Pharmacogenetic Testing for the Pediatric Gastroenterologist: Actionable Drug–Gene Pairs to Know
Abstract
:1. Introduction
1.1. Pharmacogenetic Test Panels
1.2. Pharmacokinetic vs Pharmacodynamic Gene–Drug Pairs
2. Proton Pump Inhibitors
3. Antidepressants
4. Antiemetics
5. Immunosuppressants
6. Corticosteroids
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saldivar, J.S.; Taylor, D.; Sugarman, E.A.; Cullors, A.; Garces, J.A.; Oades, K.; Centeno, J. Initial assessment of the benefits of implementing pharmacogenetics into the medical management of patients in a long-term care facility. Pharm. Pers. Med. 2016, 9, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luzum, J.A.; Pakyz, R.E.; Elsey, A.R.; Haidar, C.E.; Peterson, J.F.; Whirl-Carrillo, M.; Handelman, S.K.; Palmer, K.; Pulley, J.M.; Beller, M.; et al. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Outcomes and Metrics of Pharmacogenetic Implementations Across Diverse Healthcare Systems. Clin. Pharmacol. Ther. 2017, 102, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.M.; Haidar, C.E.; Wilkinson, M.R.; Crews, K.R.; Baker, D.K.; Kornegay, N.M.; Yang, W.; Pui, C.H.; Reiss, U.M.; Gaur, A.H.; et al. PG4KDS: A model for the clinical implementation of pre-emptive pharmacogenetics. Am. J. Med. Genet. C Semin. Med. Genet. 2014, 166, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Evans, W.E.; Relling, M.V. Moving towards individualized medicine with pharmacogenomics. Nature 2004, 429, 464–468. [Google Scholar] [CrossRef]
- Caudle, K.; Klein, T. Clinical Pharmacogenetics Implementation Consortium. Available online: https://cpicpgx.org/ (accessed on 2 February 2023).
- Dipasquale, V.; Cicala, G.; Spina, E.; Romano, C. A Narrative Review on Efficacy and Safety of Proton Pump Inhibitors in Children. Front. Pharmacol. 2022, 13, 839972. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.J.; Thomas, C.D.; Barbarino, J.; Desta, Z.; Van Driest, S.L.; El Rouby, N.; Johnson, J.A.; Cavallari, L.H.; Shakhnovich, V.; Thacker, D.L.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Proton Pump Inhibitor Dosing. Clin. Pharmacol. Ther. 2021, 109, 1417–1423. [Google Scholar] [CrossRef]
- Chevalier, R.; Attard, T.; Van Driest, S.L.; Shakhnovich, V. A fresh look at proton pump inhibitor (PPI)-associated adverse events through a CYP2C19 pharmacogenetic lens. Expert. Opin. Drug Metab. Toxicol. 2023, 19, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Anjewierden, S.; Han, Z.; Foster, C.B.; Pant, C.; Deshpande, A. Risk factors for Clostridium difficile infection in pediatric inpatients: A meta-analysis and systematic review. Infect. Control Hosp. Epidemiol. 2019, 40, 420–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.H.; Hsu, W.Y.; Yang, T.I.; Lu, C.Y.; Hsueh, P.R.; Chen, J.M.; Lee, P.I.; Huang, L.M.; Chang, L.Y. Increased age and proton pump inhibitors are associated with severe Clostridium difficile infections in children. J. Microbiol. Immunol. Infect. 2020, 53, 578–584. [Google Scholar] [CrossRef]
- Lima, J.J.; Lang, J.E.; Mougey, E.B.; Blake, K.B.; Gong, Y.; Holbrook, J.T.; Wise, R.A.; Teague, W.G. Association of CYP2C19 polymorphisms and lansoprazole-associated respiratory adverse effects in children. J. Pediatr. 2013, 163, 686–691. [Google Scholar] [CrossRef]
- Bernal, C.J.; Aka, I.; Carroll, R.J.; Coco, J.R.; Lima, J.J.; Acra, S.A.; Roden, D.M.; Van Driest, S.L. CYP2C19 Phenotype and Risk of Proton Pump Inhibitor-Associated Infections. Pediatrics 2019, 144, e20190857. [Google Scholar] [CrossRef] [PubMed]
- Mitre, E.; Susi, A.; Kropp, L.E.; Schwartz, D.J.; Gorman, G.H.; Nylund, C.M. Association Between Use of Acid-Suppressive Medications and Antibiotics During Infancy and Allergic Diseases in Early Childhood. JAMA Pediatr. 2018, 172, e180315. [Google Scholar] [CrossRef] [PubMed]
