Quantification of the Chemical Chaperone 4-Phenylbutyric Acid (4-PBA) in Cell Culture Media via LC-HRMS: Applications in Fields of Neurodegeneration and Cancer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development and Optimization of LC-HRMS Conditions and Sample Preparation
Validation and Chromatography/Mass Spectrometry Analyses
2.2. 4-PBA Quantification in Astrocyte-Conditioned Neurobasal A Medium
2.3. 4-PBA Quantification in Melanoma Cell-Lines Conditioned Dulbecco’s Modified Eagle Medium
2.4. Adsorption of 4-PBA
3. Materials and Methods
3.1. Reagents
3.2. Preparation of Standard Solutions
3.3. Sample Preparation
3.4. Instrumentation and Chromatographic Conditions
3.4.1. LC-HRMS Analyses
3.4.2. LC-HRMS Method Validation
Linearity
Accuracy and Precision
Matrix Effect and Recovery
Stability Assays and Carry-Over
3.5. Cell Lines
3.5.1. Immortalized Hippocampal Astrocytes from WT and 3xTg-AD Mice
3.5.2. Melanoma Models A375 and CHL-1 Cell Lines
3.6. Media Preparation and Cell Treatments
3.6.1. Astrocytes Conditioned Medium (ACM) Preparation
3.6.2. Treatment WT-iAstro and 3xTg-iAstro Cells with 4-Phenylbutyric Acid (4-PBA)
3.6.3. Treatment of CHL-1 and A375 Cells with 4-Phenylbutyric Acid (4-PBA)
3.7. Applications
3.7.1. Astrocytes Experiments
Astrocytes Treatment with ACM and Protein Synthesis Assessment
Western Blot
3.7.2. Melanoma Cell Lines Experiments
Real-Time PCR
- L34 forward: 5′-GTCCCGAACCCCTGGTAATAGA-3′
- L34 reverse: 5′-GGCCCTGCTGACATGTTTCTT-3′
- ATF4 forward: 5′-GTGGCCAAGCACTTCAAACC-3′
- ATF4 reverse: 5′-CCCGGAGAAGGCATCCTC-3′
- ATF6 forward: 5′-TATCAGTTTACAACCTGCACCCACTA-3′
- ATF6 reverse: 5′-GCAAGGACTGGCTGAGCAGA-3′
3.7.3. Statistical Analysis
3.7.4. Adsorption Evaluation of 4-PBA in Cell-Culture Dish
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortez, L.; Sim, V. The Therapeutic Potential of Chemical Chaperones in Protein Folding Diseases. Prion 2014, 8, 197–202. [Google Scholar] [CrossRef]
- Tapella, L.; Dematteis, G.; Moro, M.; Pistolato, B.; Tonelli, E.; Vanella, V.V.; Giustina, D.; La Forgia, A.; Restelli, E.; Barberis, E.; et al. Protein Synthesis Inhibition and Loss of Homeostatic Functions in Astrocytes from an Alzheimer’s Disease Mouse Model: A Role for ER-Mitochondria Interaction. Cell Death Dis. 2022, 13, 878. [Google Scholar] [CrossRef]
- Ohnishi, K.; Ota, I.; Yane, K.; Takahashi, A.; Yuki, K.; Emoto, M.; Hosoi, H.; Ohnishi, T. Glycerol as a Chemical Chaperone Enhances Radiation-Induced Apoptosis in Anaplastic Thyroid Carcinoma Cells. Mol. Cancer 2002, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Syed Haneef, S.A.; George Priya Doss, C. Personalized pharmacoperones for lysosomal storage disorder. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 102, pp. 225–265. [Google Scholar] [CrossRef]
- Drugs@FDA: FDA-Approved Drugs Database on U.S.A. Food and Drug Administration Website. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm (accessed on 20 October 2022).
