Unveiling the Role of Nonionic Surfactants in Enhancing Cefotaxime Drug Solubility: A UV-Visible Spectroscopic Investigation in Single and Mixed Micellar Formulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Simple UV-Visible Absorption Spectra
2.2. Differential UV-Visible Absorption Spectra
2.2.1. Single Micellar System
2.2.2. Mixed Micellar System
2.3. Study of Interaction Mechanisms
2.3.1. Binding Nature of Cefotaxime in a Single Micellar System with TX-100 and TW-80
2.3.2. Binding Nature of Cefotaxime in a Mixed Micellar System (Pre-Micellar TX-100 and Post-Micellar Tween 80)
2.4. Study of Release Mechanism of Cefotaxime
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Stock Solutions and their Serial Dilution
3.3. Drug–Surfactant Interaction Study
3.4. Calculated Parameters
3.4.1. Partitioning Parameters
3.4.2. Binding Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, X.; Wu, Z.; Chen, Z.; Cui, X. Mechanism of the Micellar Solubilization of Curcumin by Mixed Surfactants of SDS and Brij35 via NMR Spectroscopy. Molecules 2022, 27, 5032. [Google Scholar] [CrossRef] [PubMed]
- Clulow, A.J.; Barber, B.; Salim, M.; Ryan, T.; Boyd, B.J. Synergistic and antagonistic effects of non-ionic surfactants with bile salt+ phospholipid mixed micelles on the solubility of poorly water-soluble drugs. Int. J. Pharm. 2020, 588, 119762. [Google Scholar] [CrossRef] [PubMed]
- Mladěnka, P.; Applová, L.; Patočka, J.; Costa, V.M.; Remiao, F.; Pourová, J.; Mladěnka, A.; Karlíčková, J.; Jahodář, L.; Vopršalová, M. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med. Res. Rev. 2018, 38, 1332–1403. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Uchiyama, H.; Wada, Y.; Hatanaka, Y.; Shirakawa, Y.; Kadota, K.; Tozuka, Y. Mixed micelles of the antihistaminic cationic drug diphenhydramine hydrochloride with anionic and non-ionic surfactants show improved solubility, drug release and cytotoxicity of ethenzamide. J. Mol. Liq. 2019, 277, 349–359. [Google Scholar] [CrossRef]
- Seleci, D.A.; Seleci, M.; Walter, J.-G.; Stahl, F.; Scheper, T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J. Nanomater. 2016, 2016, 7372306. [Google Scholar] [CrossRef]
- Aguirre-Ramírez, M.; Silva-Jiménez, H.; Banat, I.M.; Díaz De Rienzo, M. Surfactants: Physicochemical interactions with biological macromolecules. Biotechnol. Lett. 2021, 43, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Yusaf, A.; Usman, M.; Mansha, A.; Saeed, M.; Ahmad, M.; Siddiq, M. Micellar-enhanced ultrafiltration (MEUF) for removal of rhodamine B (RhB) from aqueous system. J. Dispers. Sci. Technol. 2022, 43, 348–366. [Google Scholar] [CrossRef]
- Yusaf, A.; Usman, M.; Mansha, A.; Siddiq, M.; Amjad, Z.; Irshad, S.; Sultana, H. Self-organised surfactant assemblies as nanostructured dye carriers: A mixed micellar comparative approach for enhanced dye solubilisation. Int. J. Environ. Anal. Chem. 2022, 1–12. [Google Scholar] [CrossRef]
- Shakeel, F.; Alshehri, S.; Ibrahim, M.A.; Altamimi, M.; Haq, N.; Elzayat, E.M.; Shazly, G.A. Solubilization and thermodynamic properties of simvastatin in various micellar solutions of different non-ionic surfactants: Computational modeling and solubilization capacity. PLoS ONE 2021, 16, e0249485. [Google Scholar] [CrossRef]
