review. Parasite Epidemiol. Control. 2020, 11, e00189. [Google Scholar] [CrossRef]
- Saadatmand, M.; Al-Awsi, G.R.L.; Alanazi, A.D.; Sepahvand, A.; Shakibaie, M.; Shojaee, S.; Mohammadi, R.; Mahmoudvand, H. Green synthesis of zinc nanoparticles using Lavandula angustifolia Vera. Extract by microwave method and its prophylactic effects on Toxoplasma gondii infection. Saudi J. Biol. Sci. 2021, 28, 6454–6460. [Google Scholar] [CrossRef]
- Pestryakov, A.; Petranovskii, V.; Kryazhov, A.; Ozhereliev, O.; Pfänder, N.; Knop-Gericke, A. Study of copper nanoparticles formation on supports of different nature by UV-Vis diffuse reflectance spectroscopy. Chem. Phys. Lett. 2004, 385, 173–176. [Google Scholar] [CrossRef]
- Khodaie, M.; Ghasemi, N. Green synthesis and characterization of copper nanoparticles using Eryngium campestre leaf extract. Bulg. Chem. Comm. 2018, 50, 244–250. [Google Scholar]
- Xu, J.; Song, M.; Fang, Z.; Zheng, L.; Huang, X.; Liu, K. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J. Control. Release 2022, 353, 699–712. [Google Scholar] [CrossRef]
- Holder, C.F.; Schaak, R.E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13, 7359–7365. [Google Scholar] [CrossRef] [PubMed]
- Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 2009, 101, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Malekifard, F.; Tavassoli, M.; Vaziri, K. In Vitro Assessment Antiparasitic Effect of Selenium and Copper Nanoparticles on Giardia deodenalis Cyst. Iran. J. Parasitol. 2020, 15, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Albalawi, A.E.; Abdel-Shafy, S.; Khalaf, A.K.; Alanazi, A.D.; Baharvand, P.; Ebrahimi, K.; Mahmoudvand, H. Therapeutic Potential of Green Synthesized Copper Nanoparticles Alone or Combined with Meglumine Antimoniate (Glucantime®) in Cutaneous Leishmaniasis. Nanomaterials 2021, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.H.; Soliman, M.I.; Azzam, A.M.; Mostafa, A.B. Antiparasitic activity of silver and copper oxide nanoparticles against Entamoeba histolytica and Cryptosporidium parvum cysts. J. Egypt. Soc. Parasitol. 2015, 45, 593–602. [Google Scholar]
- Betancourt-Galindo, R.; Reyes-Rodriguez, P.Y.; Puente-Urbina, B.A.; Avila-Orta, C.A.; Rodríguez-Fernández, O.S.; Cadenas-Pliego, G.; Lira-Saldivar, R.H.; García-Cerda, L.A. Synthesis of Copper Nanoparticles by Thermal Decomposition and Their Antimicrobial Properties. J. Nanomater. 2014, 2014, 980545. [Google Scholar] [CrossRef]
- Albalawi, A.E.; Alanazi, A.D.; Alyousif, M.S.; Sepahvand, A.; Ebrahimi, K.; Niazi, M.; Mahmoudvand, H. The High Potency of Green Synthesized Copper Nanoparticles to Prevent the Toxoplasma gondii Infection in Mice. Acta Parasitol. 2021, 66, 1472–1479. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, S.; Xu, X.; Du, Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry—A narrative review. Front. Surg. 2022, 9, 905892. [Google Scholar] [CrossRef]
- James, S.L. Role of nitric oxide in parasitic infections. Microbiol. Rev. 1995, 59, 533–547. [Google Scholar] [CrossRef]
- Gazzinelli, R.; Brezin, A.; Li, Q.; Nussenblatt, R.; Chan, C. Toxoplasma gondii: Acquired Ocular Toxoplasmosis in the Murine Model, Protective Role of TNF-α and IFN-γ. Exp. Parasitol. 1994, 78, 217–229. [Google Scholar] [CrossRef]
- Gazzinelli, R.; Denkers, E.Y.; Sher, A. Host resistance to Toxoplasma gondii: Model for studying the selective induction of cell-mediated immunity by intracellular parasites. Infect. Agents Dis. 1993, 2, 139–149. [Google Scholar] [PubMed]
- Tulinska, J.; Mikusova, M.L.; Liskova, A.; Busova, M.; Masanova, V.; Uhnakova, I.; Rollerova, E.; Alacova, R.; Krivosikova, Z.; Wsolova, L.; et al. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice after Six-Week Inhalation. Front. Immunol. 2022, 13, 874253. [Google Scholar] [CrossRef] [PubMed]
- Nazarlu, Z.H.A.; Matini, M.; Bahmanzadeh, M.; Foroughi-Parvar, F. Toxoplasma gondii: A Possible Inducer of Oxidative Stress in Reproductive System of Male Rats. Iran. J. Parasitol. 2020, 15, 521–529. [Google Scholar] [CrossRef]
- Tavakoli, F.; Karimi Babaahmadi, B.; Javdani, M.; Kaboutari, J. Antioxidant effect of copper nanoparticles coated with Artemisia annua plant extract in the 2nd degree burns in mice. J. Comp. Pathobiol. 2023, 20, 4065–4074. [Google Scholar]
- Szewczyk-Golec, K.; Pawłowska, M.; Wesołowski, R.; Wróblewski, M.; Mila-Kierzenkowska, C. Oxidative Stress as a Possible Target in the Treatment of Toxoplasmosis: Perspectives and Ambiguities. Int. J. Mol. Sci. 2021, 22, 5705. [Google Scholar] [CrossRef]