- Cicali, E.J.; Blake, K.; Gong, Y.; Mougey, E.B.; Al-Atrash, H.; Chambers, N.; Denham, J.; Evans, J.; George, D.E.; Gomez, R.; et al. Novel Implementation of Genotype-Guided Proton Pump Inhibitor Medication Therapy in Children: A Pilot, Randomized, Multisite Pragmatic Trial. Clin. Transl. Sci. 2019, 12, 172–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.H.; Wintzell, V.; Ludvigsson, J.F.; Svanström, H.; Pasternak, B. Association Between Proton Pump Inhibitor Use and Risk of Asthma in Children. JAMA Pediatr. 2021, 175, 394–403. [Google Scholar] [CrossRef]
- Freedberg, D.E.; Haynes, K.; Denburg, M.R.; Zemel, B.S.; Leonard, M.B.; Abrams, J.A.; Yang, Y.X. Use of proton pump inhibitors is associated with fractures in young adults: A population-based study. Osteoporos. Int. 2015, 26, 2501–2507. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Wintzell, V.; Ludvigsson, J.F.; Svanström, H.; Pasternak, B. Proton pump inhibitor use and risk of depression and anxiety in children: Nationwide cohort study. Clin. Transl. Sci. 2022, 15, 1112–1122. [Google Scholar] [CrossRef]
- Lee, K.C.; Feldman, M.D.; Finley, P.R. Beyond Depression: Evaluation of newer indications and off-label uses of SSRIs. Formulary 2002, 37, 240–251. [Google Scholar]
- Weinberg, D.S.; Smalley, W.; Heidelbaugh, J.J.; Sultan, S.; Association, A.G. American Gastroenterological Association Institute Guideline on the pharmacological management of irritable bowel syndrome. Gastroenterology 2014, 147, 1146–1148. [Google Scholar] [CrossRef] [Green Version]
- Creed, F.; Fernandes, L.; Guthrie, E.; Palmer, S.; Ratcliffe, J.; Read, N.; Rigby, C.; Thompson, D.; Tomenson, B.; Group, N.o.E.I.R. The cost-effectiveness of psychotherapy and paroxetine for severe irritable bowel syndrome. Gastroenterology 2003, 124, 303–317. [Google Scholar] [CrossRef]
- Brandt, L.J.; Chey, W.D.; Foxx-Orenstein, A.E.; Schiller, L.R.; Schoenfeld, P.S.; Spiegel, B.M.; Talley, N.J.; Quigley, E.M.; Syndrome, A.C.o.G.T.F.o.I.B. An evidence-based position statement on the management of irritable bowel syndrome. Am. J. Gastroenterol. 2009, 104 (Suppl. 1), S1–S35. [Google Scholar] [CrossRef]
- Savarino, E.; Zingone, F.; Barberio, B.; Marasco, G.; Akyuz, F.; Akpinar, H.; Barboi, O.; Bodini, G.; Bor, S.; Chiarioni, G.; et al. Functional bowel disorders with diarrhoea: Clinical guidelines of the United European Gastroenterology and European Society for Neurogastroenterology and Motility. United Eur. Gastroenterol. J. 2022, 10, 556–584. [Google Scholar] [CrossRef] [PubMed]
- Sangkuhl, K.; Klein, T.E.; Altman, R.B. PharmGKB summary: Citalopram pharmacokinetics pathway. Pharmacogenet. Genom. 2011, 21, 769–772. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, D.J.; von Moltke, L.L.; Harmatz, J.S.; Shader, R.I. Human cytochromes and some newer antidepressants: Kinetics, metabolism, and drug interactions. J. Clin. Psychopharmacol. 1999, 19, 23S–35S. [Google Scholar] [CrossRef] [PubMed]
- von Moltke, L.L.; Greenblatt, D.J.; Grassi, J.M.; Granda, B.W.; Venkatakrishnan, K.; Duan, S.X.; Fogelman, S.M.; Harmatz, J.S.; Shader, R.I. Citalopram and desmethylcitalopram in vitro: Human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol. Psychiatry 1999, 46, 839–849. [Google Scholar] [CrossRef]
- Rudberg, I.; Hendset, M.; Uthus, L.H.; Molden, E.; Refsum, H. Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther. Drug Monit. 2006, 28, 102–105. [Google Scholar] [CrossRef]
- Rudberg, I.; Mohebi, B.; Hermann, M.; Refsum, H.; Molden, E. Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin. Pharmacol. Ther. 2008, 83, 322–327. [Google Scholar] [CrossRef]
