Phytochemical Analysis and Anti-Inflammatory Potential of Acanthus mollis L. Rhizome Hexane Extract
Abstract
:1. Introduction
2. Results
2.1. Chemical Profiling of A. mollis Hexane Extract
2.2. Extract and β-Sitosterol Cytotoxicity
2.3. Inhibition of Nitric Oxide Production by Macrophages
2.4. Intracellular Reactive Oxygen Species Measurement
2.5. Antioxidant Enzyme Assay
3. Discussion
4. Materials and Methods
4.1. Experimental Procedures
4.2. Plant Material and Extract Preparation
4.3. Cell Culture
4.4. GC–MS Analysis
4.5. Cytotoxicity Assay
4.6. Nitrite Production in RAW 264.7 with Griess Reagent
4.7. Intracellular ROS Assay
4.8. Measurement of Antioxidant Enzyme Activity
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Fürst, R.; Zündorf, I. Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediat. Inflamm. 2014, 2014, 146832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taha, D.A.; Wasan, E.K.; Wasan, K.M.; Gershkovich, P. Lipid-lowering activity of natural and semi-synthetic sterols and stanols. J. Pharm. Pharm. Sci. 2015, 18, 344–367. [Google Scholar] [CrossRef] [PubMed]
- Vilahur, G.; Ben-Aicha, S.; Diaz-Riera, E.; Badimon, L.; Padró, T. Phytosterols and inflammation. Curr. Med. Chem. 2019, 26, 6724–6734. [Google Scholar] [CrossRef]
- Paniagua-Pérez, R.; Flores-Mondragón, G.; Reyes-Legorreta, C.; Herrera-López, B.; Cervantes Hernández, I.; Madrigal-Santillán, O.; Morales-González, J.A.; Álvarez-González, I.; Madrigal-Bujaidar, E. Evaluation of the anti-inflammatory capacity of betasitosterol in rodent assays. Afr. J. Tradit. Complement. Altern. Med. 2016, 14, 123–130. [Google Scholar] [CrossRef]
- Manzitto-Tripp, E.A.; Darbyshire, I.; Daniel, T.F.; Kiel, C.A.; McDade, L.A. Revised classification of Acanthaceae and worldwide dichotomous keys. Taxon 2022, 71, 103–153. [Google Scholar] [CrossRef]
- Paiva, J. Acanthus L. In Flora Ibérica; Castroviejo, S., Ed.; CSIC: Madrid, Spain, 2001; pp. 78–80. [Google Scholar]
- Amenta, R.; Camarda, L.; di Stefano, V.; Lentini, F.; Venza, F. Traditional medicine as a source of new therapeutic agents against psoriasis. Fitoterapia 2000, 71, S13–S20. [Google Scholar] [CrossRef]
- Attard, E.; Pacioni, P. The phytochemical and in vitro pharmacological testing of Maltese medicinal plants. In Bioactive Compounds in Phytomedicine; Rasooli, I., Ed.; InTech: Rijeka, Croatia, 2012; pp. 93–112. [Google Scholar] [CrossRef]
- Boulos, L. Medicinal Plants of North Africa; Reference Publications: Algonac, MI, USA, 1983. [Google Scholar]
- Bruni, A.; Ballero, M.; Poli, F. Quantitative ethnopharmacological study of the Campidano Valley and Urzulei district, Sardinia, Italy. J. Ethnopharmacol. 1997, 57, 97–124. [Google Scholar] [CrossRef]
- Brussell, D.E. Medicinal plants of Mt. Pelion, Greece. Econ. Bot. 2004, 58, S174–S202. [Google Scholar] [CrossRef]
- Casana, M.E. Patrimonio etnobotánico de la Provincia de Córdoba: Subbética Campiña y Vega del Guadalquivir; Escuela Técnica Superior de Ingenieros Agrónomos y de Montes: Córdoba, Spain, 1993. [Google Scholar]
- Freitas, F.; Mateus, M. Plantas e Seus Usos Tradicionais; Serviço do Parque Natural da Madeira: Fuchal, Portugal, 2000. [Google Scholar]
- Matos, P.; Figueirinha, A.; Paranhos, A.; Nunes, F.; Cruz, P.; Geraldes, C.F.G.C.; Cruz, M.T.; Batista, M.T. Bioactivity of Acanthus mollis—Contribution of benzoxazinoids and phenylpropanoids. J. Ethnopharmacol. 2018, 227, 198–205. [Google Scholar] [CrossRef]
- Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology; CRC Press: Boca Ratón, FL, USA, 2012; pp. 42–44. [Google Scholar]
- Quer y Martínez, J. Flora Española ó Historia de las Plantas que se Crían en España; Digital Library Royal Botanical Garden, Madrid, Spain. 1762. Available online: https://bibdigital.rjb.csic.es/records/item/9487-flora-espanola?offset=42 (accessed on 20 October 2022).
