Interactive Associations between PPARγ and PPARGC1A and Bisphosphonate-Related Osteonecrosis of the Jaw in Patients with Osteoporosis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Participants and Data Collection
4.2. Selection of Single-Nucleotide Polymorphisms (SNPs) and Genotyping Methods
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, J.W.; Nam, W.; Cha, I.H.; Chung, S.W.; Choi, H.S.; Kim, K.M.; Kim, K.J.; Rhee, Y.; Lim, S.K. Oral bisphosphonate-related osteonecrosis of the jaw: The first report in Asia. Osteoporos. Int. 2010, 21, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E. Risks and benefits of bisphosphonates. Br. J. Cancer 2008, 98, 1736–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, R.E.; Sawatari, Y.; Fortin, M.; Broumand, V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: Risk factors, recognition, prevention, and treatment. J. Oral Maxillofac. Surg. 2005, 63, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. Diagnosis and management of osteonecrosis of the jaw: A systematic review and international consensus. J. Bone Miner. Res. 2015, 30, 3–23. [Google Scholar] [CrossRef]
- Marx, R.E. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: A growing epidemic. J. Oral Maxillofac. Surg. 2003, 61, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.R.; Kubek, D.J.; Burr, D.B.; Ruggiero, S.L.; Chu, T.-M.G. Compromised osseous healing of dental extraction sites in zoledronic acid-treated dogs. Osteoporos. Int. 2011, 22, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Ivanovski, S.; Slevin, M.; Hamlet, S.; Pop, T.S.; Brinzaniuc, K.; Petcu, E.B.; Miroiu, R.I. Bisphosphonate-related osteonecrosis of jaw (BRONJ): Diagnostic criteria and possible pathogenic mechanisms of an unexpected anti-angiogenic side effect. Vasc. Cell 2013, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Landesberg, R.; Cozin, M.; Cremers, S.; Woo, V.; Kousteni, S.; Sinha, S.; Garrett-Sinha, L.; Raghavan, S. Inhibition of oral mucosal cell wound healing by bisphosphonates. J. Oral Maxillofac. Surg. 2008, 66, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Sándor, G.K.; Dore, E.; Morrison, A.D.; Alsahli, M.; Amin, F.; Peters, E.; Hanley, D.A.; Chaudry, S.R.; Lentle, B.; et al. Bisphosphonate associated osteonecrosis of the jaw. J. Rheumatol. 2009, 36, 478–490. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Cui, W.; Que, L.; Li, C.; Tang, X.; Liu, J. Pharmacogenetics of medication-related osteonecrosis of the jaw: A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2020, 49, 298–309. [Google Scholar] [CrossRef]
- Sandro Pereira da Silva, J.; Pullano, E.; Raje, N.S.; Troulis, M.J.; August, M. Genetic predisposition for medication-related osteonecrosis of the jaws: A systematic review. Int. J. Oral Maxillofac. Surg. 2019, 48, 1289–1299. [Google Scholar] [CrossRef]
- Yang, G.; Singh, S.; Chen, Y.; Hamadeh, I.S.; Langaee, T.; McDonough, C.W.; Holliday, L.S.; Lamba, J.K.; Moreb, J.S.; Katz, J.; et al. Pharmacogenomics of osteonecrosis of the jaw. Bone 2019, 124, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Gong, Y.; Salmasinia, D.; Hou, W.; Burkley, B.; Ferreira, P.; Casanova, O.; Langaee, T.Y.; Moreb, J.S. Genetic polymorphisms and other risk factors associated with bisphosphonate induced osteonecrosis of the jaw. Int. J. Oral Maxillofac. Surg. 2011, 40, 605–611. [Google Scholar] [CrossRef]
- La Ferla, F.; Paolicchi, E.; Crea, F.; Cei, S.; Graziani, F.; Gabriele, M.; Danesi, R. An aromatase polymorphism (g.132810C>T) predicts risk of bisphosphonate-related osteonecrosis of the jaw. Biomark. Med. 2012, 6, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Arduino, P.G.; Menegatti, E.; Scoletta, M.; Battaglio, C.; Mozzati, M.; Chiecchio, A.; Berardi, D.; Vandone, A.M.; Donadio, M.; Gandolfo, S.; et al. Vascular endothelial growth factor genetic polymorphisms and haplotypes in female patients with bisphosphonate-related osteonecrosis of the jaws. J. Oral Pathol. Med. 2011, 40, 510–515. [Google Scholar] [CrossRef]
- Kastritis, E.; Melea, P.; Bagratuni, T.; Melakopoulos, I.; Gavriatopoulou, M.; Roussou, M.; Migkou, M.; Eleutherakis-Papaiakovou, E.; Terpos, E.; Dimopoulos, M.A. Genetic factors related with early onset of osteonecrosis of the jaw in patients with multiple myeloma under zoledronic acid therapy. Leuk. Lymphoma 2017, 58, 2304–2309. [Google Scholar] [CrossRef]
