Sex-Related Differences in the Pharmacological Response in SARS-CoV-2 Infection, Dyslipidemia, and Diabetes Mellitus: A Narrative Review
Abstract
:1. Introduction
2. Results
2.1. COVID-19
Study Reference | Study Design | Summary of Findings |
---|---|---|
Goren, A. et al. Anti-Androgens May Protect against Severe COVID-19 Outcomes: Results from a Prospective Cohort Study of 77 Hospitalized Men (2020) [33] | prospective cohort study | Anti-androgens (dutasteride, finasteride, or spironolactone) used for 6 months before hospitalization reduce the chance of intensive care unit admission |
Beigel, J. et al. Remdesivir for the Treatment of Covid-19—Final Report (2020) [39] | double-blind, randomized, placebo-controlled trial | Female patients treated with remdesivir exhibited a higher recovery rate ratio than male patients |
Baden, L. et al. Efficacy and Safety of the MRNA-1273 SARS-CoV-2 Vaccine (2020) [51] Polack, F. et al. Safety and Efficacy of the BNT162b2 MRNA Covid-19 Vaccine (2020) [52] Logunov, D. et al. Safety and Efficacy of an RAd26 and RAd5 Vector-Based Heterologous Prime-Boost COVID-19 Vaccine: An Interim Analysis of a Randomised Controlled Phase 3 Trial in Russia (2021) [53] | double-blind, randomized, placebo-controlled trials | Genomic and adenoviral vector-based vaccinations such as Pfizer, Moderna, and Sputnik were more effective in men than women |
Ewer, K. et al. Cell and Antibody Responses Induced by a Single Dose of ChAdOx1 NCoV-19 (AZD1222) Vaccine in a Phase 1/2 Clinical Trial (2021) [54] | randomized controlled trial | Both men and women responded similarly to the AstraZeneca adenoviral-based immunization |
McMahon, D.E. et al. Cutaneous Reactions Reported after Moderna and Pfizer COVID-19 Vaccination: A Registry-Based Study of 414 Cases (2021) [58] Shimabukuro, T. et al. Allergic Reactions Including Anaphylaxis after Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine (2021) [59] | registry analysis | Females are more likely to experience anaphylaxis following Moderna or Pfizer-BioNTech vaccines |
Nachtigall, I. et al. Effect of Gender, Age and Vaccine on Reactogenicity and Incapacity to Work after COVID-19 Vaccination: A Survey among Health Care Workers (2022) [2] | survey | Women who received Moderna or AstraZeneca vaccines had more reactogenicity (headache, chills, fever, malaise, rash, gastrointestinal issues, etc.) than males |
Ma, Y. et al. Sex Differences in Association between Anti-Hypertensive Medications and Risk of COVID-19 in Middle-Aged and Older Adults (2021) [60] | registry analysis | Angiotensin-receptor blockers decreased COVID-19 mortality in female patients |
2.2. Dyslipidemia
Study Reference | Study Design | Summary of Findings |
---|---|---|
Puri, R. et al. Sex-Related Differences of Coronary Atherosclerosis Regression Following Maximally Intensive Statin Therapy: Insights from Saturn (2014) [70] | randomized controlled trial | Rosuvastatin (40 mg) decreased overall atheroma volume regression in women compared to males |
Karlson, B. W. et al. Effects of Age, Gender and Statin Dose on Lipid Levels: Results from the VOYAGER Meta-Analysis Database (2022) [73] | inception cohort study | In women, administration of rosuvastatin (5–10 mg), atorvastatin 10–80 mg, and simvastatin (10–80 mg) led to a greater reduction in LDL-C |
Mombelli, G. et al. Gender-Related Lipid and/or Lipoprotein Responses to Statins in Subjects in Primary and Secondary Prevention (2015) [75] | retrospective observational study | In males, atorvastatin and simvastatin were associated with a significant reduction in total cholesterol (TC) and LDL-C levels. Rosuvastatin caused a significant increase in HDL-C in men compared to women |
Nguyen, T. et al. Sex Difference in Control of Low-Density Lipoprotein Cholesterol in Older Patients after Acute Coronary Syndrome (2022) [78] | prospective observational study | Males had lower LDL-C levels after three months of atorvastatin (10–80 mg) and rosuvastatin (10–40 mg) following acute coronary syndrome than females |
Abramson, B. L. et al. Response by Sex to Statin plus Ezetimibe or Statin Monotherapy: A Pooled Analysis of 22,231 Hyperlipidemic Patients (2011) [81] | pooled analysis of double-blind, active or placebo-controlled studies | Ezetimibe + statin caused gallbladder, gastrointestinal, hypersensitivity, and rash in women and creatine kinase increases and hepatitis in men |
Kim, M. et al. Impact of Statin Use on Dementia Incidence in Elderly Men and Women with Ischemic Heart Disease (2020) [90] | retrospective cohort study | Atorvastatin lowers male dementia risk, whereas lovastatin lowers female dementia risk |
2.3. Diabetes Mellitus
Study Reference | Study Design | Summary of Findings |
---|---|---|
de Vries, S. T. et al. Sex Differences in Adverse Drug Reactions of Metformin: A Longitudinal Survey Study (2020) [109] | longitudinal survey study | Women are more prone than men to develop metformin-related side effects such as nausea, stomach discomfort, and flatulence |