- Rivera, D.; Obón, C. The ethnopharmacology of Madeira and Porto Santo Islands, a review. J. Ethnopharmacol. 1995, 46, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Matos, P.; Batista, M.T.; Figuerinha, A. A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae). J. Ethnopharmacol. 2022, 293, 115271. [Google Scholar] [CrossRef] [PubMed]
- Bremner, P.; Rivera, D.; Calzado, M.A.; Obón, C.; Inocencio, C.; Beckwith, C.; Fiebich, B.L.; Muñoz, E.; Heinrich, M. Assessing medicinal plants from South-Eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa B and other proinflammatory mediators. J. Ethnopharmacol. 2009, 124, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Jara, C.; Leyton, M.; Osorio, M.; Silva, V.; Fleming, F.; Paz, M.; Madrid, A.; Mellado, M. Antioxidant, phenolic and antifungal profiles of Acanthus mollis (Acanthaceae). Nat. Prod. Res. 2017, 31, 2325–2328. [Google Scholar] [CrossRef]
- Burgos, C.; Muñoz-Mingarro, D.; Navarro, I.; Martín-Cordero, C.; Acero, N. Neuroprotective potential of verbascoside isolated from Acanthus mollis L. Leaves through Its Enzymatic Inhibition and Free Radical Scavenging Ability. Antioxidants 2020, 9, 1207. [Google Scholar] [CrossRef] [PubMed]
- Acero, N.; Gradillas, A.; Beltran, M.; García, A.; Muñoz-Mingarro, D. Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chem. 2019, 279, 260–271. [Google Scholar] [CrossRef]
- Wang, S.; Shi, Y.; Jiang, L.; Yang, F.; Yu, G. Investigation into the bioavailability of synthesized phytosterol esters in vitro and in vivo using Caco-2 cell model and Wistar rats. Food Sci. Technol. 2022, 42, e68620. [Google Scholar] [CrossRef]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef]
- Muniandy, K.; Gothai, S.; Badran, K.M.H.; Suresh Kumar, S.; Esa, N.M.; Arulselvan, P. Suppression of Proinflammatory Cytokines and Mediators in LPS-Induced RAW 264.7 Macrophages by Stem Extract of Alternanthera sessilis via the Inhibition of the NF-κB Pathway. J. Immunol. Res. 2018, 2018, 3430684. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Gao, L.; Hou, W.; Wu, J. β-Sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF-κB pathways in LPS-exposed BV2 cells. BioMed Res. Int. 2020, 2020, 7532306. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chang, S.; Zhang, D.; Shi, H.; Li, X.; Chen, Z.; Jing, B.; Zhao, G.-P. β-Sitosterol alleviates neuropathic pain by affect microglia polarization through inhibiting TLR4/NFκB signaling pathway. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Kasirzadeh, S.; Ghahremani, M.H.; Setayesh, N.; Jeivad, F.; Shadboorestan, A.; Taheri, A.; Beh-Pajooh, A.; Shalmani, A.A.; Ebadollahi-Natanzi, A.; Khan, A.; et al. β-Sitosterol alters the inflammatory response in CLP rat model of sepsis by modulation of NFκB signaling. BioMed Res. Int. 2021, 2021, 5535562. [Google Scholar] [CrossRef]
- Liu, R.; Hao, D.; Xu, W.; Li, J.; Li, X.; Shen, D.; Sheng, K.; Zhao, L.; Xu, W.; Gao, Z.; et al. β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice. Pharm. Biol. 2019, 57, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boukes, G.J.; van de Venter, M. In vitro modulation of the innate immune response and phagocytosis by three Hypoxis spp. and their phytosterols. S. Afr. J. Bot. 2016, 102, 120–126. [Google Scholar] [CrossRef]
- Moreno, J.J. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Radic. Biol. Med. 2003, 35, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, S.; Sowa, Y.; Hashimoto, H.; Nakagami, T.; Tsuno, T.; Sakai, T. Cycloartenyl Ferulate and β-Sitosteryl Ferulate—Steryl Ferulates of γ-Oryzanol—Suppress Intracellular Reactive Oxygen Species in Cell-based System. J. Oleo Sci. 2019, 68, 765–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitjavila, M.T.; Moreno, J.J. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem. Pharmacol. 2012, 84, 1113–1122. [Google Scholar] [CrossRef]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.Y.; Lee, T.H. Antioxidant enzymes as redox-based biomarkers: A brief review. BMB Rep. 2015, 48, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira-Caro, G.; Sarriá, B.; Madrona, A.; Espartero, J.L.; Goya, L.; Bravo, L.; Mateos, R. Alkyl Hydroxytyrosyl Ethers Show Protective Effects against Oxidative Stress in HepG2 Cells. J. Agric. Food Chem. 2011, 59, 5964–5976. [Google Scholar] [CrossRef] [PubMed]
