Eugenol-Rich Essential Oil from Pimenta dioica: In Vitro and In Vivo Potentialities against Leishmania amazonensis
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of EO
2.2. In Vitro Assay
2.3. In Vivo Assay
2.4. In Silico Predictions
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oil Extraction, Chemical Characterization, and Main Compound
4.3. Hierarchical Cluster Analysis
4.4. Parasite, Cells, Animals, and Reference Drug
4.5. In Vitro Antileishmanial and Cytotoxicity Assays
4.6. In Vivo Antileishmanial Assay
4.7. In Silico Predictions
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Contreras-Moreno, B.Z. Chemical Composition of Essential Oil of Genus Pimenta (Myrtaceae). In Potential of Essential Oils; El-Shemy, H., Ed.; IntechOpen Limited: London, UK, 2018; p. 21. [Google Scholar]
- Ismail, M.M.; Samir, R.; Saber, F.R.; Ahmed, S.R.; Farag, M.A. Pimenta Oil as A Potential Treatment for Acinetobacter baumannii Wound Infection: In Vitro and In Vivo Bioassays in Relation to Its Chemical Composition. Antibiotics 2020, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- Padmakumari Amma, K.P.; Rani, M.P.; Sasidharan, I.; Sreekumar, M.M. Comparative chemical composition and in vitro antioxidant activities of essential oil isolated from the leaves of Cinnamomum tamala and Pimenta dioica. Nat. Prod. Res. 2013, 27, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Leal, A.C.; Palou, E.; López-Malo, A.; Bach, H. Antimicrobial, Cytotoxic, and Anti-Inflammatory Activities of Pimenta dioica and Rosmarinus officinalis Essential Oils. Biomed. Res. Int. 2019, 2019, 1639726. [Google Scholar] [CrossRef]
- Martinez-Velazquez, M.; Castillo-Herrera, G.A.; Rosario-Cruz, R.; Flores-Fernandez, J.M.; Lopez-Ramirez, J.; Hernandez-Gutierrez, R.; Lugo-Cervantes, C. Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol. Res. 2011, 108, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Narayanankutty, A.; Kuttithodi, A.M.; Alfarhan, A.; Rajagopal, R.; Barcelo, D. Chemical Composition, Insecticidal and Mosquito Larvicidal Activities of Allspice (Pimenta dioica) Essential Oil. Molecules 2021, 26, 6698. [Google Scholar] [CrossRef] [PubMed]
- Park, I.K.; Kim, J.; Lee, S.G.; Shin, S.C. Nematicidal Activity of Plant Essential Oils and Components from Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) Essential Oils Against Pine Wood Nematode (Bursaphelenchus Xylophilus). J. Nematol. 2007, 39, 275–279. [Google Scholar] [PubMed]
- Zhang, L.; Lokeshwar, B.L. Medicinal properties of the Jamaican pepper plant Pimenta dioica and Allspice. Curr. Drug Targets. 2012, 13, 1900–1906. [Google Scholar] [CrossRef]
- Islamuddin, M.; Sahal, D.; Afrin, F. Apoptosis-like death in Leishmania donovani promastigotes induced by eugenol-rich oil of Syzygium aromaticum. J. Med. Microbiol. 2014, 63, 74–85. [Google Scholar] [CrossRef]
- Le, T.B.; Beaufay, C.; Nghiem, D.T.; Mingeot-Leclercq, M.P.; Quetin-Leclercq, J. In Vitro Anti-Leishmanial Activity of Essential Oils Extracted from Vietnamese Plants. Molecules 2017, 22, 1071. [Google Scholar] [CrossRef]
- Pacheco-Fernandez, T.; Markle, H.; Verma, C.; Huston, R.; Gannavaram, S.; Nakhasi, H.L.; Satoskar, A.R. Field-Deployable Treatments for Leishmaniasis: Intrinsic Challenges, Recent Developments and Next Steps. Res. Rep. Trop. Med. 2023, 20, 61–85. [Google Scholar] [CrossRef]