Li, J. et al. Gender-Differential Effects on Blood Glucose Levels between Acarbose and Metformin in Chinese Patients with Newly Diagnosed Type 2 Diabetes: A Sub-Analysis of the March Trial (2021) [110] | randomized controlled, open-label, multicenter trial | Men treated with acarbose had a significant decline in two-hour postprandial glucose, whereas women treated with metformin had lower fasting glucose and two-hour postprandial glucose |
Raparelli, V. et al. Sex Differences in Cardiovascular Effectiveness of Newer Glucose-Lowering Drugs Added to Metformin in Type 2 Diabetes Mellitus (2020) [112] | population-based analysis of randomized controlled trials | Sodium-glucose-like transport-2 inhibitors (SGLT-2is), glucagon-like peptide-1 receptor agonists (GLP-1RAs), and dipeptidyl peptidase-4 inhibitors (DDP-4s) lessen women’s cardiovascular risk relative to males |
Wang, S. H. et al. Use of Spontaneous Reporting Systems to Detect Host-Medication Interactions: Sex Differences in Oral Anti-Diabetic Drug-Associated Myocardial Infarction (2018) [113] | registry analysis | Men had a higher risk of heart attack with metformin and sulfonylureas than women. Female pioglitazone users had a higher risk of myocardial infarction than men |
3. Materials and Methods
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Giacobbe, G.; Granata, V.; Trovato, P.; Fusco, R.; Simonetti, I.; De Muzio, F.; Cutolo, C.; Palumbo, P.; Borgheresi, A.; Flammia, F.; et al. Gender Medicine in Clinical Radiology Practice. J. Pers. Med. 2023, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Nachtigall, I.; Bonsignore, M.; Hohenstein, S.; Bollmann, A.; Günther, R.; Kodde, C.; Englisch, M.; Ahmad-Nejad, P.; Schröder, A.; Glenz, C.; et al. Effect of Gender, Age and Vaccine on Reactogenicity and Incapacity to Work after COVID-19 Vaccination: A Survey among Health Care Workers. BMC Infect. Dis. 2022, 22, 291. [Google Scholar] [CrossRef]
- Tamargo, J.; Rosano, G.; Walther, T.; Duarte, J.; Niessner, A.; Kaski, J.C.; Ceconi, C.; Drexel, H.; Kjeldsen, K.; Savarese, G.; et al. Gender Differences in the Effects of Cardiovascular Drugs. Eur. Hear. J.-Cardiovasc. Pharmacother. 2017, 3, 163–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanescu, M.; Buda, V.; Lombrea, A.; Andor, M.; Ledeti, I.; Suciu, M.; Danciu, C.; Dehelean, C.A.; Dehelean, L. Sex-Related Differences in Pharmacological Response to CNS Drugs: A Narrative Review. J. Pers. Med. 2022, 12, 907. [Google Scholar] [CrossRef]
- Farkouh, A.; Riedl, T.; Gottardi, R.; Czejka, M.; Kautzky-Willer, A. Sex-Related Differences in Pharmacokinetics and Pharmacodynamics of Frequently Prescribed Drugs: A Review of the Literature. Adv. Ther. 2020, 37, 644–655. [Google Scholar] [CrossRef]
- Moores, G.; Wolff, E.; Pikula, A.; Bui, E. Sex Differences in Neurology: A Scoping Review Protocol. BMJ Open 2022, 12, e054513. [Google Scholar] [CrossRef] [PubMed]
- H2020 Programme Guidance on Gender Equality in Horizon 2020. History of Changes. Guidance on Gender Equality in Horizon 2020. 2016. Available online: https://eige.europa.eu/sites/default/files/h2020-hi-guide-gender_en.pdf (accessed on 1 March 2023).
- CIHR. What Is Gender? What Is Sex? Available online: https://cihr-irsc.gc.ca/e/48642.html (accessed on 26 May 2023).
- Nabil Abdelnaim Mohamed, F. The Ethicist’s Practical Guide to the Evaluation of Preclinical Research from a Sex and Gender Perspective; University of Zaragoza: Zaragoza, Spain, 2021. [Google Scholar] [CrossRef]
- Dickenson, D. Gender and Ethics Committees: Where’s the ‘Different Voice’? Bioethics 2006, 20, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Lasher, E.; Somerville, C.; Heidari, S. Considerations of Sex and Gender Dimensions by Research Ethics Committees: A Scoping Review. Int. Health 2022, 14, 554–561. [Google Scholar] [CrossRef]
- Mittelstrass, K.; Ried, J.S.; Yu, Z.; Krumsiek, J.; Gieger, C.; Prehn, C.; Roemisch-Margl, W.; Polonikov, A.; Peters, A.; Theis, F.J. Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers. PLoS Genet. 2011, 7, e1002215. [Google Scholar] [CrossRef] [Green Version]
- Parks, B.W.; Sallam, T.; Mehrabian, M.; Psychogios, N.; Hui, S.T.; Norheim, F.; Castellani, L.W.; Rau, C.D.; Pan, C.; Phun, J. Genetic Architecture of Insulin Resistance in the Mouse. Cell Metab. 2015, 21, 334–347. [Google Scholar] [CrossRef] [Green Version]