- Herrlin, K.; Yasui-Furukori, N.; Tybring, G.; Widén, J.; Gustafsson, L.L.; Bertilsson, L. Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br. J. Clin. Pharmacol. 2003, 56, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Sindrup, S.H.; Brøsen, K.; Hansen, M.G.; Aaes-Jørgensen, T.; Overø, K.F.; Gram, L.F. Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther. Drug Monit. 1993, 15, 11–17. [Google Scholar] [CrossRef]
- Yu, B.N.; Chen, G.L.; He, N.; Ouyang, D.S.; Chen, X.P.; Liu, Z.Q.; Zhou, H.H. Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab. Dispos. 2003, 31, 1255–1259. [Google Scholar] [CrossRef] [Green Version]
- Yin, O.Q.; Wing, Y.K.; Cheung, Y.; Wang, Z.J.; Lam, S.L.; Chiu, H.F.; Chow, M.S. Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J. Clin. Psychopharmacol. 2006, 26, 367–372. [Google Scholar] [CrossRef]
- Bousman, C.A.; Stevenson, J.M.; Ramsey, L.B.; Sangkuhl, K.; Hicks, J.K.; Strawn, J.R.; Singh, A.B.; Ruaño, G.; Mueller, D.J.; Tsermpini, E.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin. Pharmacol. Ther. 2023. early view. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Ishizuka, T.; Shimada, N.; Yoshimura, Y.; Kamijima, K.; Chiba, K. Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro. Drug Metab. Dispos. 1999, 27, 763–766. [Google Scholar] [PubMed]
- Obach, R.S.; Cox, L.M.; Tremaine, L.M. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: An in vitro study. Drug Metab. Dispos. 2005, 33, 262–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ring, B.J.; Eckstein, J.A.; Gillespie, J.S.; Binkley, S.N.; VandenBranden, M.; Wrighton, S.A. Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine. J. Pharmacol. Exp. Ther. 2001, 297, 1044–1050. [Google Scholar]
- Margolis, J.M.; O’Donnell, J.P.; Mankowski, D.C.; Ekins, S.; Obach, R.S. (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab. Dispos. 2000, 28, 1187–1191. [Google Scholar] [PubMed]
- Fluoxetine, P. Prescribing Information; Eli Lilly USA, LLC: Indianapolis, IN, USA, 2017. [Google Scholar]
- Kittler, K.; Lau, T.; Schloss, P. Antagonists and substrates differentially regulate serotonin transporter cell surface expression in serotonergic neurons. Eur. J. Pharmacol. 2010, 629, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Kraft, J.B.; Peters, E.J.; Slager, S.L.; Jenkins, G.D.; Reinalda, M.S.; McGrath, P.J.; Hamilton, S.P. Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol. Psychiatry 2007, 61, 734–742. [Google Scholar] [CrossRef]
- Horstmann, S.; Lucae, S.; Menke, A.; Hennings, J.M.; Ising, M.; Roeske, D.; Müller-Myhsok, B.; Holsboer, F.; Binder, E.B. Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology 2010, 35, 727–740. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, D.M.; Glatt, S.J. GRIK4 polymorphism and its association with antidepressant response in depressed patients: A meta-analysis. Pharmacogenomics 2014, 15, 1451–1459. [Google Scholar] [CrossRef] [Green Version]
- Yevtushenko, O.O.; Oros, M.M.; Reynolds, G.P. Early response to selective serotonin reuptake inhibitors in panic disorder is associated with a functional 5-HT1A receptor gene polymorphism. J. Affect. Disord. 2010, 123, 308–311. [Google Scholar] [CrossRef]
- Hong, C.J.; Chen, T.J.; Yu, Y.W.; Tsai, S.J. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenom. J. 2006, 6, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illi, A.; Setälä-Soikkeli, E.; Viikki, M.; Poutanen, O.; Huhtala, H.; Mononen, N.; Lehtimäki, T.; Leinonen, E.; Kampman, O. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport 2009, 20, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Loundou, A.; Hamdani, N.; Boukouaci, W.; Dargel, A.; Oliveira, J.; Roger, M.; Tamouza, R.; Leboyer, M.; Boyer, L. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Perlis, R.H.; Mischoulon, D.; Smoller, J.W.; Wan, Y.J.; Lamon-Fava, S.; Lin, K.M.; Rosenbaum, J.F.; Fava, M. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol. Psychiatry 2003, 54, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Oz, M.D.; Baskak, B.; Uckun, Z.; Artun, N.Y.; Ozdemir, H.; Ozel, T.K.; Ozguven, H.D.; Suzen, H.S. Association between serotonin 2A receptor (HTR2A), serotonin transporter (SLC6A4) and brain-derived neurotrophic factor (BDNF) gene polymorphisms and citalopram/sertraline induced sexual dysfunction in MDD patients. Pharmacogenom. J. 2020, 20, 443–450. [Google Scholar] [CrossRef]