- Gervazoni, L.F.O.; Barcellos, G.B.; Ferreira-Paes, T.; Almeida-Amaral, E.E. Use of Natural Products in Leishmaniasis Chemotherapy: An Overview. Front. Chem. 2020, 8, 579891. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Azas, N. Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens 2021, 10, 1608. [Google Scholar] [CrossRef] [PubMed]
- Luna, E.C.; Luna, I.S.; Scotti, L.; Monteiro, A.F.M.; Scotti, M.T.; de Moura, R.O.; de Araújo, R.S.A.; Monteiro, K.L.C.; de Aquino, T.M.; Ribeiro, F.F.; et al. Active Essential Oils and Their Components in Use against Neglected Diseases and Arboviruses. Oxid. Med. Cell. Longev. 2019, 2019, 6587150. [Google Scholar] [CrossRef] [PubMed]
- De Lara da Silva, C.E.; Oyama, J.; Ferreira, F.B.P.; de Paula Lalucci-Silva, M.P.; Lordani, T.V.A.; de Lara da Silva, R.C.; de Souza Terron Monich, M.; Teixeira, J.J.V.; Lonardoni, M.V.C. Effect of essential oils on Leishmania amazonensis: A systematic review. Parasitology. 2020, 147, 1392–1407. [Google Scholar] [CrossRef]
- Chaverri, C.; Cicció, J.F. Leaf and fruit essential oil compositions of Pimenta guatemalensis (Myrtaceae) from Costa Rica. Rev. Biol. Trop. 2015, 63, 303–311. [Google Scholar] [CrossRef]
- Morton, J.F. Atlas of Medicinal Plants of Middle America: Bahamas to Yucatan; Charles C Thomas Pub Ltd.: Springfield, IL, USA, 1981. [Google Scholar]
- Ramos, A.; Visozo, A.; Piloto, J.; Garc, A.; Rodr, C.A.; Rivero, R. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J. Ethnopharmacol. 2003, 87, 241–246. [Google Scholar] [CrossRef]
- Mahomoodally, F.; Aumeeruddy-Elalfi, Z.; Venugopala, K.N.; Hosenally, M. Antiglycation, comparative antioxidant potential, phenolic content and yield variation of essential oils from 19 exotic and endemic medicinal plants. Saudi J. Biol. Sci. 2019, 26, 1779–1788. [Google Scholar] [CrossRef]
- Achimón, F.; Brito, V.D.; Pizzolitto, R.P.; Ramirez Sanchez, A.; Gómez, E.A.; Zygadlo, J.A. Chemical composition and antifungal properties of commercial essential oils against the maize phytopathogenic fungus Fusarium verticillioides. Rev. Argent. Microbiol. 2021, 53, 292–303. [Google Scholar] [CrossRef]
- Moore, B.D.; Andrew, R.L.; Külheim, C.; Foley, W.J. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol. 2014, 201, 733–750. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- De Morais, S.M.; Vila-Nova, N.S.; Bevilaqua, C.M.; Rondon, F.C.; Lobo, C.H.; de Alencar Araripe Noronha Moura, A.; Sales, A.D.; Rodrigues, A.P.; de Figuereido, J.R.; Campello, C.C.; et al. Thymol and eugenol derivatives as potential antileishmanial agents. Bioorg. Med. Chem. 2014, 22, 6250–6255. [Google Scholar] [CrossRef] [PubMed]
- Grecco, S.S.; Costa-Silva, T.A.; Sousa, F.S.; Cargnelutti, S.B.; Umehara, E.; Mendonça, P.S.; Tempone, A.G.; Lago, J.H.G. Neolignans isolated from twigs of Nectandra leucantha Ness & Mart (Lauraceae) displayed in vitro antileishmanial activity. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 27. [Google Scholar] [PubMed]
- Hughes, K.; Le, T.B.; Van Der Smissen, P.; Tyteca, D.; Mingeot-Leclercq, M.P.; Quetin-Leclercq, J. The Antileishmanial Activity of Eugenol Associated with Lipid Storage Reduction Rather Than Membrane Properties Alterations. Molecules 2023, 28, 3871. [Google Scholar] [CrossRef] [PubMed]
- Caridha, D.; Vesely, B.; van Bocxlaer, K.; Arana, B.; Mowbray, C.E.; Rafati, S.; Uliana, S.; Reguera, R.; Kreishman-Deitrick, M.; Sciotti, R.; et al. Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. Int. J. Parasitol. Drugs Drug Resist. 2019, 11, 106–117. [Google Scholar] [CrossRef]