- Corazzari, M.; Rapino, F.; Ciccosanti, F.; Giglio, P.; Antonioli, M.; Conti, B.; Fimia, G.M.; Lovat, P.E.; Piacentini, M. Oncogenic BRAF Induces Chronic ER Stress Condition Resulting in Increased Basal Autophagy and Apoptotic Resistance of Cutaneous Melanoma. Cell Death Differ. 2015, 22, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Sang, W.; Chen, S.; Chen, R.; Zhang, H.; Xue, F.; Li, Z.; Liu, Y.; Gong, Y.; Zhang, H.; et al. 4-PBA Inhibits LPS-Induced Inflammation through Regulating ER Stress and Autophagy in Acute Lung Injury Models. Toxicol. Lett. 2017, 271, 26–37. [Google Scholar] [CrossRef]
- Giglio, P.; Gagliardi, M.; Tumino, N.; Antunes, F.; Smaili, S.; Cotella, D.; Santoro, C.; Bernardini, R.; Mattei, M.; Piacentini, M.; et al. PKR and GCN2 Stress Kinases Promote an ER Stress-Independent EIF2α Phosphorylation Responsible for Calreticulin Exposure in Melanoma Cells. Oncoimmunology 2018, 7, e1466765. [Google Scholar] [CrossRef]
- Inden, M.; Kitamura, Y.; Takeuchi, H.; Yanagida, T.; Takata, K.; Kobayashi, Y.; Taniguchi, T.; Yoshimoto, K.; Kaneko, M.; Okuma, Y.; et al. Neurodegeneration of Mouse Nigrostriatal Dopaminergic System Induced by Repeated Oral Administration of Rotenone Is Prevented by 4-Phenylbutyrate, a Chemical Chaperone. J. Neurochem. 2007, 101, 1491–1504. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; Baker, S.D.; Bowling, M.K.; Grochow, L.; Figg, W.D.; Zabelina, Y.; Donehower, R.C.; Carducci, M.A. A Phase I Dose Escalation and Bioavailability Study of Oral Sodium Phenylbutyrate in Patients with Refractory Solid Tumor Malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2001, 7, 2292–2300. [Google Scholar]
- Bhardwaj, A.; Bhardwaj, R.; Saini, A.; Dhawan, D.K.; Kaur, T. Impact of Calcium Influx on Endoplasmic Reticulum in Excitotoxic Neurons: Role of Chemical Chaperone 4-PBA. Cell. Mol. Neurobiol. 2022. [CrossRef]
- Fang, C.; Weng, T.; Hu, S.; Yuan, Z.; Xiong, H.; Huang, B.; Cai, Y.; Li, L.; Fu, X. IFN-γ-Induced ER Stress Impairs Autophagy and Triggers Apoptosis in Lung Cancer Cells. OncoImmunology 2021, 10, 1962591. [Google Scholar] [CrossRef]
- Gorbatyuk, M.S.; Starr, C.R.; Gorbatyuk, O.S. Endoplasmic Reticulum Stress: New Insights into the Pathogenesis and Treatment of Retinal Degenerative Diseases. Prog. Retin. Eye Res. 2020, 79, 100860. [Google Scholar] [CrossRef] [PubMed]
- Ricobaraza, A.; Cuadrado-Tejedor, M.; Pérez-Mediavilla, A.; Frechilla, D.; Del Río, J.; García-Osta, A. Phenylbutyrate Ameliorates Cognitive Deficit and Reduces Tau Pathology in an Alzheimer’s Disease Mouse Model. Neuropsychopharmacology 2009, 34, 1721–1732. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Niinuma, Y.; Kaneko, M.; Okuma, Y.; Sugai, M.; Omura, T.; Uesugi, M.; Uehara, T.; Hosoi, T.; Nomura, Y. Suppressive Effects of 4-Phenylbutyrate on the Aggregation of Pael Receptors and Endoplasmic Reticulum Stress. J. Neurochem. 2006, 97, 1259–1268. [Google Scholar] [CrossRef]
- Tempio, T.; Orsi, A.; Sicari, D.; Valetti, C.; Yoboue, E.D.; Anelli, T.; Sitia, R. A Virtuous Cycle Operated by ERp44 and ERGIC-53 Guarantees Proteostasis in the Early Secretory Compartment. iScience 2021, 24, 102244. [Google Scholar] [CrossRef]
- Gomez-Navarro, N.; Maldutyte, J.; Poljak, K.; Peak-Chew, S.-Y.; Orme, J.; Bisnett, B.J.; Lamb, C.H.; Boyce, M.; Gianni, D.; Miller, E.A. Selective Inhibition of Protein Secretion by Abrogating Receptor-Coat Interactions during ER Export. Cell Biol. 2022, preprint. [Google Scholar] [CrossRef] [PubMed]