- Demirbugen Oz, M.; Uckun, Z.; Yuce-Artun, N.; Baskak, B.; Ozdemir, H.; Ozel, T.K.; Ozguven, H.D.; Suzen, H.S. The relationship between the serotonin 2A receptor gene-1438A/G and 102T/C polymorphisms and citalopram/sertraline-induced nausea in major depressed patients. Hum. Psychopharmacol. 2018, 33, e2673. [Google Scholar] [CrossRef]
- Badamasi, I.M.; Lye, M.S.; Ibrahim, N.; Abdul Razaq, N.A.; Ling, K.H.; Stanslas, J. Serotonergic receptor gene polymorphism and response to selective serotonin reuptake inhibitors in ethnic Malay patients with first episode of major depressive disorder. Pharmacogenom. J. 2021, 21, 498–509. [Google Scholar] [CrossRef]
- Steimer, W.; Zöpf, K.; von Amelunxen, S.; Pfeiffer, H.; Bachofer, J.; Popp, J.; Messner, B.; Kissling, W.; Leucht, S. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin. Chem. 2004, 50, 1623–1633. [Google Scholar] [CrossRef]
- Venkatakrishnan, K.; Schmider, J.; Harmatz, J.S.; Ehrenberg, B.L.; von Moltke, L.L.; Graf, J.A.; Mertzanis, P.; Corbett, K.E.; Rodriguez, M.C.; Shader, R.I.; et al. Relative contribution of CYP3A to amitriptyline clearance in humans: In vitro and in vivo studies. J. Clin. Pharmacol. 2001, 41, 1043–1054. [Google Scholar] [CrossRef]
- Jiang, Z.P.; Shu, Y.; Chen, X.P.; Huang, S.L.; Zhu, R.H.; Wang, W.; He, N.; Zhou, H.H. The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects. Eur. J. Clin. Pharmacol. 2002, 58, 109–113. [Google Scholar] [CrossRef]
- Shimoda, K.; Someya, T.; Yokono, A.; Morita, S.; Hirokane, G.; Takahashi, S.; Okawa, M. The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J. Clin. Psychopharmacol. 2002, 22, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Dahl, M.L.; Bertilsson, L.; Nordin, C. Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: Relationship to the CYP2D6 genotype. Psychopharmacology 1996, 123, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Morita, S.; Shimoda, K.; Someya, T.; Yoshimura, Y.; Kamijima, K.; Kato, N. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: Impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J. Clin. Psychopharmacol. 2000, 20, 141–149. [Google Scholar] [CrossRef]
- Rudorfer, M.V.; Potter, W.Z. Metabolism of tricyclic antidepressants. Cell. Mol. Neurobiol. 1999, 19, 373–409. [Google Scholar] [CrossRef]
- Steimer, W.; Zöpf, K.; von Amelunxen, S.; Pfeiffer, H.; Bachofer, J.; Popp, J.; Messner, B.; Kissling, W.; Leucht, S. Amitriptyline or not, that is the question: Pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin. Chem. 2005, 51, 376–385. [Google Scholar] [CrossRef]
- Ryu, S.; Park, S.; Lee, J.H.; Kim, Y.R.; Na, H.S.; Lim, H.S.; Choi, H.Y.; Hwang, I.Y.; Lee, J.G.; Park, Z.W.; et al. A Study on CYP2C19 and CYP2D6 Polymorphic Effects on Pharmacokinetics and Pharmacodynamics of Amitriptyline in Healthy Koreans. Clin. Transl. Sci. 2017, 10, 93–101. [Google Scholar] [CrossRef]
- Matthaei, J.; Brockmöller, J.; Steimer, W.; Pischa, K.; Leucht, S.; Kullmann, M.; Jensen, O.; Ouethy, T.; Tzvetkov, M.V.; Rafehi, M. Effects of Genetic Polymorphism in CYP2D6, CYP2C19, and the Organic Cation Transporter OCT1 on Amitriptyline Pharmacokinetics in Healthy Volunteers and Depressive Disorder Patients. Front. Pharmacol. 2021, 12, 688950. [Google Scholar] [CrossRef]