- White, U.A.; Tchoukalova, Y.D. Sex Dimorphism and Depot Differences in Adipose Tissue Function. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 377–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karp, N.A.; Mason, J.; Beaudet, A.L.; Benjamini, Y.; Bower, L.; Braun, R.E.; Brown, S.D.M.; Chesler, E.J.; Dickinson, M.E.; Flenniken, A.M. Prevalence of Sexual Dimorphism in Mammalian Phenotypic Traits. Nat. Commun. 2017, 8, 15475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukurba, K.R.; Parsana, P.; Balliu, B.; Smith, K.S.; Zappala, Z.; Knowles, D.A.; Favé, M.-J.; Davis, J.R.; Li, X.; Zhu, X. Impact of the X Chromosome and Sex on Regulatory Variation. Genome Res. 2016, 26, 768–777. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.P.; Lusis, A.J. Understanding the Sexome: Measuring and Reporting Sex Differences in Gene Systems. Endocrinology 2012, 153, 2551–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, K.C.; Mehrabian, M.; Lusis, A.J. Sex Differences in Metabolism and Cardiometabolic Disorders. Curr. Opin. Lipidol. 2018, 29, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Madla, C.M.; Gavins, F.K.H.; Merchant, H.A.; Orlu, M.; Murdan, S.; Basit, A.W. Let’s Talk about Sex: Differences in Drug Therapy in Males and Females. Adv. Drug Deliv. Rev. 2021, 175, 113804. [Google Scholar] [CrossRef] [PubMed]
- Donovan, M.D. Sex and Racial Differences in Pharmacological Response: Effect of Route of Administration and Drug Delivery System on Pharmacokinetics. J. Women’s Health 2005, 14, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Dressman, J.B.; Berardi, R.R.; Dermentzoglou, L.C.; Russell, T.L.; Schmaltz, S.P.; Barnett, J.L.; Jarvenpaa, K.M. Upper Gastrointestinal (GI) PH in Young, Healthy Men and Women. Pharm. Res. 1990, 7, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Sadik, R.; Abrahamsson, H.; Stotzer, P.-O. Gender Differences in Gut Transit Shown with a Newly Developed Radiological Procedure. Scand. J. Gastroenterol. 2003, 38, 36–42. [Google Scholar] [CrossRef]
- Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex Differences in Pharmacokinetics and Pharmacodynamics. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 499–523. [Google Scholar] [CrossRef]
- Soldin, O.P.; Mattison, D.R. Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, S.L.; Huber, S. Sex Differences in Susceptibility to Viral Infection. In Sex Hormones and Immunity to Infection; Springer: Berlin/Heidelberg, Germany, 2010; pp. 93–122. [Google Scholar]
- Klein, S.L.; Jedlicka, A.; Pekosz, A. The Xs and Y of Immune Responses to Viral Vaccines. Lancet Infect. Dis. 2010, 10, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Hewagama, A.; Patel, D.; Yarlagadda, S.; Strickland, F.M.; Richardson, B.C. Stronger Inflammatory/Cytotoxic T-Cell Response in Women Identified by Microarray Analysis. Genes Immun. 2009, 10, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Palaiodimos, L.; Kokkinidis, D.G.; Li, W.; Karamanis, D.; Ognibene, J.; Arora, S.; Southern, W.N.; Mantzoros, C.S. Severe Obesity, Increasing Age and Male Sex Are Independently Associated with Worse in-Hospital Outcomes, and Higher in-Hospital Mortality, in a Cohort of Patients with COVID-19 in the Bronx, New York. Metabolism 2020, 108, 154262. [Google Scholar] [CrossRef] [PubMed]
- Stopsack, K.H.; Mucci, L.A.; Antonarakis, E.S.; Nelson, P.S.; Kantoff, P.W. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov. 2020, 10, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Maleki Dana, P.; Sadoughi, F.; Hallajzadeh, J.; Asemi, Z.; Mansournia, M.A.; Yousefi, B.; Momen-Heravi, M. An Insight into the Sex Differences in COVID-19 Patients: What Are the Possible Causes? Prehosp. Disaster Med. 2020, 35, 438–441. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Moulin, T.C.; Schiöth, H.B. Sex Differences in COVID-19: The Role of Androgens in Disease Severity and Progression. Endocrine 2020, 71, 3–8. [Google Scholar] [CrossRef]
- Goren, A.; Wambier, C.G.; Herrera, S.; McCoy, J.; Vaño-Galván, S.; Gioia, F.; Comeche, B.; Ron, R.; Serrano-Villar, S.; Ramos, P.M.; et al. Anti-Androgens May Protect against Severe COVID-19 Outcomes: Results from a Prospective Cohort Study of 77 Hospitalized Men. J. Eur. Acad. Dermatol. Venereol. 2020, 17, 18–19. [Google Scholar] [CrossRef]
- McCoy, J.; Cadegiani, F.A.; Wambier, C.G.; Herrera, S.; Vaño-Galván, S.; Mesinkovska, N.A.; Ramos, P.M.; Shapiro, J.; Sinclair, R.; Tosti, A.; et al. 5-Alpha-Reductase Inhibitors Are Associated with Reduced Frequency of COVID-19 Symptoms in Males with Androgenetic Alopecia. J. Eur. Acad. Dermatol. Venereol. 2020, 2, 4–7. [Google Scholar] [CrossRef]
- Calderone, A.; Menichetti, F.; Santini, F.; Colangelo, L.; Lucenteforte, E.; Calderone, V. Selective Estrogen Receptor Modulators in COVID-19: A Possible Therapeutic Option? Front. Pharmacol. 2020, 11, 1085. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ali, A.; Shi, H.; Siddique, R.; Shabana; Nabi, G.; Hu, J.; Wang, T.; Dong, M.; Zaman, W.; et al. COVID-19: Clinical Aspects and Therapeutics Responses. Saudi Pharm. J. 2020, 28, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Estrogen Patch for COVID-19 Symptoms—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04359329 (accessed on 16 September 2022).