- Yusaf, A.; Usman, M.; Ahmad, M.; Siddiq, M.; Mansha, A.; Al-Hussain, S.A.; Zaki, M.E.; Rehman, H.F. Highly Selective Methodology for Entrapment and Subsequent Removal of Cobalt (II) Ions under Optimized Conditions by Micellar-Enhanced Ultrafiltration. Molecules 2022, 27, 8332. [Google Scholar] [CrossRef]
- Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci. 2016, 11, 404–416. [Google Scholar] [CrossRef]
- Nishikido, N. Solubilization in mixed micelles. In Solubilization in Surfactant Aggregates; CRC Press: Boca Raton, FL, USA, 2020; pp. 143–190. [Google Scholar]
- Srivastava, A.; Kumar, M.; Deb, D.K.; Muzaffar, F.; Singh, S. Utilization of amphiphilic antihistamines drugs to enhance micellization of anionic surfactant and improve the binding and solubility of Itraconazole drug. J. Mol. Liq. 2022, 348, 118018. [Google Scholar] [CrossRef]
- Silva, A.C.; Lopes, C.M.; MS Lobo, J.; Amaral, M.H. Delivery systems for biopharmaceuticals. Part II: Liposomes, micelles, microemulsions and dendrimers. Curr. Pharm. Biotechnol. 2015, 16, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull. 2017, 7, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Wakaskar, R.R. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J. Drug Target. 2018, 26, 311–318. [Google Scholar] [CrossRef]
- Baer, B.; Souza, L.M.P.; Pimentel, A.S.; Veldhuizen, R.A. New insights into exogenous surfactant as a carrier of pulmonary therapeutics. Biochem. Pharmacol. 2019, 164, 64–73. [Google Scholar] [CrossRef]
- Hwang, D.; Ramsey, J.D.; Kabanov, A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [CrossRef]
- Akhter, K.; Ullah, K.; Talat, R.; Haider, A.; Khalid, N.; Ullah, F.; Ali, S. Synthesis and characterization of cationic surfactants and their interactions with drug and metal complexes. Heliyon 2019, 5, e01885. [Google Scholar] [CrossRef]
- Lalthlengliani, J.; Gurung, J.; Pulikkal, A.K. Solubilization of aqueous-insoluble phenothiazine drug in TX-100 micellar solution and interactions of cationic/anionic surfactants with phenothiazine–TX-100 system. J. Mol. Liq. 2022, 354, 118823. [Google Scholar] [CrossRef]
- Alizadeh, M.N.; Shayanfar, A.; Jouyban, A. Solubilization of drugs using sodium lauryl sulfate: Experimental data and modeling. J. Mol. Liq. 2018, 268, 410–414. [Google Scholar] [CrossRef]
- Muhammad, M.T.; Khan, M.N. Spectrophotometric investigation of surfactants mediated aqueous solubilization of Nile blue. J. Mol. Liq. 2021, 331, 115822. [Google Scholar] [CrossRef]
- Ullah, F.; Ullah, S.; Khan, M.F.A.; Khan, F.; Tareen, N.H.K. Enhancement in aqueous solubility of sulindac medicine by using the micellar solution of ionic and non-ionic surfactants. Biomed. Lett. 2022, 8, 170–176. [Google Scholar]
- Majumder, N.; Das, N.G.; Das, S.K. Polymeric micelles for anticancer drug delivery. Ther. Deliv. 2020, 11, 613–635. [Google Scholar] [CrossRef] [PubMed]