- Zhou, W.C.; Jia, L.; Deng, Q.; Wen, Y.G.; Shang, D.W.; Ni, X.J.; Huang, Y.X.; Liu, Y.; Zhao, H.B.; Yang, M.; et al. Role of serum amitriptyline concentration and CYP2C19 polymorphism in predicting the response to low-dose amitriptyline in irritable bowel syndrome. Dig. Liver Dis. 2021, 53, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- de Vos, A.; van der Weide, J.; Loovers, H.M. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. Pharmacogenom. J. 2011, 11, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.A.; Sangkuhl, K.; Shuldiner, A.R.; Hulot, J.S.; Thorn, C.F.; Altman, R.B.; Klein, T.E. PharmGKB summary: Very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet. Genom. 2012, 22, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Kirchheiner, J.; Nickchen, K.; Bauer, M.; Wong, M.L.; Licinio, J.; Roots, I.; Brockmöller, J. Pharmacogenetics of antidepressants and antipsychotics: The contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry 2004, 9, 442–473. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, M.; Alessandrini, M.; Rademan, J.; Dodgen, T.M.; Steffens, F.E.; van Zyl, D.G.; Gaedigk, A.; Pepper, M.S. Impact of CYP2D6 genotype on amitriptyline efficacy for the treatment of diabetic peripheral neuropathy: A pilot study. Pharmacogenomics 2017, 18, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawanishi, C.; Lundgren, S.; Agren, H.; Bertilsson, L. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: Ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur. J. Clin. Pharmacol. 2004, 59, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Rau, T.; Wohlleben, G.; Wuttke, H.; Thuerauf, N.; Lunkenheimer, J.; Lanczik, M.; Eschenhagen, T. CYP2D6 genotype: Impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin. Pharmacol. Ther. 2004, 75, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Talley, N.J.; Vakil, N.B.; Moayyedi, P. American gastroenterological association technical review on the evaluation of dyspepsia. Gastroenterology 2005, 129, 1756–1780. [Google Scholar] [CrossRef] [Green Version]
- Halling, J.; Weihe, P.; Brosen, K. The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population. Br. J. Clin. Pharmacol. 2008, 65, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Müller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A.; et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Stingl, J.C.; Brockmöller, J.; Viviani, R. Genetic variability of drug-metabolizing enzymes: The dual impact on psychiatric therapy and regulation of brain function. Mol. Psychiatry 2013, 18, 273–287. [Google Scholar] [CrossRef]
- Dixon, C.M.; Colthup, P.V.; Serabjit-Singh, C.J.; Kerr, B.M.; Boehlert, C.C.; Park, G.R.; Tarbit, M.H. Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab. Dispos. 1995, 23, 1225–1230. [Google Scholar]
- Fischer, V.; Vickers, A.E.; Heitz, F.; Mahadevan, S.; Baldeck, J.P.; Minery, P.; Tynes, R. The polymorphic cytochrome P-4502D6 is involved in the metabolism of both 5-hydroxytryptamine antagonists, tropisetron and ondansetron. Drug Metab. Dispos. 1994, 22, 269–274. [Google Scholar]
- Candiotti, K.A.; Birnbach, D.J.; Lubarsky, D.A.; Nhuch, F.; Kamat, A.; Koch, W.H.; Nikoloff, M.; Wu, L.; Andrews, D. The impact of pharmacogenomics on postoperative nausea and vomiting: Do CYP2D6 allele copy number and polymorphisms affect the success or failure of ondansetron prophylaxis? Anesthesiology 2005, 102, 543–549. [Google Scholar] [CrossRef]
- Kaiser, R.; Sezer, O.; Papies, A.; Bauer, S.; Schelenz, C.; Tremblay, P.B.; Possinger, K.; Roots, I.; Brockmöller, J. Patient-tailored antiemetic treatment with 5-hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J. Clin. Oncol. 2002, 20, 2805–2811. [Google Scholar] [CrossRef] [PubMed]