- Pan American Health Organization. Leishmaniasis in the Americas: Treatment Recommendations; PAHO: Washington, DC, USA, 2018. [Google Scholar]
- Roatt, B.M.; de Oliveira Cardoso, J.M.; De Brito, R.C.F.; Coura-Vital, W.; de Oliveira Aguiar-Soares, R.D.; Reis, A.B. Recent advances and new strategies on leishmaniasis treatment. Appl. Microbiol. Biotechnol. 2020, 104, 8965–8977. [Google Scholar] [CrossRef]
- Monzote, L.; Piñón, A.; Scull, R.; Setzer, W.N. Chemistry and leishmanicidal activity of the essential oil from Artemisia absinthium from Cuba. Nat. Prod. Commun. 2014, 9, 1799–1804. [Google Scholar] [PubMed]
- Monzote, L.; Scherbakov, A.M.; Scull, R.; Satyal, P.; Cos, P.; Shchekotikhin, A.E.; Gille, L.; Setzer, W.N. Essential Oil from Melaleuca leucadendra: Antimicrobial, Antikinetoplastid, Antiproliferative and Cytotoxic Assessment. Molecules 2020, 25, 5514. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Scull, R.; Satyal, P.; Setzer, W.N.; Monzote, L. Chemical Characterization, Antileishmanial Activity, and Cytotoxicity Effects of the Essential Oil from Leaves of Pluchea carolinensis (Jacq.) G. Don. (Asteraceae). Phytother. Res. 2017, 31, 1419–1426. [Google Scholar] [CrossRef]
- Teixeira, R.R.; Rodrigues Gazolla, P.A.; Borsodi, M.P.G.; Castro Ferreira, M.M.; Andreazza Costa, M.C.; Costa, A.V.; Cabral Abreu Grijó, B.; Rossi Bergmann, B.; Lima, W.P. Eugenol derivatives with 1,2,3-triazole moieties: Oral treatment of cutaneous leishmaniasis and a quantitative structure-activity relationship model for their leishmanicidal activity. Exp. Parasitol. 2022, 238, 108269. [Google Scholar] [CrossRef]
- Katsuno, K.; Burrows, J.N.; Duncan, K.; Hooft van Huijsduijnen, R.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov. 2015, 14, 751–758. [Google Scholar] [CrossRef]
- Cheuka, P.M.; Mayoka, G.; Mutai, P.; Chibale, K. The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases. Molecules 2016, 22, 58. [Google Scholar] [CrossRef] [PubMed]
- Rishton, G.M. Natural Products as a Robust Source of New Drugs and Drug Leads: Past Successes and Present Day Issues. Am. J. Cardiol. 2008, 101, S43–S49. [Google Scholar] [CrossRef]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Chudin, A.A.; Zlotnikov, I.D.; Krylov, S.S.; Semenov, V.V.; Kudryashova, E.V. Allylpolyalkoxybenzene Inhibitors of Galactonolactone Oxidase from Trypanosoma cruzi. Biochemistry 2023, 88, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate the pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed]
- Supandi, S.; Wulandari, M.S.; Samsul, E.; Azminah, A.; Purwoko, R.Y.; Herman, H.; Kuncoro, H.; Ibrahim, A.; Silfi Ambarwati, N.S.; Rosmalena, R.; et al. Dipeptidyl peptidase IV inhibition of phytocompounds from Artocarpus champeden (Lour.) Stokes: In silico molecular docking study and ADME-Tox prediction approach. J. Adv. Pharm. Technol. Res. 2022, 13, 207–215. [Google Scholar] [PubMed]
- Dey, D.; Biswas, P.; Paul, P.; Mahmud, S.; Ema, T.I.; Khan, A.A.; Ahmed, S.Z.; Hasan, M.M.; Saikat, A.S.M.; Fatema, B.; et al. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: A computational drug development approach. Mol. Divers 2023, 27, 1309–1322. [Google Scholar] [CrossRef]
- Foudah, A.I.; Alqarni, M.H.; Alam, A.; Salkini, M.A.; Ross, S.A.; Yusufoglu, H.S. Phytochemical Screening, In Vitro and In Silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia. Molecules 2022, 27, 934. [Google Scholar] [CrossRef]