- Schiffer, V.M.M.M.; Janssen, E.B.N.J.; van Bussel, B.C.T.; Jorissen, L.L.M.; Tas, J.; Sels, J.-W.E.M.; Bergmans, D.C.J.; Dinh, T.H.T.; van Kuijk, S.M.J.; Hana, A.; et al. The “Sex Gap” in COVID-19 Trials: A Scoping Review. EClinicalMedicine 2020, 29–30, 100652. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.; Marcon, G.; Accardi, G.; Aiello, A.; Calabrò, A.; Ligotti, M.E.; Tettamanti, M.; Franceschi, C.; Candore, G. Role of Sex and Age in Fatal Outcomes of COVID-19: Women and Older Centenarians Are More Resilient. Int. J. Mol. Sci. 2023, 24, 2638. [Google Scholar] [CrossRef]
- Sakoulas, G.; Geriak, M.; Kullar, R.; Greenwood, K.L.; Habib, M.; Vyas, A.; Ghafourian, M.; Dintyala, V.N.K.; Haddad, F. Intravenous Immunoglobulin plus Methylprednisolone Mitigate Respiratory Morbidity in Coronavirus Disease 2019. Crit. Care Explor. 2020, 2, e0280. [Google Scholar] [CrossRef]
- Zeng, F.; Dai, C.; Cai, P.; Wang, J.; Xu, L.; Li, J.; Hu, G.; Wang, Z.; Zheng, F.; Wang, L. A Comparison Study of SARS-CoV-2 IgG Antibody between Male and Female COVID-19 Patients: A Possible Reason Underlying Different Outcome between Sex. J. Med. Virol. 2020, 92, 2050–2054. [Google Scholar] [CrossRef]
- Stiehm, E.R. Adverse Effects of Human Immunoglobulin Therapy. Transfus. Med. Rev. 2013, 27, 171–178. [Google Scholar] [CrossRef]
- Mirra, D.; Esposito, R.; Spaziano, G.; Rafaniello, C.; Iovino, P.; Cione, E.; Gallelli, L.; D’Agostino, B. Association between Sex-Related ALOX5 Gene Polymorphisms and Lung Atopy Risk. J. Clin. Med. 2023, 12, 2775. [Google Scholar] [CrossRef]
- Quesada-Gomez, J.M.; Entrenas-Castillo, M.; Bouillon, R. Vitamin D Receptor Stimulation to Reduce Acute Respiratory Distress Syndrome (ARDS) in Patients with Coronavirus SARS-CoV-2 Infections: Revised Ms SBMB 2020_166. J. Steroid Biochem. Mol. Biol. 2020, 202, 105719. [Google Scholar] [CrossRef]
- Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 323, 1824–1836. [Google Scholar] [CrossRef] [PubMed]
- Gallelli, L.; Mannino, G.C.; Luciani, F.; de Sire, A.; Mancuso, E.; Gangemi, P.; Cosco, L.; Monea, G.; Averta, C.; Minchella, P.; et al. Vitamin d Serum Levels in Subjects Tested for SARS-CoV-2: What Are the Differences among Acute, Healed, and Negative COVID-19 Patients? A Multicenter Real-Practice Study. Nutrients 2021, 13, 3932. [Google Scholar] [CrossRef] [PubMed]
- Kalinke, U.; Barouch, D.H.; Rizzi, R.; Lagkadinou, E.; Türeci, Ö.; Pather, S.; Neels, P. Clinical Development and Approval of COVID-19 Vaccines. Expert Rev. Vaccines 2022, 21, 609–619. [Google Scholar] [CrossRef]
- Flanagan, K.L.; Fink, A.L.; Plebanski, M.; Klein, S.L. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annu. Rev. Cell Dev. Biol. 2017, 33, 577–599. [Google Scholar] [CrossRef]
- Spini, A.; Giudice, V.; Brancaleone, V.; Morgese, M.G.; De Francia, S.; Filippelli, A.; Ruggieri, A.; Ziche, M.; Ortona, E.; Cignarella, A.; et al. Sex-Tailored Pharmacology and COVID-19: Next Steps towards Appropriateness and Health Equity. Pharmacol. Res. 2021, 173, 105848. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B. Efficacy and Safety of the MRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2020, 384, 403–416. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C. Safety and Efficacy of the BNT162b2 MRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S. Safety and Efficacy of an RAd26 and RAd5 Vector-Based Heterologous Prime-Boost COVID-19 Vaccine: An Interim Analysis of a Randomised Controlled Phase 3 Trial in Russia. Lancet 2021, 397, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Ewer, K.J.; Barrett, J.R.; Belij-Rammerstorfer, S.; Sharpe, H.; Makinson, R.; Morter, R.; Flaxman, A.; Wright, D.; Bellamy, D.; Bittaye, M. T Cell and Antibody Responses Induced by a Single Dose of ChAdOx1 NCoV-19 (AZD1222) Vaccine in a Phase 1/2 Clinical Trial. Nat. Med. 2021, 27, 270–278. [Google Scholar] [CrossRef]
- Gee, J.; Marquez, P.; Su, J.; Calvert, G.M.; Liu, R.; Myers, T.; Nair, N.; Martin, S.; Clark, T.; Markowitz, L. First Month of COVID-19 Vaccine Safety Monitoring—United States, December 14, 2020–January 13, 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 283. [Google Scholar] [CrossRef]
- Tobaiqy, M.; Elkout, H.; MacLure, K. Analysis of Thrombotic Adverse Reactions of COVID-19 AstraZeneca Vaccine Reported to EudraVigilance Database. Vaccines 2021, 9, 393. [Google Scholar] [CrossRef]