- Niewiński, P.A.; Wojciechowski, R.; Śliwiński, M.; Hurkacz, M.E.; Głowacka, K.; Orzechowska-Juzwenko, K.; Wiela-Hojeńska, A.K. CYP2D6 basic genotyping as a potential tool to improve the antiemetic efficacy of ondansetron in prophylaxis of postoperative nausea and vomiting. Adv. Clin. Exp. Med. 2018, 27, 1499–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, A.; Teusink-Cross, A.; Martin, L.J.; Prows, C.A.; Mehta, P.A.; Ramsey, L.B. Influence of CYP2D6 metabolizer status on ondansetron efficacy in pediatric patients undergoing hematopoietic stem cell transplantation: A case series. Clin. Transl. Sci. 2022, 15, 610–618. [Google Scholar] [CrossRef]
- Stamer, U.M.; Lee, E.H.; Rauers, N.I.; Zhang, L.; Kleine-Brueggeney, M.; Fimmers, R.; Stuber, F.; Musshoff, F. CYP2D6- and CYP3A-dependent enantioselective plasma concentrations of ondansetron in postanesthesia care. Anesth. Analg. 2011, 113, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.C.; Caudle, K.E.; Whirl-Carrillo, M.; Gordon, R.J.; Hikino, K.; Prows, C.A.; Gaedigk, A.; Agundez, J.; Sadhasivam, S.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clin. Pharmacol. Ther. 2017, 102, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kino, T.; Hatanaka, H.; Miyata, S.; Inamura, N.; Nishiyama, M.; Yajima, T.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. 1987, 40, 1256–1265. [Google Scholar] [CrossRef]
- Crettol, S.; Venetz, J.P.; Fontana, M.; Aubert, J.D.; Pascual, M.; Eap, C.B. CYP3A7, CYP3A5, CYP3A4, and ABCB1 genetic polymorphisms, cyclosporine concentration, and dose requirement in transplant recipients. Ther. Drug Monit. 2008, 30, 689–699. [Google Scholar] [CrossRef]
- de Jonge, H.; de Loor, H.; Verbeke, K.; Vanrenterghem, Y.; Kuypers, D.R. In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients. Clin. Pharmacol. Ther. 2012, 92, 366–375. [Google Scholar] [CrossRef]
- Lampen, A.; Christians, U.; Guengerich, F.P.; Watkins, P.B.; Kolars, J.C.; Bader, A.; Gonschior, A.K.; Dralle, H.; Hackbarth, I.; Sewing, K.F. Metabolism of the immunosuppressant tacrolimus in the small intestine: Cytochrome P450, drug interactions, and interindividual variability. Drug Metab. Dispos. 1995, 23, 1315–1324. [Google Scholar]
- Kolars, J.C.; Awni, W.M.; Merion, R.M.; Watkins, P.B. First-pass metabolism of cyclosporin by the gut. Lancet 1991, 338, 1488–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Hebert, M.F.; Isoherranen, N.; Davis, C.L.; Marsh, C.; Shen, D.D.; Thummel, K.E. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab. Dispos. 2006, 34, 836–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamdem, L.K.; Streit, F.; Zanger, U.M.; Brockmöller, J.; Oellerich, M.; Armstrong, V.W.; Wojnowski, L. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin. Chem. 2005, 51, 1374–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Iwanaga, K.; Lin, Y.S.; Hebert, M.F.; Davis, C.L.; Huang, W.; Kharasch, E.D.; Thummel, K.E. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem. Pharmacol. 2004, 68, 1889–1902. [Google Scholar] [CrossRef]
- Hebert, M.F. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv. Drug Deliv. Rev. 1997, 27, 201–214. [Google Scholar] [CrossRef]
- Lown, K.S.; Mayo, R.R.; Leichtman, A.B.; Hsiao, H.L.; Turgeon, D.K.; Schmiedlin-Ren, P.; Brown, M.B.; Guo, W.; Rossi, S.J.; Benet, L.Z.; et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin. Pharmacol. Ther. 1997, 62, 248–260. [Google Scholar] [CrossRef] [Green Version]
- van Schaik, R.H.; van der Heiden, I.P.; van den Anker, J.N.; Lindemans, J. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin. Chem. 2002, 48, 1668–1671. [Google Scholar] [CrossRef] [Green Version]
- Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin. Pharmacol. Ther. 2019, 105, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Cuffari, C. A Physician’s Guide to Azathioprine Metabolite Testing. Gastroenterol. Hepatol. 2006, 2, 58–63. [Google Scholar]
- Imuran; Aspen Pharmacare Canada, Inc.: Toronto, ON, Canada, 2018.