- Azum, N.; Rub, M.A.; Asiri, A.M.; Bawazeer, W.A. Micellar and interfacial properties of amphiphilic drug–non-ionic surfactants mixed systems: Surface tension, fluorescence and UV–vis studies. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 183–192. [Google Scholar] [CrossRef]
- Lu, X.; Li, M.; Arce, F.A.; Ling, J.; Setiawan, N.; Wang, Y.; Shi, X.; Campbell, H.R.; Nethercott, M.J.; Xu, W. Mechanistic Investigation of Drug Supersaturation in the Presence of Polysorbates as Solubilizing Additives by Solution Nuclear Magnetic Resonance Spectroscopy. Mol. Pharm. 2021, 18, 4310–4321. [Google Scholar] [CrossRef] [PubMed]
- Maity, B.; Chatterjee, A.; Ahmed, S.A.; Seth, D. Interaction of the nonsteroidal anti-inflammatory drug indomethacin with micelles and its release. J. Phys. Chem. B 2015, 119, 3776–3785. [Google Scholar] [CrossRef]
- Talele, P.; Choudhary, S.; Kishore, N. Understanding thermodynamics of drug partitioning in micelles and delivery to proteins: Studies with naproxen, diclofenac sodium, tetradecyltrimethylammonium bromide, and bovine serum albumin. J. Chem. Thermodyn. 2016, 92, 182–190. [Google Scholar] [CrossRef]
- Sar, P.; Ghosh, A.; Scarso, A.; Saha, B. Surfactant for better tomorrow: Applied aspect of surfactant aggregates from laboratory to industry. Res. Chem. Intermed. 2019, 45, 6021–6041. [Google Scholar] [CrossRef]
- Bandivadekar, M.; Pancholi, S.; Kaul-Ghanekar, R.; Choudhari, A.; Koppikar, S. Single non-ionic surfactant based self-nanoemulsifying drug delivery systems: Formulation, characterization, cytotoxicity and permeability enhancement study. Drug Dev. Ind. Pharm. 2013, 39, 696–703. [Google Scholar] [CrossRef]
- Teleb, M.S.; Mohammed, S.F.; Gaballa, A.S. Syntheses and identi ication of cefotaxime-non-transition metal complexes. Int. J. Res. Pharm. Sci. 2021, 12, 1213–1222. [Google Scholar] [CrossRef]
- Irshad, S.; Sultana, H.; Usman, M.; Saeed, M.; Akram, N.; Yusaf, A.; Rehman, A. Solubilization of direct dyes in single and mixed surfactant system: A comparative study. J. Mol. Liq. 2021, 321, 114201. [Google Scholar] [CrossRef]
- Noor, S.; Taj, M.B. Mixed-micellar approach for enhanced dye entrapment: A spectroscopic study. J. Mol. Liq. 2021, 338, 116701. [Google Scholar] [CrossRef]
- Brandis, A.; Mazor, O.; Neumark, E.; Rosenbach-Belkin, V.; Salomon, Y.; Scherz, A. Novel Water-soluble Bacteriochlorophyll Derivatives for Vascular-targeted Photodynamic Therapy: Synthesis, Solubility, Phototoxicity and the Effect of Serum Proteins. Photochem. Photobiol. 2005, 81, 983–992. [Google Scholar] [PubMed]
- Rehman, A.; Nisa, M.U.; Usman, M.; Ahmad, Z.; Bokhari, T.H.; Rahman, H.M.A.U.; Rasheed, A.; Kiran, L. Application of cationic-nonionic surfactant based nanostructured dye carriers: Mixed micellar solubilization. J. Mol. Liq. 2021, 326, 115345. [Google Scholar] [CrossRef]
- Zhang, L.; Chai, X.; Sun, P.; Yuan, B.; Jiang, B.; Zhang, X.; Liu, M. The study of the aggregated pattern of TX100 micelle by using solvent paramagnetic relaxation enhancements. Molecules 2019, 24, 1649. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jash, C.; Mukherjee, S. Spectroscopic determination of Critical Micelle Concentration in aqueous and non-aqueous media using a non-invasive method. J. Colloid Interface Sci. 2011, 364, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, M.E.; Al-Koofee, D.A. Effect of temperature changes on critical micelle concentration for tween series surfactant. Glob. J. Sci. Front. Res. Chem. 2013, 13, 1–7. [Google Scholar]