- Pontes, K.A.O.; Silva, L.S.; Santos, E.C.; Pinheiro, A.S.; Teixeira, D.E.; Peruchetti, D.B.; Silva-Aguiar, R.P.; Wendt, C.H.C.; Miranda, K.R.; Coelho-de-Souza, A.N.; et al. Eugenol disrupts Plasmodium falciparum intracellular development during the erythrocytic cycle and protects against cerebral malaria. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129813. [Google Scholar] [CrossRef]
- Zhu, J.; Park, S.; Kim, C.H.; Jeong, K.H.; Kim, W.J. Eugenol alleviates neuronal damage via inhibiting inflammatory process against pilocarpine-induced status epilepticus. Exp. Biol. Med. 2023, 248, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, AL, USA, 2015. [Google Scholar]
- Andrade, B.F.; Ferreira, V.R.F.; Cardoso, G.P.; Andrade, M.P.D.; Ramos, A.L.S.; Cardoso, M.G.; Ramos, E.M. Allspice (Pimenta Dioica Lindl) leaves essential oil as a potential antioxidant and antimicrobial source for use in mechanically deboned poultry meat. Braz. J. Food Technol. 2023, 26, e2022125. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Murugan, M.; Vellaikumar, S.; Dhanya, M. Essential oil composition of allspice [Pimenta dioica (L.) Merill.] leaf from the Western Ghats, India. J. Curr. Opin. Crop. Sci. 2022, 3, 168–172. [Google Scholar]
- Gomes, P.R.B.; Marinho, S.C.; Everton, G.O.; Silva, E.F.; Fontenele, M.A.; Lyra, W.S.; de Freitas, A.C.; Hunaldo, V.K.L.; Souza, R.D.; Louzeiro, H.C.; et al. Chemical composition and larvicidal activity of the essential oil of Pimenta dioica leaves. Bol. Latinoam. Caribe. Plant Med. Aromat. 2022, 21, 207–214. [Google Scholar] [CrossRef]
- Bruno Marongiu, A.P.; Porcedda, S.; Casu, R.; Pierucci, P. Comparative Analysis of Supercritical CO2 Extract and Oil of Pimenta dioica Leaves. J. Essent. Oil Res. 2005, 17, 530–532. [Google Scholar] [CrossRef]
- Marques, C.S.; Pinheiro, P.F.; Villanova, J.C.O.; Bernardes, P.C. Comparative chemical evaluation and antibacterial activity of Pimenta dioica essential oil obtained by different extraction methods. Open Sci. Res. III 2022, 3, 242–255. [Google Scholar]
- Mérida-Reyes, M.S.; Muñoz-Wug, M.A.; Oliva-Hernández, B.E.; Gaitán-Fernández, I.C.; Simas, D.L.R.; Ribeiro da Silva, A.J.; Pérez-Sabino, J.F. Composition and Antibacterial Activity of the Essential Oil from Pimenta dioica (L.) Merr. from Guatemala. Medicines 2020, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Sarathambal, C.; Rajagopal, S.; Viswanathan, R. Mechanism of antioxidant and antifungal properties of Pimenta dioica (L.) leaf essential oil on Aspergillus flavus. J. Food Sci. Technol. 2021, 58, 2497–2506. [Google Scholar] [CrossRef]
- Youssef, F.S.; Labib, R.M.; Gad, H.A.; Eid, S.; Ashour, M.L.; Eid, H.H. Pimenta dioica and Pimenta racemosa: GC-based metabolomics for the assessment of seasonal and organ variation in their volatile components, in silico and in vitro cytotoxic activity estimation. Food Funct. 2021, 12, 5247–5259. [Google Scholar] [CrossRef]
- Pino, J.A.; Rosado, A. Chemical Composition of the Leaf Oil of Pimenta dioica L. from Cuba. J. Essent. Oil Res. 1996, 8, 331–332. [Google Scholar] [CrossRef]
- Caio, T.S.E.; Lima, M.D.; Kaplan, M.A.C.; Nazareth, M.M.; Rossi-Bergmann, B. Selective effect of 2′,6′-dihydroxy-4′-methoxychalcone isolated from Piper aduncum on Leishmania amazonensis. Antimicrob. Agents Chemother. 1999, 43, 1234–1241. [Google Scholar]