- Lexicomp Online; UpToDate, Inc.: Waltham, MA, USA, 2023.
- Giverhaug, T.; Klemetsdal, B.; Lysaa, R.; Aarbakke, J. Intraindividual variability in red blood cell thiopurine methyltransferase activity. Eur. J. Clin. Pharmacol. 1996, 50, 217–220. [Google Scholar] [CrossRef]
- Feuerstein, J.D.; Nguyen, G.C.; Kupfer, S.S.; Falck-Ytter, Y.; Singh, S.; Committee, A.G.A.I.C.G. American Gastroenterological Association Institute Guideline on Therapeutic Drug Monitoring in Inflammatory Bowel Disease. Gastroenterology 2017, 153, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenstein, G.R.; Sbreu, M.T.; Cohen, R.; Tremaine, W. American Gastroenterological Association Institute technical review on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease. Rev. Gastroenterol. Mex. 2006, 71, 351–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benkov, K.; Lu, Y.; Patel, A.; Rahhal, R.; Russell, G.; Teitelbaum, J.; Disease, N.C.o.I.B. Role of thiopurine metabolite testing and thiopurine methyltransferase determination in pediatric IBD. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 333–340. [Google Scholar] [CrossRef]
- Colombel, J.F.; Ferrari, N.; Debuysere, H.; Marteau, P.; Gendre, J.P.; Bonaz, B.; Soulé, J.C.; Modigliani, R.; Touze, Y.; Catala, P.; et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology 2000, 118, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.A.; He, Y.; Swen, J.J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, S.; O’Morain, C.A. Therapeutic benefits of budesonide in gastroenterology. Ther. Adv. Chronic Dis. 2010, 1, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Furuta, G.T.; Katzka, D.A. Eosinophilic Esophagitis. N. Engl. J. Med. 2015, 373, 1640–1648. [Google Scholar] [CrossRef] [Green Version]
- Edsbäcker, S.; Andersson, P.; Lindberg, C.; Paulson, J.; Ryrfeldt, A.; Thalén, A. Liver metabolism of budesonide in rat, mouse, and man. Comparative aspects. Drug Metab. Dispos. 1987, 15, 403–411. [Google Scholar]
- Vyhlidal, C.A.; Chapron, B.D.; Ahmed, A.; Singh, V.; Casini, R.; Shakhnovich, V. Effect of Crohn’s Disease on Villous Length and CYP3A4 Expression in the Pediatric Small Intestine. Clin. Transl. Sci. 2021, 14, 729–736. [Google Scholar] [CrossRef]
- Johnson, T.N.; Tanner, M.S.; Taylor, C.J.; Tucker, G.T. Enterocytic CYP3A4 in a paediatric population: Developmental changes and the effect of coeliac disease and cystic fibrosis. Br. J. Clin. Pharmacol. 2001, 51, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Edsbäcker, S.; Bengtsson, B.; Larsson, P.; Lundin, P.; Nilsson, A.; Ulmius, J.; Wollmer, P. A pharmacoscintigraphic evaluation of oral budesonide given as controlled-release (Entocort) capsules. Aliment. Pharmacol. Ther. 2003, 17, 525–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilger, K.; Lopez-Lazaro, L.; Marx, C.; Bussmann, C.; Straumann, A. Active eosinophilic esophagitis is associated with impaired elimination of budesonide by cytochrome P450 3A enzymes. Digestion 2013, 87, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, R.; Pirani, K.; Gaedigk, R.; Shakhnovich, V. Drug metabolism in the esophagus may contribute to treatment failure in kids with esophageal disease. In Proceedings of the American Society of Clinical Pharmacology and Therapeutics Annual Meeting, Virtual, 17 March 2021. [Google Scholar]
Phenotype | Allele Activity |
---|---|
Ultra-Rapid Metabolizer (UM) | Two supra-functional alleles |
Rapid Metabolizer (RM) | One normal function and one supra-functional allele |
Normal Metabolizer (NM) | Two normal function alleles (i.e., wild type) |
Intermediate Metabolizer (IM) | One loss/null function allele and one normal/supra-function allele |