- Hanif, S.; Usman, M.; Hussain, A.; Rasool, N.; Zubair, M.; Rana, U.A. Solubilization of Benzothiazole (BNZ) by micellar media of Sodium dodecyl sulphate and Cetyl trimethylammonium bromide. J. Mol. Liq. 2015, 211, 7–14. [Google Scholar] [CrossRef]
- Usman, M.; Rashid, M.A.; Mansha, A.; Siddiq, M. Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate. Thermochim. Acta 2013, 573, 18–24. [Google Scholar] [CrossRef]
- Nazar, M.F.; Shah, S.S.; Khosa, M.A. Interaction of azo dye with cationic surfactant under different pH conditions. J. Surfactants Deterg. 2010, 13, 529–537. [Google Scholar] [CrossRef]
- Yusaf, A.; Usman, M.; Siddiq, M.; Bakhtiar, M.; Mansha, A.; Shaukat, S.; Rehman, H.F. Mixed Micellar Solubilization of Naphthol Green B Followed by Its Removal from Synthetic Effluent by Micellar-Enhanced Ultrafiltration under Optimized Conditions. Molecules 2022, 27, 6436. [Google Scholar] [CrossRef] [PubMed]
- Acosta, E.; Bisceglia, M.; Kurlat, D. Self-aggregation in aqueous TRITON X-100 solutionsnear CMC. Phys. Chem. Liq. 2005, 43, 269–275. [Google Scholar] [CrossRef]
- Stubičar, N.; Petres, J. Micelle formation by tritons in aqueous solutions. Croat. Chem. Acta 1981, 54, 255–266. [Google Scholar]
- Serafini, P.; Leyes, M.F.; Pereyra, R.B.; Schulz, E.P.; Durand, G.A.; Schulz, P.C.; Ritacco, H.A. The aqueous Triton X-100–dodecyltrimethylammonium bromidemicellar mixed system. Experimental results and thermodynamic analysis. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 127–135. [Google Scholar] [CrossRef]
- Amani, A.; York, P.; de Waard, H.; Anwar, J. Molecular dynamics simulation of a polysorbate 80 micelle in water. Soft Matter 2011, 7, 2900–2908. [Google Scholar] [CrossRef]
- Berezin, D.B.; Kustov, A.V.; Krest’yaninov, M.A.; Shukhto, O.V.; Batov, D.V.; Natal’ya, V.K. The behavior of monocationic chlorin in water and aqueous solutions of non-ionic surfactant Tween 80 and potassium iodide. J. Mol. Liq. 2019, 283, 532–536. [Google Scholar] [CrossRef]
- Karanth, S.; Iyyaswami, R. Analysis of ionic and nonionic surfactants blends used for the reverse micellar extraction of Lactoperoxidase from whey. Asia-Pac. J. Chem. Eng. 2021, 16, e2590. [Google Scholar] [CrossRef]
- Kronberg, B. The hydrophobic effect. Curr. Opin. Colloid Interface Sci. 2016, 22, 14–22. [Google Scholar] [CrossRef]
- Reeve, J.R.; Thomas, R.K.; Penfold, J. Surface activity of ethoxylate surfactants with different hydrophobic architectures: The effect of layer substructure on surface tension and adsorption. Langmuir 2021, 37, 9269–9280. [Google Scholar] [CrossRef]
- Shaban, S.M.; Abd Elsamad, S.; Tawfik, S.M.; Adel, A.-H.; Aiad, I. Studying surface and thermodynamic behavior of a new multi-hydroxyl Gemini cationic surfactant and investigating their performance as corrosion inhibitor and biocide. J. Mol. Liq. 2020, 316, 113881. [Google Scholar] [CrossRef]