- Gallazzini, M.; Pallet, N. Endoplasmic Reticulum Stress and Kidney Dysfunction: Endoplasmic Reticulum Stress. Biol. Cell 2018, 110, 205–216. [Google Scholar] [CrossRef]
- Laryea, M.D.; Herebian, D.; Meissner, T.; Mayatepek, E. Simultaneous LC-MS/MS Determination of Phenylbutyrate, Phenylacetate Benzoate and Their Corresponding Metabolites Phenylacetylglutamine and Hippurate in Blood and Urine. J. Inherit. Metab. Dis. 2010, 33, 321–328. [Google Scholar] [CrossRef]
- Jiang, Y.; Almannai, M.; Sutton, V.R.; Sun, Q.; Elsea, S.H. Quantitation of Phenylbutyrate Metabolites by UPLC-MS/MS Demonstrates Inverse Correlation of Phenylacetate:Phenylacetylglutamine Ratio with Plasma Glutamine Levels. Mol. Genet. Metab. 2017, 122, 39–45. [Google Scholar] [CrossRef]
- Thibault, A.; Figg, W.D.; McCall, N.; Samid, D.; Myers, C.E.; Cooper, M.R. A Simultaneous Assay of the Differentiating Agents, Phenylacetic Acid and Phenylbutyric Acid, and One of Their Metabolites, Phenylacetyl-Glutamine, by Reversed-Phase, High Performance Liquid Chromatography. J. Liq. Chromatogr. 1994, 17, 2895–2900. [Google Scholar] [CrossRef]
- Ramnaraine, M.L.R.; Tuchman, M. Aromatic and Nitrogen-Containing Acid Separation by Reversed-Phase High Performance Liquid Chromatography and Identification by Photodiode Array Detector. J. Chromatogr. Sci. 1985, 23, 549–554. [Google Scholar] [CrossRef]
- Annesley, T.M. Ion Suppression in Mass Spectrometry. Clin. Chem. 2003, 49, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- FDA 2018—Bioanalytical Method Validation Guidance for Industry. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 11 October 2022).
- Committee for Medicinal Products for Human Use (CHMP)—European Medicines Agency (EMA). EMA 2011—Guideline on Bioanalytical Method Validation; European Medicines Agency: Amsterdam, The Netherlands, 2011. [Google Scholar]
- ICH Harmonized Guideline 2019 Draft Version – Bioanalytical Method Validation M10. Available online: https://www.ema.europa.eu/en/ich-m10-bioanalytical-method-validation-scientific-guideline (accessed on 11 October 2022).
- Rocchio, F.; Tapella, L.; Manfredi, M.; Chisari, M.; Ronco, F.; Ruffinatti, F.A.; Conte, E.; Canonico, P.L.; Sortino, M.A.; Grilli, M.; et al. Gene Expression, Proteome and Calcium Signaling Alterations in Immortalized Hippocampal Astrocytes from an Alzheimer’s Disease Mouse Model. Cell Death Dis. 2019, 10, 24. [Google Scholar] [CrossRef]
- Hanai, T.; Hubert, J. Optimization of Retention Time of Aromatic Acids in Liquid Chromatography from Log P and Predicted PKa Values. J. High Resolut. Chromatogr. 1984, 7, 524–528. [Google Scholar] [CrossRef]
- Palmgren, J.; Monkkonen, J.; Korjamo, T.; Hassinen, A.; Auriola, S. Drug Adsorption to Plastic Containers and Retention of Drugs in Cultured Cells under in vitro Conditions. Eur. J. Pharm. Biopharm. 2006, 64, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Characteristics: Highlighting the Roles of Amino Acids in Binding Kinetics and Molecular Interactions. Heliyon 2019, 5, e02879. [CrossRef] [PubMed]
- Zheng, X.; Baker, H.; Hancock, W.S.; Fawaz, F.; McCaman, M.; Pungor, E. Proteomic Analysis for the Assessment of Different Lots of Fetal Bovine Serum as a Raw Material for Cell Culture. Part IV. Application of Proteomics to the Manufacture of Biological Drugs. Biotechnol. Prog. 2008, 22, 1294–1300. [Google Scholar] [CrossRef] [PubMed]