- Heidari, S.; Palmer-Ross, A.; Goodman, T. A Systematic Review of the Sex and Gender Reporting in COVID-19 Clinical Trials. Vaccines 2021, 9, 1322. [Google Scholar] [CrossRef] [PubMed]
- McMahon, D.E.; Amerson, E.; Rosenbach, M.; Lipoff, J.B.; Moustafa, D.; Tyagi, A.; Desai, S.R.; French, L.E.; Lim, H.W.; Thiers, B.H. Cutaneous Reactions Reported after Moderna and Pfizer COVID-19 Vaccination: A Registry-Based Study of 414 Cases. J. Am. Acad. Dermatol. 2021, 85, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro, T. Allergic Reactions Including Anaphylaxis after Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine—United States, December 14–23, 2020. Am. J. Transplant. 2021, 21, 1332. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, Y.; Li, S.; Yang, H.; Li, H.; Cao, Z.; Xu, F.; Sun, L.; Wang, Y. Sex Differences in Association between Anti-Hypertensive Medications and Risk of COVID-19 in Middle-Aged and Older Adults. Drugs Aging 2021, 38, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Cangemi, R.; Loffredo, L.; Carnevale, R.; Perri, L.; Patrizi, M.P.; Sanguigni, V.; Pignatelli, P.; Violi, F. Early Decrease of Oxidative Stress by Atorvastatin in Hypercholesterolaemic Patients: Effect on Circulating Vitamin E. Eur. Heart J. 2008, 29, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Gelosa, P.; Cimino, M.; Pignieri, A.; Tremoli, E.; Guerrini, U.; Sironi, L. The Role of HMG-CoA Reductase Inhibition in Endothelial Dysfunction and Inflammation. Vasc. Health Risk Manag. 2007, 3, 567–577. [Google Scholar]
- Spence, J.D.; Pilote, L. Importance of Sex and Gender in Atherosclerosis and Cardiovascular Disease. Atherosclerosis 2015, 241, 208–210. [Google Scholar] [CrossRef]
- Wang, X.; Magkos, F.; Mittendorfer, B. Sex Differences in Lipid and Lipoprotein Metabolism: It’s Not Just about Sex Hormones. J. Clin. Endocrinol. Metab. 2011, 96, 885–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthan, N.R.; Jalbert, S.M.; Barrett, P.H.R.; Dolnikowski, G.G.; Schaefer, E.J.; Lichtenstein, A.H. Gender-Specific Differences in the Kinetics of Nonfasting TRL, IDL, and LDL Apolipoprotein B-100 in Men and Premenopausal Women. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1838–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, E.J.; Zech, L.A.; Jenkins, L.L.; Bronzert, T.J.; Rubalcaba, E.A.; Lindgren, F.T.; Aamodt, R.L.; Brewer, H.B.J. Human Apolipoprotein A-I and A-II Metabolism. J. Lipid Res. 1982, 23, 850–862. [Google Scholar] [CrossRef]
- Manteuffel, M.; Williams, S.; Chen, W.; Verbrugge, R.R.; Pittman, D.G.; Steinkellner, A. Influence of Patient Sex and Gender on Medication Use, Adherence, and Prescribing Alignment with Guidelines. J. Women’s Health 2014, 23, 112–119. [Google Scholar] [CrossRef]
- Puri, R.; Nissen, S.E.; Shao, M.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.; Libby, P.; Raichlen, J.S.; Uno, K.; et al. Sex-Related Differences of Coronary Atherosclerosis Regression Following Maximally Intensive Statin Therapy: Insights from Saturn. JACC Cardiovasc. Imaging 2014, 7, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.J.; Vance, T.M. Sex-Specific Associations between Serum Lipids, Antinuclear Antibodies, and Statin Use in National Health and Nutrition Examination Surveys 1999–2004. Front. Med. 2022, 9, 887741. [Google Scholar] [CrossRef] [PubMed]
- Al-Zakwani, I.; Al-Mahruqi, F.; Al-Rasadi, K.; Shehab, A.; Al Mahmeed, W.; Arafah, M.; Al-Hinai, A.T.; Al Tamimi, O.; Al Awadhi, M.; Santos, R.D. Sex Disparity in the Management and Outcomes of Dyslipidemia of Diabetic Patients in the Arabian Gulf: Findings from the CEPHEUS Study. Lipids Health Dis. 2018, 17, 25. [Google Scholar] [CrossRef] [Green Version]
- Karlson, B.W.; Palmer, M.K.; Nicholls, S.J.; Barter, P.J.; Lundman, P. Effects of Age, Gender and Statin Dose on Lipid Levels: Results from the VOYAGER Meta-Analysis Database. Atherosclerosis 2017, 265, 54–59. [Google Scholar] [CrossRef]
- Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; Colhoun, H.; et al. Efficacy and Safety of LDL-Lowering Therapy among Men and Women: Meta-Analysis of Individual Data from 174000 Participants in 27 Randomised Trials. Lancet 2015, 385, 1397–1405. [Google Scholar] [CrossRef]