- León-González, A.J.; Mateos, R.; Ramos, S.; Martín, M.A.; Sarriá, B.; Martín-Cordero, C.; López Lázaro, M.; Bravo, L.; Goya, L. Chemo-protective activity and characterization of phenolic extracts from Corema album. Food Res. Int. 2012, 49, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Sarriá, B.; Mateos, R.; Goya, L.; Bravo-Clemente, L. TNF-α-induced oxidative stress and endothelial dysfunction in EA.hy926 cells is prevented by mate and green coffee extracts, 5-caffeoylquinic acid and its microbial metabolite, dihydrocaffeic acid. Int. J. Food Sci. Nutr. 2019, 70, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ding, Y.; Wang, S.; Song, C.; Wang, F. Growth and development responses of the rhizome.root system in Pleioblastus pygmaeus to light intensity. Plants 2022, 11, 2204. [Google Scholar] [CrossRef]
- Santos, K.A.; Klein, E.J.; Fiorese, M.L.; Palu, F.; da Silva, C.; da Silva, E.A. Extraction of Morus alba leaves using supercritical CO2 and ultrasound-assisted solvent: Evaluation of β-sitosterol content. J. Supercrit. Fluids 2020, 159, 104752. [Google Scholar] [CrossRef]
- Tan, S.; Niu, Y.; Liu, L.; Su, A.; Hu, C.; Meng, Y. Development of a GC–MS/SIM method for the determination of phytosterol esters. Food Chem. 2019, 281, 236–241. [Google Scholar] [CrossRef]
- Muñoz Mingarro, D.; Plaza, A.; Galán, A.; Vicente, J.A.; Martínez, M.P.; Acero, N. The effect of five Taraxacum species on in vitro and in vivo antioxidant and antiproliferative activity. Food Funct. 2015, 6, 2787–2793. [Google Scholar] [CrossRef] [PubMed]
- Long, L.H.; Halliwell, B. Artefacts in cell culture: α-Ketoglutarate can scavenge hydrogen peroxide generated by ascorbate and epigallocatechin gallate in cell culture media. Biochem. Biophys. Res. Commun. 2011, 406, 20–24. [Google Scholar] [CrossRef]
- Alía, M.; Ramos, S.; Mateos, R.; Granado-Serrano, A.B.; Bravo, L.; Goya, L. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol. Appl. Pharmacol. 2006, 212, 110–118. [Google Scholar] [CrossRef]
CLASS | Compounds | RT (min) | Area (%) |
---|---|---|---|
Fatty acids methyl ester | Palmitic acid, methyl ester | 2.74 | 0.18 |
Free fatty acids | Palmitic acid | 2.83 | 9.76 |
Margaric acid | 3.14 | 0.21 | |
Linoleic acid | 3.36 | 7.62 | |
Stearic acid | 3.44 | 3.44 | |
Monoglycerides | Palmitin, 2-monoglyceride | 4.48 | 0.59 |
Linolein, 2-monoglyceride | 5.05 | 0.81 | |
Phytosterol esters | Campesteryl ester | 6.46 | 0.11 |
Sitosteryl ester | 6.85 | 0.11 | |
Stigmasteryl ester | 6.94 | 0.47 | |
Free phytosterols | Cholesterol | 7.23 | 0.22 |
Campesterol | 7.99 | 13.04 | |
Stigmasterol | 8.17 | 21.48 | |
β-sitosterol | 8.70 | 35.38 | |
Stigmasta-3,5-diene | 7.07 | 0.59 | |
α-saccharostenone | 9.57 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acero, N.; Muñoz-Mingarro, D.; Navarro, I.; León-González, A.J.; Martín-Cordero, C. Phytochemical Analysis and Anti-Inflammatory Potential of Acanthus mollis L. Rhizome Hexane Extract. Pharmaceuticals 2023, 16, 159. https://doi.org/10.3390/ph16020159
Acero N, Muñoz-Mingarro D, Navarro I, León-González AJ, Martín-Cordero C. Phytochemical Analysis and Anti-Inflammatory Potential of Acanthus mollis L. Rhizome Hexane Extract. Pharmaceuticals. 2023; 16(2):159. https://doi.org/10.3390/ph16020159
Chicago/Turabian StyleAcero, Nuria, Dolores Muñoz-Mingarro, Inmaculada Navarro, Antonio J. León-González, and Carmen Martín-Cordero. 2023. "Phytochemical Analysis and Anti-Inflammatory Potential of Acanthus mollis L. Rhizome Hexane Extract" Pharmaceuticals 16, no. 2: 159. https://doi.org/10.3390/ph16020159
APA StyleAcero, N., Muñoz-Mingarro, D., Navarro, I., León-González, A. J., & Martín-Cordero, C. (2023). Phytochemical Analysis and Anti-Inflammatory Potential of Acanthus mollis L. Rhizome Hexane Extract. Pharmaceuticals, 16(2), 159. https://doi.org/10.3390/ph16020159