- Delorenzi, J.C.; Attias, M.; Gattass, C.R.; Andrade, M.; Rezende, C.; da Cunha Pinto, A.; Henriques, A.T.; Bou-Habib, D.C.; Saraiva, E.M. Antileishmanial activity of an indole alkaloid from Peschiera australis. Antimicrob. Agents Chemother. 2001, 45, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Sladowski, D.; Steer, S.J.; Clothier, R.H.; Balls, M. An improve MTT assay. J. Immunol. Methods 1993, 157, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Monzote, L.; Pastor, J.; Scull, R.; Gille, L. Antileishmanial activity of essential oil from Chenopodium ambrosioides and its main components against experimental cutaneous leishmaniasis in BALB/c mice. Phytomedicine 2014, 21, 1048–1052. [Google Scholar] [CrossRef]
- Buffet, P.A.; Sulahian, A.; Garin, Y.J.F.; Nassar, N.; Derouin, F. Culture microtitration: A sensitive method for quantifying Leishmania infantum in tissues of infected mice. Antimicrob Agents Chemother. 1995, 39, 2167–2168. [Google Scholar] [CrossRef]
- Pereira, D.G.; Afonso, A.; Medeiros, F.M. Overview of Friedman’s Test and Post-hoc Analysis. Commun. Stat. Simul. Comput. 2015, 44, 2636–2653. [Google Scholar] [CrossRef]
RI 1 | Compound | % |
---|---|---|
873 | (3Z)-Hexenol | 0.1 |
880 | 1-Hexanol | tr 2 |
924 | α-Thujene | 0.3 |
930 | α-Pinene | 0.3 |
971 | Sabinene | tr |
987 | Myrcene | 0.2 |
1000 | α-Phellandrene | 0.6 |
1006 | δ-3-Carene | 0.1 |
1012 | 1,4-Cineole | tr |
1013 | α-Terpinene | 0.2 |
1021 | p-Cymene | 3.6 |
1026 | β-Phellandrene | 0.6 |
1028 | 1,8-Cineole | 2.3 |
1059 | γ-Terpinene | 0.1 |
1090 | Terpinolene | 0.6 |
1104 | Linalool | 0.1 |
1150 | Unidentified | 0.1 |
1180 | Terpinen-4-ol | 0.8 |
1189 | p-Cymen-8-ol | 0.2 |
1193 | α-Terpineol | 0.2 |
1201 | Methyl chavicol (=Estragole) | tr |
1203 | cis-Sabinol | 0.1 |
1253 | Chavicol | tr |
1286 | Thymol | tr |
1290 | Carvacrol | tr |
1360 | Eugenol | 85.1 |
1390 | β-Elemene | 0.1 |
1395 | Vanillin | 0.1 |
1416 | β-Caryophyllene | 0.7 |
1450 | α-Humulene | 0.4 |
1484 | β-Selinene | 0.2 |
1494 | α-Selinene | 0.3 |
1525 | δ-Cadinene | 0.1 |
1581 | Caryophyllene oxide | 0.8 |
1590 | Viridiflorol | 0.1 |
1602 | Ledol | 0.1 |
1608 | Humulene epoxide II | 0.3 |
1613 | Unidentified | 0.2 |
1616 | Junenol | 0.1 |
1628 | 1-epi-Cubenol | 0.1 |
1641 | τ-Cadinol | 0.2 |
1643 | τ-Muurolol | 0.1 |
1647 | α-Muurolol | 0.1 |
1654 | α-Cadinol | 0.3 |
1658 | Selin-11-en-4β-ol | 0.6 |
Total identified | 99.7 |
Products | IC50 1 ± SD 2 (µg/mL) | CC50 3 ± SD (µg/mL) | SI 4 | |
---|---|---|---|---|
Promastigotes | Amastigotes | |||
P. dioica EO | 9.7 ± 0.7 | 11.3 ± 2.1 | 104.5 ± 0.9 | 9 |
Pentamidine 5 | 2.6 ± 0.9 | 1.3 ± 0.1 | 11.7 ± 1.7 | 9 |
Prediction | Eugenol | ||
---|---|---|---|
Pa 1 | Pi 2 | ||
Biological Activity: | Carminative | 0.941 | 0.001 |
Antimutagenic | 0.878 | 0.003 | |
Antieczematic | 0.868 | 0.008 | |
Mucomembranous protector | 0.835 | 0.011 | |
Preneoplastic conditions treatment | 0.803 | 0.004 | |
Anesthetic general | 0.742 | 0.005 | |
Antiseptic | 0.722 | 0.005 | |
Ligand interactions: | Aspulvinone dimethylallyltransferase inhibitor | 0.937 | 0.004 |
Chlordecone reductase inhibitor | 0.902 | 0.005 | |
Feruloyl esterase inhibitor | 0.881 | 0.005 | |
Caspase 3 stimulant | 0.873 | 0.004 | |
JAK2 expression inhibitor | 0.873 | 0.004 | |
Linoleate diol synthase inhibitor | 0.863 | 0.004 | |