- Mombelli, G.; Bosisio, R.; Calabresi, L.; Magni, P.; Pavanello, C.; Pazzucconi, F.; Sirtori, C.R. Gender-Related Lipid and/or Lipoprotein Responses to Statins in Subjects in Primary and Secondary Prevention. J. Clin. Lipidol. 2015, 9, 226–233. [Google Scholar] [CrossRef]
- Wolbold, R.; Klein, K.; Burk, O.; Nüssler, A.K.; Neuhaus, P.; Eichelbaum, M.; Schwab, M.; Zanger, U.M. Sex Is a Major Determinant of CYP3A4 Expression in Human Liver. Hepatology 2003, 38, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Hunt, N.B.; Emmens, J.E.; Irawati, S.; de Vos, S.; Bos, J.H.J.; Wilffert, B.; Hak, E.; de Boer, R.A. Sex Disparities in the Effect of Statins on Lipid Parameters The PharmLines Initiative. Medicine 2022, 101, E28394. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Tran, D.T.T.; Ngo, T.T.K.; Nguyen, T.N. Sex Difference in Control of Low-Density Lipoprotein Cholesterol in Older Patients after Acute Coronary Syndrome. Geriatrics 2022, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Türkmen, D.; Masoli, J.A.H.; Kuo, C.L.; Bowden, J.; Melzer, D.; Pilling, L.C. Statin Treatment Effectiveness and the SLCO1B1*5 Reduced Function Genotype: Long-Term Outcomes in Women and Men. Br. J. Clin. Pharmacol. 2022, 88, 3230–3240. [Google Scholar] [CrossRef]
- Bennett, S.; Sager, P.; Lipka, L.; Melani, L.; Suresh, R.; Veltri, E. Consistency in Efficacy and Safety of Ezetimibe Coadministered with Statins for Treatment of Hypercholesterolemia in Women and Men. J. Women’s Health 2004, 13, 1101–1107. [Google Scholar] [CrossRef]
- Abramson, B.L.; Benlian, P.; Hanson, M.E.; Lin, J.; Shah, A.; Tershakovec, A.M. Response by Sex to Statin plus Ezetimibe or Statin Monotherapy: A Pooled Analysis of 22,231 Hyperlipidemic Patients. Lipids Health Dis. 2011, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, G.; Alpert, M.A.; Tejwani, L. Endocrine and Metabolic Effects of Fat: Cardiovascular Implications. Am. J. Med. 2008, 121, 366–370. [Google Scholar] [CrossRef]
- Ahima, R.S.; Osei, S.Y. Adipokines in Obesity. Obes. Metab. 2008, 36, 182–197. [Google Scholar]
- Hajer, G.R.; Van Haeften, T.W.; Visseren, F.L.J. Adipose Tissue Dysfunction in Obesity, Diabetes, and Vascular Diseases. Eur. Heart J. 2008, 29, 2959–2971. [Google Scholar] [CrossRef] [Green Version]
- Bienek, R.; Marek, B.; Kajdaniuk, D.; Borgiel-Marek, H.; Piecha, T.; Nowak, M.; Siemińska, L.; Głogowska-Szeląg, J.; Foltyn, W.; Kos-Kudła, B. Adiponectin, Leptin, Resistin and Insulin Blood Concentrations in Patients with Ischaemic Cerebral Stroke. Endokrynol. Pol. 2012, 63, 338–345. [Google Scholar]
- Krysiak, R.; Zmuda, W.; Marek, B.; Okopień, B. Comparison of the Effects of Short-Term Hypolipidaemic Treatment on Plasma Adipokine Levels in Men and Women with Isolated Hypercholesterolaemia. Endokrynol. Pol. 2015, 66, 114–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krysiak, R.; Gdula-Dymek, A.; Marek, B.; Okopień, B. Comparison of the Effects of Hypolipidaemic Treatment on Monocyte Proinflammatory Cytokine Release in Men and Women with Type 2 Diabetes and Atherogenic Dyslipidaemia. Endokrynol. Pol. 2015, 66, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwabara, M.; Kondo, F.; Hamada, T.; Takahashi, J.; Takenaka, N.; Furuno, T. Impact of Statins Therapy for Ischemic Heart Disease Patients with Low-Density Lipoprotein Cholesterol Levels Less than 100 Mg/DL. Acta Cardiol. Sin. 2016, 32, 565. [Google Scholar] [PubMed]
- Shepherd, J.; Blauw, G.J.; Murphy, M.B.; Bollen, E.L.E.M.; Buckley, B.M.; Cobbe, S.M.; Ford, I.; Gaw, A.; Hyland, M.; Jukema, J.W. Pravastatin in Elderly Individuals at Risk of Vascular Disease (PROSPER): A Randomised Controlled Trial. Lancet 2002, 360, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Jung, M.; Noh, Y.; Shin, S.; Hong, C.H.; Lee, S.; Jung, Y.S. Impact of Statin Use on Dementia Incidence in Elderly Men and Women with Ischemic Heart Disease. Biomedicines 2020, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Golomb, B.A.; Dimsdale, J.E.; Koslik, H.J.; Evans, M.A.; Lu, X.; Rossi, S.; Mills, P.J.; White, H.L.; Criqui, M.H. Statin Effects on Aggression: Results from the UCSD Statin Study, a Randomized Control Trial. PLoS ONE 2015, 10, e0124451. [Google Scholar] [CrossRef] [Green Version]