Poor Metabolizer (PM) | Two loss/null function alleles |
Actionable CPIC® and/or Dutch Working Group Guidelines Available | Not Actionable Lack Significant HEPATIC Metabolism/Predominant Renal Elimination | More Research Needed No Current Guidelines or Recommendations |
---|---|---|
* Proton Pump Inhibitors (CYP2C19) * Selective Serotonin Reuptake Inhibitors (CYP2C19, CYP2D6, CYP2B) * Amitriptyline (CYP2C19, CYP2D6) * Ondansetron (CYP2D6) * Tacrolimus (CYP3A5) * Azathioprine (TPMT, NUDT15) * Mercaptopurine (TPMT, NUDT15) | Miralax Lactulose Famotidine Fluconazole Ursodiol Biologics | Budesonide (CYP3A4, CYP3A5) Fluticasone (CYP3A4) Erythromycin (CYP3A4) Lorazepam (UGT2B15) Diphenhydramine (CYP2D6) Sirolimus (CYP3A4, CYP3A5) Micafungin (CYP3A4, COMT) Cimetidine (CYP1A2, CYP2C19) Cyproheptadine (multiple UGTs) Prednisone (CYP3A4) Mycophenolate mofetil (multiple UGTs, SLCO1B1) |
CYP2C19 Phenotype | Implications for Phenotypic Measures | Therapeutic Recommendations | Classification of Recommendation-Omeprazole, Lansoprazole, Pantoprazole | Classification of Recommendation-Dexlansoprazole |
---|---|---|---|---|
CYP2C19 UM | Decreased plasma concentrations of PPIs compared to CYP2C19 NMs; increased risk of therapeutic failure | Increase starting daily dose by 100%. Daily dose may be given in divided doses. Monitor for efficacy. | Optional | Optional |
CYP2C19 RM | Decreased plasma concentrations of PPIs compared to CYP2C19 NMs; increased risk of therapeutic failure | Consider increasing dose by 50–100% for the treatment of H. pylori infection and erosive esophagitis. Daily dose may be given in divided doses. Monitor for efficacy. | Moderate | Optional |
CYP2C19 NM | Normal PPI metabolism; may be at increased risk of therapeutic failure compared to CYP2C19 IMs and PMs | Initiate standard starting daily dose. Consider increasing dose by 50-100% for the treatment of H. pylori infection and erosive esophagitis. Daily dose may be given in divided doses. Monitor for efficacy. | Moderate | Optional |
CYP2C19 (likely) IM | Increased plasma concentration of PPI compared to CYP2C19 NMs; increased chance of efficacy and potentially toxicity | Initiate standard starting daily dose. For chronic therapy (>12 weeks) and efficacy achieved consider 50% reduction in daily dose and monitor for continued efficacy. | Optional | Optional |
CYP2C19 (likely) PM | Likely increased plasma concentration of PPI compared to CYP2C19 NMs; likely increased chance of efficacy and potentially toxicity | Initiate standard starting daily dose. For chronic therapy (>12 weeks) and efficacy achieved, consider 50% reduction in daily dose and monitor for continued efficacy. | Moderate | Optional |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandritter, T.; Chevalier, R.; Abt, R.; Shakhnovich, V. Pharmacogenetic Testing for the Pediatric Gastroenterologist: Actionable Drug–Gene Pairs to Know. Pharmaceuticals 2023, 16, 889. https://doi.org/10.3390/ph16060889
Sandritter T, Chevalier R, Abt R, Shakhnovich V. Pharmacogenetic Testing for the Pediatric Gastroenterologist: Actionable Drug–Gene Pairs to Know. Pharmaceuticals. 2023; 16(6):889. https://doi.org/10.3390/ph16060889
Chicago/Turabian StyleSandritter, Tracy, Rachel Chevalier, Rebecca Abt, and Valentina Shakhnovich. 2023. "Pharmacogenetic Testing for the Pediatric Gastroenterologist: Actionable Drug–Gene Pairs to Know" Pharmaceuticals 16, no. 6: 889. https://doi.org/10.3390/ph16060889
APA StyleSandritter, T., Chevalier, R., Abt, R., & Shakhnovich, V. (2023). Pharmacogenetic Testing for the Pediatric Gastroenterologist: Actionable Drug–Gene Pairs to Know. Pharmaceuticals, 16(6), 889. https://doi.org/10.3390/ph16060889