Linearity | Y = 10.7600 (±0.0524)∙x + 0.5943 (±0.1717) * | r2 = 0.9993 | ||||
---|---|---|---|---|---|---|
QC Level | Intra-Day (%RSD) | Inter-Day (%RSD) | AC (w.r.) | AC (b.r.) | ME | Recovery |
n = 5 | n = 15 | n = 5 | n = 15 | n = 3 | n = 3 | |
LLOQ | 8.80 | 10.68 | 1.74 | −0.63 | - | - |
LQC | 7.86 | 9.16 | 4.69 | 0.32 | 114.0 | 114.2 |
MQC | 1.67 | 6.98 | 1.40 | −1.68 | 98.8 | 111.1 |
HQC | 1.95 | 5.99 | −0.04 | −2.84 | 97.9 | 111.3 |
Linearity | Y = 7.8300 (±0.1121)∙x + 0.7300 (±0.3671) * | r2 = 0.9939 | ||||
---|---|---|---|---|---|---|
QC Level | Intra-Day (%RSD) | Inter-Day (%RSD) | AC (w.r.) | AC (b.r.) | ME | Recovery |
n = 5 | n = 15 | n = 5 | n = 15 | n = 3 | n = 3 | |
LLOQ | 8.53 | 9.29 | −10.31 | −7.42 | - | - |
LQC | 14.65 | 12.45 | 7.11 | 13.89 | 85.6 | 92.5 |
MQC | 6.69 | 6.38 | 4.16 | 5.53 | 65.0 | 98.6 |
HQC | 7.41 | 8.59 | 1.01 | 3.74 | 61.4 | 95.3 |
Autosampler Stability 48 h | Bench Top Stability 6 h | Freeze–Thaw Cycles (I, II, III) | Stability after Solvent Evaporation | |||||
---|---|---|---|---|---|---|---|---|
QC Level | Area (%RSD) | AC (w.r.) | Area (%RSD) | AC (w.r.) | Area (%RSD) | AC (b.r.) | Area (%RSD) | AC (w.r.) |
n = 3 | n = 3 | n = 3 | n = 3 | n = 9 | n = 9 | n = 3 | n = 3 | |
LQC | 0.92 | 6.39 | 6.93 | −12.73 | 9.79 | −0.86 | 12.42 | −13.42 |
MQC | 2.69 | −1.56 | 2.44 | −9.95 | 6.22 | −1.55 | 2.14 | −8.80 |
HQC | 0.54 | −1.61 | 0.29 | −10.74 | 5.32 | −1.45 | 1.62 | −10.28 |
Autosampler Stability 48 h | Bench Top Stability 6 h | Freeze–Thaw Cycles (I, II, III) | Stability after Solvent Evaporation | |||||
---|---|---|---|---|---|---|---|---|
QC Level | Area (%RSD) | AC (w.r.) | Area (%RSD) | AC (w.r.) | Area (%RSD) | AC (b.r.) | Area (%RSD) | AC (w.r.) |
n = 3 | n = 3 | n = 3 | n = 3 | n = 9 | n = 9 | n = 3 | n = 3 | |
LQC | 5.26 | 15.00 | 10.64 | 3.11 | 11.52 | 11.94 | 13.89 | 2.90 |
MQC | 1.68 | −5.93 | 4.15 | 1.14 | 9.44 | 12.82 | 2.88 | 6.45 |
HQC | 7.94 | −8.46 | 5.30 | 4.13 | 11.83 | 11.30 | 0.20 | 7.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villani, S.; Dematteis, G.; Tapella, L.; Gagliardi, M.; Lim, D.; Corazzari, M.; Aprile, S.; Del Grosso, E. Quantification of the Chemical Chaperone 4-Phenylbutyric Acid (4-PBA) in Cell Culture Media via LC-HRMS: Applications in Fields of Neurodegeneration and Cancer. Pharmaceuticals 2023, 16, 298. https://doi.org/10.3390/ph16020298
Villani S, Dematteis G, Tapella L, Gagliardi M, Lim D, Corazzari M, Aprile S, Del Grosso E. Quantification of the Chemical Chaperone 4-Phenylbutyric Acid (4-PBA) in Cell Culture Media via LC-HRMS: Applications in Fields of Neurodegeneration and Cancer. Pharmaceuticals. 2023; 16(2):298. https://doi.org/10.3390/ph16020298
Chicago/Turabian StyleVillani, Salvatore, Giulia Dematteis, Laura Tapella, Mara Gagliardi, Dmitry Lim, Marco Corazzari, Silvio Aprile, and Erika Del Grosso. 2023. "Quantification of the Chemical Chaperone 4-Phenylbutyric Acid (4-PBA) in Cell Culture Media via LC-HRMS: Applications in Fields of Neurodegeneration and Cancer" Pharmaceuticals 16, no. 2: 298. https://doi.org/10.3390/ph16020298
APA StyleVillani, S., Dematteis, G., Tapella, L., Gagliardi, M., Lim, D., Corazzari, M., Aprile, S., & Del Grosso, E. (2023). Quantification of the Chemical Chaperone 4-Phenylbutyric Acid (4-PBA) in Cell Culture Media via LC-HRMS: Applications in Fields of Neurodegeneration and Cancer. Pharmaceuticals, 16(2), 298. https://doi.org/10.3390/ph16020298