- Schooling, C.M.; Au Yeung, S.L.; Freeman, G.; Cowling, B.J. The Effect of Statins on Testosterone in Men and Women, a Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Med. 2013, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, S.; Genardi, S.; Wang, C.-R. Linking CD1-Restricted T Cells with Autoimmunity and Dyslipidemia: Lipid Levels Matter. Front. Immunol. 2018, 9, 1616. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.J. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease. Nutrients 2018, 10, 764. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Hong, C.; Oka, K.; Salazar, J.V.; Diehl, C.; Witztum, J.L.; Diaz, M.; Castrillo, A.; Bensinger, S.J.; Chan, L. Cholesterol Accumulation in CD11c+ Immune Cells Is a Causal and Targetable Factor in Autoimmune Disease. Immunity 2016, 45, 1311–1326. [Google Scholar] [CrossRef] [Green Version]
- Artola, R.T.; Mihos, C.G.; Santana, O. Effects of Statin Therapy in Patients with Systemic Lupus Erythematosus. South. Med. J. 2016, 109, 705–711. [Google Scholar] [PubMed]
- Li, G.; Zhao, J.; Li, B.; Zhang, X.; Ma, J.; Ma, X.; Liu, J. The Anti-Inflammatory Effects of Statins on Patients with Rheumatoid Arthritis: A Systemic Review and Meta-Analysis of 15 Randomized Controlled Trials. Autoimmun. Rev. 2018, 17, 215–225. [Google Scholar] [CrossRef]
- Budoff, M. Triglycerides and Triglyceride-Rich Lipoproteins in the Causal Pathway of Cardiovascular Disease. Am. J. Cardiol. 2016, 118, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Group, A.S. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar]
- D’Emden, M.C.; Jenkins, A.J.; Li, L.; Zannino, D.; Mann, K.P.; Best, J.D.; Stuckey, B.G.A.; Park, K.; Saltevo, J.; Keech, A.C. Favourable Effects of Fenofibrate on Lipids and Cardiovascular Disease in Women with Type 2 Diabetes: Results from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 2014, 57, 2296–2303. [Google Scholar] [CrossRef] [Green Version]
- Heron, M. Deaths: Leading Causes for 2017. In National Vital Statistics Reports; National Vital Statistics System; Centers for Disease Control and Prevention: Atlanta, GA, USA; National Center for Health Statistics: Hyattsville, MD, USA, 2019; Volume 68, pp. 1–77. [Google Scholar]
- Huebschmann, A.G.; Huxley, R.R.; Kohrt, W.M.; Zeitler, P.; Regensteiner, J.G.; Reusch, J.E.B. Sex Differences in the Burden of Type 2 Diabetes and Cardiovascular Risk across the Life Course. Diabetologia 2019, 62, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F. Gender Differences in Glucose Homeostasis and Diabetes. Physiol. Behav. 2018, 187, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [Green Version]
- Kautzky-Willer, A.; Harreiter, J. Sex and Gender Differences in Therapy of Type 2 Diabetes. Diabetes Res. Clin. Pract. 2017, 131, 230–241. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I. Sex and Gender Influences on Pharmacological Response: An Overview. Expert Rev. Clin. Pharmacol. 2014, 7, 469–485. [Google Scholar] [CrossRef]
- Dennis, J.M.; Henley, W.E.; Weedon, M.N.; Lonergan, M.; Rodgers, L.R.; Jones, A.G.; Hamilton, W.T.; Sattar, N.; Janmohamed, S.; Holman, R.R.; et al. Sex and BMI Alter the Benefits and Risks of Sulfonylureas and Thiazolidinediones in Type 2 Diabetes: A Framework for Evaluating Stratification Using Routine Clinical and Individual Trial Data. Diabetes Care 2018, 41, 1844–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilias, I.; Rizzo, M.; Zabuliene, L. Metformin: Sex/Gender Differences in Its Uses and Effects—Narrative Review. Medicina 2022, 58, 430. [Google Scholar] [CrossRef] [PubMed]
- De Vries, S.T.; Denig, P.; Ekhart, C.; Mol, P.G.M.; van Puijenbroek, E.P. Sex Differences in Adverse Drug Reactions of Metformin: A Longitudinal Survey Study. Drug Saf. 2020, 43, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, J.; Shan, Z.; Yang, W.; Liu, J.; Tian, H.; Zhou, Z.; Ji, Q.; Weng, J.; Jia, W.; et al. Gender-Differential Effects on Blood Glucose Levels between Acarbose and Metformin in Chinese Patients with Newly Diagnosed Type 2 Diabetes: A Sub-Analysis of the March Trial. Endocr. J. 2021, 68, 69–79. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.; Zhao, Y.; Du, S.; Du, J. Effect of Metformin on the Mortality of Colorectal Cancer Patients with T2DM: Meta-Analysis of Sex Differences. Int. J. Colorectal Dis. 2020, 35, 827–835. [Google Scholar] [CrossRef]