- Louis, M.W.; Weiss, L.M.; Kim, K. The development and biology of bradyzoites of Toxoplasma gondii. Front. Biosci. 2000, 5, 391–405. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Medici, S.; Ledda, A.; Nurchi, V.M.; Lachowicz, J.I.; Peana, M. Toxicity of nanoparticles. Curr. Med. Chem. 2014, 21, 3837–3853. [Google Scholar] [CrossRef]
- Sulaiman, G.M.; Tawfeeq, A.T.; Jaaffer, M.D. Biogenic synthesis of copper oxide nanoparticles using Olea europaea leaf extract and evaluation of their toxicity activities: An in vivo and in vitro study. Biotechnol. Prog. 2018, 34, 218–230. [Google Scholar] [CrossRef]
- Mahmoudvand, H.; Sepahvand, P.; Jahanbakhsh, S.; Azadpour, M. Evaluation of the antileishmanial and cytotoxic effects of various extracts of garlic (Allium sativum) on Leishmania tropica. J. Parasit. Dis. 2016, 40, 423–426. [Google Scholar] [CrossRef]
- Jahanbakhsh, S.; Azadpour, M.; Tavakoli Kareshk, A.; Keyhani, A.; Mahmoudvand, H. Zataria multiflora Bioss: Lethal effects of methanolic extract against protoscoleces of Echinococcus granulosus. J. Parasit. Dis. 2016, 40, 1289–1292. [Google Scholar] [CrossRef]
- Ezzatkhah, F.; Khalaf, A.K.; Mahmoudvand, H. Copper nanoparticles: Biosynthesis, characterization, and protoscolicidal effects alone and combined with albendazole against hydatid cyst protoscoleces. Biomed. Pharmacother. 2021, 136, 111257. [Google Scholar] [CrossRef] [PubMed]
- Ezzatkhah, F.; Mahmoudvand, H.; Raziani, Y. The role of Curcuma longa essential oil in controlling acute toxoplasmosis by improving the immune system and reducing inflammation and oxidative stress. Front. Cell. Infect. Microbiol. 2023, 13, 1161133. [Google Scholar] [CrossRef] [PubMed]
- Yadegari, J.G.; Khalaf, A.K.; Ezzatkhah, F.; Shakibaie, M.; Mohammadi, H.R.; Mahmoudvand, H. Antileishmanial, cellular mechanisms, and cytotoxic effects of green synthesized zinc nanoparticles alone and in combined with glucantime against Leishmania major infection. Biomed. Pharmacother. 2023, 164, 114984. [Google Scholar] [CrossRef]
- De Oliveira, T.C.; Silva, D.A.; Rostkowska, C.; Béla, S.R.; Ferro, E.A.; Magalhães, P.M.; Mineo, J.R. Toxoplasma gondii: Effects of Artemisia annua L. on susceptibility to infection in experimental models in vitro and in vivo. Exp. Parasitol. 2009, 122, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudvand, H.; Yadegari, J.G.; Khalaf, A.K.; Hashemi, M.J.; Dastyarhaghighi, S.; Salimikia, I. Chemical composition, antileishmanial, and cytotoxic effects Ferula macrecolea essential oil against Leishmania tropica. Parasite Epidemiol. Control 2022, 19, e00270. [Google Scholar] [CrossRef]
- Shaapan, R.M.; Al-Abodi, H.R.; Alanazi, A.D.; Abdel-Shafy, S.; Rashidipour, M.; Shater, A.F.; Mahmoudvand, H. Myrtus communis Essential Oil; Anti-Parasitic Effects and Induction of the Innate Immune System in Mice with Toxoplasma gondii Infection. Molecules 2021, 26, 819. [Google Scholar] [CrossRef]
- Keyhani, A.; Ziaali, N.; Shakibaie, M.; Kareshk, A.T.; Shojaee, S.; Asadi-Shekaari, M.; Sepahvand, M.; Mahmoudvand, H. Biogenic selenium nanoparticles target chronic toxoplasmosis with minimal cytotoxicity in a mouse model. J. Med. Microbiol. 2020, 69, 104–110. [Google Scholar] [CrossRef]
- Mahmoudvand, H.; Pakravanan, M.; Aflatoonian, M.R.; Khalaf, A.K.; Niazi, M.; Mirbadie, S.R.; Tavakoli Kareshk, A.; Khatami, M. Efficacy and safety of Curcuma longa essential oil to inactivate hydatid cyst protoscoleces. BMC Complement. Altern. Med. 2019, 19, 187. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, A.D.; Alnomasy, S.F. Immunomodulatory, Antioxidant, and Anti-Inflammatory Activities of Green Synthesized Copper Nanoparticles for Treatment of Chronic Toxoplasma gondii Infection. Pharmaceuticals 2023, 16, 1574. https://doi.org/10.3390/ph16111574
Alanazi AD, Alnomasy SF. Immunomodulatory, Antioxidant, and Anti-Inflammatory Activities of Green Synthesized Copper Nanoparticles for Treatment of Chronic Toxoplasma gondii Infection. Pharmaceuticals. 2023; 16(11):1574. https://doi.org/10.3390/ph16111574
Chicago/Turabian StyleAlanazi, Abdullah D., and Sultan F. Alnomasy. 2023. "Immunomodulatory, Antioxidant, and Anti-Inflammatory Activities of Green Synthesized Copper Nanoparticles for Treatment of Chronic Toxoplasma gondii Infection" Pharmaceuticals 16, no. 11: 1574. https://doi.org/10.3390/ph16111574
APA StyleAlanazi, A. D., & Alnomasy, S. F. (2023). Immunomodulatory, Antioxidant, and Anti-Inflammatory Activities of Green Synthesized Copper Nanoparticles for Treatment of Chronic Toxoplasma gondii Infection. Pharmaceuticals, 16(11), 1574. https://doi.org/10.3390/ph16111574