- Rub, M.A.; Azum, N.; Kumar, D.; Asiri, A.M.; Marwani, H.M. Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution. J. Chem. Thermodyn. 2014, 74, 91–102. [Google Scholar] [CrossRef]
- Maswal, M.; Chat, O.A.; Jabeen, S.; Ashraf, U.; Masrat, R.; Shah, R.A.; Dar, A.A. Solubilization and co-solubilization of carbamazepine and nifedipine in mixed micellar systems: Insights from surface tension, electronic absorption, fluorescence and HPLC measurements. RSC Adv. 2015, 5, 7697–7712. [Google Scholar] [CrossRef]
- Bhat, P.A.; Rather, G.M.; Dar, A.A. Effect of surfactant mixing on partitioning of model hydrophobic drug, naproxen, between aqueous and micellar phases. J. Phys. Chem. B 2009, 113, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Irshad, S.; Sultana, H.; Usman, M.; Akram, N.; Farooqi, Z.H.; Yusaf, A.; Nazar, M.F. Solubilization of direct black 2 in mixed micellar media: Insights from spectroscopic and conductometric measurements. J. Dispers. Sci. Technol. 2021, 44, 1044–1053. [Google Scholar] [CrossRef]
- Al Hagbani, T.; Rizvi, S.M.D.; Hussain, T.; Mehmood, K.; Rafi, Z.; Moin, A.; Abu Lila, A.S.; Alshammari, F.; Khafagy, E.-S.; Rahamathulla, M. Cefotaxime mediated synthesis of gold nanoparticles: Characterization and antibacterial activity. Polymers 2022, 14, 771. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.A.; Mahbub, S.; Hossain, M.D.; Khan, M.A.; Khan, J.M.; Malik, A.; Ahmed, A.; Ahmed, M.Z. Influence of NaCl and temperature on the interaction between cephradine monohydrate and surfactants: Conductivity and UV–visible measurements. J. Mol. Liq. 2021, 328, 115418. [Google Scholar] [CrossRef]
- Ishkhanyan, H.; Rhys, N.H.; Barlow, D.J.; Lawrence, M.J.; Lorenz, C.D. Impact of drug aggregation on the structural and dynamic properties of Triton X-100 micelles. Nanoscale 2022, 14, 5392–5403. [Google Scholar] [CrossRef] [PubMed]
- Enache, M.; Volanschi, E. Spectroscopic investigations of the molecular interaction of anticancer drug mitoxantrone with non-ionic surfactant micelles. J. Pharm. Pharmacol. 2012, 64, 688–696. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Jiao, J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1663–1673. [Google Scholar] [CrossRef]
- Pavlović, N.; Goločorbin-Kon, S.; Ðanić, M.; Stanimirov, B.; Al-Salami, H.; Stankov, K.; Mikov, M. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front. Pharmacol. 2018, 9, 1283. [Google Scholar] [CrossRef]
- Islam, M.N.; Rub, M.A.; Islam, M.R.; Goni, M.A.; Rana, S.; Kumar, D.; Asiri, A.M.; Alghamdi, Y.G.; Hoque, M.A.; Kabir, S.E. Physico-chemical study of the effects of electrolytes and hydrotropes on the clouding development of TX-100 and ceftriaxone sodium drug mixture. J. Mol. Liq. 2023, 379, 121601. [Google Scholar] [CrossRef]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Bharatiya, B.; Ray, D.; Aswal, V.; Bahadur, P. Investigations on microstructural changes in pH responsive mixed micelles of Triton X-100 and bile salt. J. Colloid Interface Sci. 2015, 441, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Leroux, J.-C.; Roux, E.; Le Garrec, D.; Hong, K.; Drummond, D.C. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J. Control. Release 2001, 72, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, A.A.M.; Rajendiran, N.; Sathiyaseelan, K. Equilibrium Constant, Concentrations Study of p-Aminobenzoic Acid in Anionic, Cationic and Non-ionic Surfactants. Science 2021, 9, 68–76. [Google Scholar]