- Raparelli, V.; Elharram, M.; Moura, C.S.; Abrahamowicz, M.; Bernatsky, S.; Behlouli, H.; Pilote, L. Sex Differences in Cardiovascular Effectiveness of Newer Glucose-Lowering Drugs Added to Metformin in Type 2 Diabetes Mellitus. J. Am. Heart Assoc. 2020, 9, e012940. [Google Scholar] [CrossRef]
- Wang, S.H.; Chen, W.J.; Hsu, L.Y.; Chien, K.L.; Wu, C.S. Use of Spontaneous Reporting Systems to Detect Host-Medication Interactions: Sex Differences in Oral Anti-Diabetic Drug-Associated Myocardial Infarction. J. Am. Heart Assoc. 2018, 7, e008959. [Google Scholar] [CrossRef] [Green Version]
- Kosi-Trebotic, L.; Thomas, A.; Harreiter, J.; Chmelik, M.; Trattnig, S.; Kautzky-Willer, A. Gliptin Therapy Reduces Hepatic and Myocardial Fat in Type 2 Diabetic Patients. Eur. J. Clin. Investig. 2017, 47, 829–838. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, M.; Wen, Z.; Lu, Z.; Cui, L.; Fu, C.; Xue, H.; Liu, Y.; Zhang, Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front. Endocrinol. 2021, 12, 721135. [Google Scholar] [CrossRef]
- Rentzeperi, E.; Pegiou, S.; Koufakis, T.; Grammatiki, M.; Kotsa, K. Sex Differences in Response to Treatment with Glucagon-like Peptide 1 Receptor Agonists: Opportunities for a Tailored Approach to Diabetes and Obesity Care. J. Pers. Med. 2022, 12, 454. [Google Scholar] [CrossRef]
- Yang, R.-Z.; Lee, M.-J.; Hu, H.; Pray, J.; Wu, H.-B.; Hansen, B.C.; Shuldiner, A.R.; Fried, S.K.; McLenithan, J.C.; Gong, D.-W. Identification of Omentin as a Novel Depot-Specific Adipokine in Human Adipose Tissue: Possible Role in Modulating Insulin Action. Am. J. Physiol. Metab. 2006, 290, E1253–E1261. [Google Scholar] [CrossRef] [PubMed]
- De Souza Batista, C.M.; Yang, R.-Z.; Lee, M.-J.; Glynn, N.M.; Yu, D.-Z.; Pray, J.; Ndubuizu, K.; Patil, S.; Schwartz, A.; Kligman, M. Omentin Plasma Levels and Gene Expression Are Decreased in Obesity. Diabetes 2007, 56, 1655–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.-Y.; Guo, L.; Li, Q. Changes of Serum Omentin-1 Levels in Normal Subjects and in Patients with Impaired Glucose Regulation and with Newly Diagnosed and Untreated Type 2 Diabetes. Diabetes Res. Clin. Pract. 2010, 88, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.K.; Adya, R.; Farhatullah, S.; Lewandowski, K.C.; O’Hare, P.; Lehnert, H.; Randeva, H.S. Omentin-1, a Novel Adipokine, Is Decreased in Overweight Insulin-Resistant Women with Polycystic Ovary Syndrome: Ex Vivo and In Vivo Regulation of Omentin-1 by Insulin and Glucose. Diabetes 2008, 57, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Seufert, J. Leptin Effects on Pancreatic β-Cell Gene Expression and Function. Diabetes 2004, 53 (Suppl. S1), S152–S158. [Google Scholar] [CrossRef] [Green Version]
- Esteghamati, A.; Noshad, S.; Rabizadeh, S.; Ghavami, M.; Zandieh, A.; Nakhjavani, M. Comparative Effects of Metformin and Pioglitazone on Omentin and Leptin Concentrations in Patients with Newly Diagnosed Diabetes: A Randomized Clinical Trial. Regul. Pept. 2013, 182, 1–6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombrea, A.; Romanescu, M.; Jianu, N.; Andor, M.; Suciu, M.; Man, D.E.; Danciu, C.; Dehelean, C.A.; Buda, V. Sex-Related Differences in the Pharmacological Response in SARS-CoV-2 Infection, Dyslipidemia, and Diabetes Mellitus: A Narrative Review. Pharmaceuticals 2023, 16, 853. https://doi.org/10.3390/ph16060853
Lombrea A, Romanescu M, Jianu N, Andor M, Suciu M, Man DE, Danciu C, Dehelean CA, Buda V. Sex-Related Differences in the Pharmacological Response in SARS-CoV-2 Infection, Dyslipidemia, and Diabetes Mellitus: A Narrative Review. Pharmaceuticals. 2023; 16(6):853. https://doi.org/10.3390/ph16060853
Chicago/Turabian StyleLombrea, Adelina, Mirabela Romanescu, Narcisa Jianu, Minodora Andor, Maria Suciu, Dana Emilia Man, Corina Danciu, Cristina Adriana Dehelean, and Valentina Buda. 2023. "Sex-Related Differences in the Pharmacological Response in SARS-CoV-2 Infection, Dyslipidemia, and Diabetes Mellitus: A Narrative Review" Pharmaceuticals 16, no. 6: 853. https://doi.org/10.3390/ph16060853
APA StyleLombrea, A., Romanescu, M., Jianu, N., Andor, M., Suciu, M., Man, D. E., Danciu, C., Dehelean, C. A., & Buda, V. (2023). Sex-Related Differences in the Pharmacological Response in SARS-CoV-2 Infection, Dyslipidemia, and Diabetes Mellitus: A Narrative Review. Pharmaceuticals, 16(6), 853. https://doi.org/10.3390/ph16060853