CYP2E1 substrate | 0.856 | 0.004 | |
Membrane integrity agonist | 0.866 | 0.020 | |
CYP2E substrate | 0.850 | 0.004 | |
Vanillyl-alcohol oxidase inhibitor | 0.840 | 0.002 | |
CYP2A substrate | 0.841 | 0.005 | |
Ubiquinol-cytochrome-c reductase inhibitor | 0.825 | 0.024 | |
G-protein-coupled receptor kinase inhibitor | 0.807 | 0.012 | |
Beta-adrenergic receptor kinase inhibitor | 0.807 | 0.012 | |
MMP9 expression inhibitor | 0.797 | 0.003 | |
Gluconate 2-dehydrogenase (acceptor) inhibitor | 0.797 | 0.017 | |
Membrane permeability inhibitor | 0.781 | 0.013 | |
5 Hydroxytryptamine release stimulant | 0.773 | 0.017 | |
Apoptosis agonist | 0.743 | 0.011 | |
Cardiovascular analeptic | 0.736 | 0.005 | |
MAP kinase stimulant | 0.735 | 0.004 | |
CYP2C8 inhibitor | 0.733 | 0.004 | |
Fatty-acyl-CoA synthase inhibitor | 0.724 | 0.010 | |
CYP2C substrate | 0.725 | 0.015 | |
TP53 expression enhancer | 0.724 | 0.021 | |
Respiratory analeptic | 0.715 | 0.014 | |
CYP1A2 substrate | 0.709 | 0.008 | |
HMOX1 expression enhancer | 0.705 | 0.008 | |
CYP1A substrate | 0.701 | 0.011 | |
CYP2C12 substrate | 0.734 | 0.051 | |
CDP-glycerol glycerophosphotransferase inhibitor | 0.717 | 0.049 |
Predicted Parameter | Eugenol | Pentamidine |
---|---|---|
Physico-Chemical Properties: | ||
Molecular weight | 164.2 | 340.4 |
Hydrogen bond acceptors | 2 | 4 |
Hydrogen bond donors | 1 | 4 |
Number of rotatable bonds | 3 | 10 |
Topological polar surface area (Å) | 29.5 | 118.2 |
Molar refractivity | 49.1 | 100.7 |
Absorption Parameters: | ||
Consensus LogS | −2.46 | −3.26 |
Consensus Log P | 2.25 | 2.72 |
Solubility class | Soluble | Soluble |
Drug Likeness Prediction: | ||
Lipinski (RO5) | 0 | 0 |
Ghose | 0 | 0 |
Veber | 0 | 0 |
Egan | 0 | 0 |
Muegge | 1 | 0 |
Bioavailability | ||
Bioactivity score | 0.55 | 0.55 |
Synthetic accessibility | 1.58 | 2.38 |
Distribution Parameters Prediction | ||
Log Kp (cm/seg) | −5.69 | −6.56 |
GI Absorption | High | High |
BBB Permeant | Yes | No |
Metabolism Parameters Prediction | ||
P-Glycoprotein substrate | No | No |
CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4 inhibitors | No, except to CYP1A2 | No, except to CYP2C9 and CYP2D6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monzote, L.; Machín, L.; González, A.; Scull, R.; Gutiérrez, Y.I.; Satyal, P.; Gille, L.; Setzer, W.N. Eugenol-Rich Essential Oil from Pimenta dioica: In Vitro and In Vivo Potentialities against Leishmania amazonensis. Pharmaceuticals 2024, 17, 64. https://doi.org/10.3390/ph17010064
Monzote L, Machín L, González A, Scull R, Gutiérrez YI, Satyal P, Gille L, Setzer WN. Eugenol-Rich Essential Oil from Pimenta dioica: In Vitro and In Vivo Potentialities against Leishmania amazonensis. Pharmaceuticals. 2024; 17(1):64. https://doi.org/10.3390/ph17010064
Chicago/Turabian StyleMonzote, Lianet, Laura Machín, Adiel González, Ramón Scull, Yamilet I. Gutiérrez, Prabodh Satyal, Lars Gille, and William N. Setzer. 2024. "Eugenol-Rich Essential Oil from Pimenta dioica: In Vitro and In Vivo Potentialities against Leishmania amazonensis" Pharmaceuticals 17, no. 1: 64. https://doi.org/10.3390/ph17010064
APA StyleMonzote, L., Machín, L., González, A., Scull, R., Gutiérrez, Y. I., Satyal, P., Gille, L., & Setzer, W. N. (2024). Eugenol-Rich Essential Oil from Pimenta dioica: In Vitro and In Vivo Potentialities against Leishmania amazonensis. Pharmaceuticals, 17(1), 64. https://doi.org/10.3390/ph17010064