- Beasley, D.E.; Koltz, A.M.; Lambert, J.E.; Fierer, N.; Dunn, R.R. The evolution of stomach acidity and its relevance to the human microbiome. PLoS ONE 2015, 10, e0134116. [Google Scholar] [CrossRef]
- Asman, S.; Abas, N.A. Triton X-100/β-Cyclodextrin Cloud Point Extraction for Removal of Phenol Using Different of Sodium Salts as Inducing Phase Separation Agent. Asian J. Chem. 2018, 30, 1299–1305. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Qi, J.; Wu, W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm. Sin. B 2021, 11, 2449–2468. [Google Scholar] [CrossRef]
- Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm. 2017, 112, 234–248. [Google Scholar] [CrossRef]
- Hens, B.; Tsume, Y.; Bermejo, M.; Paixao, P.; Koenigsknecht, M.J.; Baker, J.R.; Hasler, W.L.; Lionberger, R.; Fan, J.; Dickens, J. Low buffer capacity and alternating motility along the human gastrointestinal tract: Implications for in vivo dissolution and absorption of ionizable drugs. Mol. Pharm. 2017, 14, 4281–4294. [Google Scholar] [CrossRef]
- Sun, Y.; Li, M.; Gu, X.; Danish, M.; Shan, A.; Ali, M.; Qiu, Z.; Sui, Q.; Lyu, S. Mechanism of surfactant in trichloroethene degradation in aqueous solution by sodium persulfate activated with chelated-Fe (II). J. Hazard. Mater. 2021, 407, 124814. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, A.D.; Tekinay, A.B.; Guler, M.O.; Tekin, E.D. Effects of temperature, pH and counterions on the stability of peptide amphiphile nanofiber structures. RSC Adv. 2016, 6, 104201–104214. [Google Scholar] [CrossRef]
- Guagliardo, R.; Perez-Gil, J.; De Smedt, S.; Raemdonck, K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J. Control. Release 2018, 291, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Taj, M.B.; Naz, I. Comparative solubilization of reactive dyes in single and mixed surfactants. J. Dispers. Sci. Technol. 2022, 43, 2058–2068. [Google Scholar] [CrossRef]
- Yusaf, A.; Usman, M.; Ibrahim, M.; Mansha, A.; ul Haq, A.; Rehman, H.F.; Ali, M. Mixed micellar solubilization for procion blue MxR entrapment and optimization of necessary parameters for micellar enhanced ultrafiltration. Chemosphere 2023, 313, 137320. [Google Scholar] [CrossRef]
- Noor, S.; Taj, M.B.; Ashar, A. Solubilization of cationic dye in single and mixed micellar media. J. Mol. Liq. 2021, 330, 115613. [Google Scholar] [CrossRef]
Cs (mM) | ∆A | 1/∆A | Cd (mM) | CMCo (mM) | Cs − CMCo (mol dm−3) | (mol dm−3) | ) (mol−1 dm3) | CsCd/∆A × 10−6 (mol−2 dm6) |
---|---|---|---|---|---|---|---|---|
0.22 | 1.448 | 0.691 | 0.05 | 0.2 | 0.00002 | 0.00007 | 14286 | 0.0076 |
0.24 | 1.454 | 0.688 | 0.05 | 0.2 | 0.00004 | 0.00009 | 11111 | 0.0083 |
0.26 | 1.458 | 0.686 | 0.05 | 0.2 | 0.00006 | 0.00011 | 9091 | 0.0089 |
0.28 | 1.460 | 0.685 | 0.05 | 0.2 | 0.00008 | 0.00013 | 7692 | 0.0096 |
0.30 | 1.464 | 0.683 | 0.05 | 0.2 | 0.00010 | 0.00015 | 6667 | 0.0102 |
0.32 | 1.469 | 0.681 | 0.05 | 0.2 | 0.00012 | 0.00017 | 5882 | 0.0109 |
Cs (mM) | ∆A | 1/∆A | Cd (mM) | CMCo (mM) | Cs − CMCo (mol dm−3) | (mol dm−3) | ) (mol−1 dm3) | CsCd/∆A × 10−6 (mol−2 dm6) |
---|---|---|---|---|---|---|---|---|
0.016 | 0.925 | 1.081 | 0.05 | 0.015 | 0.0000010 | 0.000051 | 19608 | 0.00086 |
0.018 | 0.933 | 1.072 | 0.05 | 0.015 | 0.0000026 | 0.000053 | 19011 | 0.00094 |
0.019 | 0.945 | 1.058 | 0.05 | 0.015 | 0.0000042 | 0.000054 | 18450 | 0.00102 |
0.021 | 0.949 | 1.054 | 0.05 | 0.015 | 0.0000058 | 0.000056 | 17921 | 0.00110 |
0.022 | 0.957 | 1.045 | 0.05 | 0.015 | 0.0000074 | 0.000057 | 17422 | 0.00117 |
0.024 | 0.961 | 1.041 | 0.05 | 0.015 | 0.0000090 | 0.000059 | 16949 | 0.00125 |
System | Kx 106 | (kJ/mol) | Kb × 105 (dm3/mol) | (kJ/mol) |
---|---|---|---|---|
CEF/TX-100 | 33.78 | 43.46 | 0.98 | 28.47 |
CEF/Tw-80 | 2.78 | 37.20 | 4.83 | 32.43 |
System | Kx 106 | (kJ/mol) | Kb × 105 (dm3/mol) | (kJ/mol) |
---|---|---|---|---|
0.0013 | 2.46 | 36.89 | 2.54 | 30.83 |
0.0016 | 4.21 | 38.24 | 4.08 | 32.01 |
0.0019 | 5.48 | 38.90 | 4.86 | 32.44 |
0.0022 | 3.88 | 38.04 | 4.07 | 32.00 |
0.0025 | 3.23 | 37.58 | 3.26 | 31.46 |
Chemicals | Sources | Mass Fraction Purity | CAS Number | Molecular Mass |
---|---|---|---|---|
Cefotaxime | Sigma Aldrich | >98% (HPLC) | 104376-79-6 | 455.47 gmol−1 |
TX-100 | Daejung Chemicals and Metals Co., Ltd. | 98% purity | 9002-93-1 | 647.0 gmol−1 |
Tween-80 | Daejung Chemicals and Metals Co., Ltd. | 98.9% | 9005-65-6 | 1310 gmol−1 |
Molecules | Abbreviations | Structures |
---|---|---|
Cefotaxime | CEF | |
Triton X-100 | TX-100 | |
Tween-80 | TW-80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, A.A.; Yusaf, A.; Shahid, S.; Usman, M.; Ahmad, M.; Aslam, S.; Al-Hussain, S.A.; Zaki, M.E.A. Unveiling the Role of Nonionic Surfactants in Enhancing Cefotaxime Drug Solubility: A UV-Visible Spectroscopic Investigation in Single and Mixed Micellar Formulations. Pharmaceuticals 2023, 16, 1663. https://doi.org/10.3390/ph16121663
Rana AA, Yusaf A, Shahid S, Usman M, Ahmad M, Aslam S, Al-Hussain SA, Zaki MEA. Unveiling the Role of Nonionic Surfactants in Enhancing Cefotaxime Drug Solubility: A UV-Visible Spectroscopic Investigation in Single and Mixed Micellar Formulations. Pharmaceuticals. 2023; 16(12):1663. https://doi.org/10.3390/ph16121663
Chicago/Turabian StyleRana, Aysha Arshad, Amnah Yusaf, Salma Shahid, Muhammad Usman, Matloob Ahmad, Sana Aslam, Sami A. Al-Hussain, and Magdi E. A. Zaki. 2023. "Unveiling the Role of Nonionic Surfactants in Enhancing Cefotaxime Drug Solubility: A UV-Visible Spectroscopic Investigation in Single and Mixed Micellar Formulations" Pharmaceuticals 16, no. 12: 1663. https://doi.org/10.3390/ph16121663
APA StyleRana, A. A., Yusaf, A., Shahid, S., Usman, M., Ahmad, M., Aslam, S., Al-Hussain, S. A., & Zaki, M. E. A. (2023). Unveiling the Role of Nonionic Surfactants in Enhancing Cefotaxime Drug Solubility: A UV-Visible Spectroscopic Investigation in Single and Mixed Micellar Formulations. Pharmaceuticals, 16(12), 1663. https://doi.org/10.3390/ph16121663