- Baroi, S.; Czernik, P.J.; Chougule, A.; Griffin, P.R.; Lecka-Czernik, B. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss. Bone 2021, 147, 115913. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wang, X.; Yang, M.; Smith, L.C.; Dechow, P.C.; Sonoda, J.; Evans, R.M.; Wan, Y. PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab. 2010, 11, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Wagner, N.; Wagner, K.D. PPARs and Angiogenesis-Implications in Pathology. Int. J. Mol. Sci. 2020, 21, 5723. [Google Scholar] [CrossRef]
- Tontonoz, P.; Spiegelman, B.M. Fat and beyond: The diverse biology of PPARgamma. Annu. Rev. Biochem. 2008, 77, 289–312. [Google Scholar] [CrossRef]
- Yu, B.; Huo, L.; Liu, Y.; Deng, P.; Szymanski, J.; Li, J.; Luo, X.; Hong, C.; Lin, J.; Wang, C.Y. PGC-1α Controls Skeletal Stem Cell Fate and Bone-Fat Balance in Osteoporosis and Skeletal Aging by Inducing TAZ. Cell Stem Cell 2018, 23, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Buccoliero, C.; Dicarlo, M.; Pignataro, P.; Gaccione, F.; Colucci, S.; Colaianni, G.; Grano, M. The Novel Role of PGC1α in Bone Metabolism. Int. J. Mol. Sci. 2021, 22, 4670. [Google Scholar] [CrossRef]
- Di Martino, M.T.; Arbitrio, M.; Guzzi, P.H.; Leone, E.; Baudi, F.; Piro, E.; Prantera, T.; Cucinotto, I.; Calimeri, T.; Rossi, M.; et al. A peroxisome proliferator-activated receptor gamma (PPARG) polymorphism is associated with zoledronic acid-related osteonecrosis of the jaw in multiple myeloma patients: Analysis by DMET microarray profiling. Br. J. Haematol. 2011, 154, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Van Poznak, C.; Reynolds, E.L.; Estilo, C.L.; Hu, M.; Schneider, B.P.; Hertz, D.L.; Gersch, C.; Thibert, J.; Thomas, D.; Banerjee, M.; et al. Osteonecrosis of the jaw risk factors in bisphosphonate-treated patients with metastatic cancer. Oral Dis. 2022, 28, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Soyal, S.; Krempler, F.; Oberkofler, H.; Patsch, W. PGC-1alpha: A potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 2006, 49, 1477–1488. [Google Scholar] [CrossRef] [PubMed]
- Ruchat, S.-M.; Weisnagel, S.; Vohl, M.; Rankinen, T.; Bouchard, C.; Perusse, L. Evidence for interaction between PPARG Pro12Ala and PPARGC1A Gly482Ser polymorphisms in determining type 2 diabetes intermediate phenotypes in overweight subjects. Exp. Clin. Endocrinol. Diabetes 2009, 117, 455–459. [Google Scholar] [CrossRef]
- Ali, A.A.; Weinstein, R.S.; Stewart, S.A.; Parfitt, A.M.; Manolagas, S.C.; Jilka, R.L. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 2005, 146, 1226–1235. [Google Scholar] [CrossRef] [Green Version]
- Meunier, P.; Aaron, J.; Edouard, C.; Vignon, G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: A quantitative study of 84 iliac bone biopsies. Clin. Orthop. Relat. Res. 1971, 80, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V.; Sellmeyer, D.E.; Vittinghoff, E.; Palermo, L.; Lecka-Czernik, B.; Feingold, K.R.; Strotmeyer, E.S.; Resnick, H.E.; Carbone, L.; Beamer, B.A.; et al. Thiazolidinedione use and bone loss in older diabetic adults. J. Clin. Endocrinol. Metab. 2006, 91, 3349–3354. [Google Scholar] [CrossRef]
- Lecka-Czernik, B. Bone loss in diabetes: Use of antidiabetic thiazolidinediones and secondary osteoporosis. Curr. Osteoporos. Rep. 2010, 8, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Harsløf, T.; Tofteng, C.L.; Husted, L.B.; Nyegaard, M.; Børglum, A.; Carstens, M.; Stenkjær, L.; Brixen, K.; Eiken, P.; Jensen, J.E.; et al. Polymorphisms of the peroxisome proliferator-activated receptor γ (PPARγ) gene are associated with osteoporosis. Osteoporos. Int. 2011, 22, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
- Dragojevič, J.; Ostanek, B.; Mencej-Bedrač, S.; Komadina, R.; Preželj, J.; Marc, J. PPARG gene promoter polymorphism is associated with non-traumatic hip fracture risk in the elderly Slovenian population: A pilot study. Clin. Biochem. 2011, 44, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Raponi, M.; Baralle, D. Alternative splicing: Good and bad effects of translationally silent substitutions. FEBS J. 2010, 277, 836–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagani, F.; Baralle, F.E. Genomic variants in exons and introns: Identifying the splicing spoilers. Nat. Rev. Genet. 2004, 5, 389–396. [Google Scholar] [CrossRef]
- Kiel, D. Polymorphisms in the PPARr gene influence bone density in humans. J. Bone Miner. Res. 2005, 20, S234. [Google Scholar]
- Cirelli, T.; Nicchio, I.G.; Bussaneli, D.G.; Silva, B.R.; Nepomuceno, R.; Orrico, S.R.; Cirelli, J.A.; Theodoro, L.H.; Barros, S.P.; Scarel-Caminaga, R.M. Evidence Linking PPARG Genetic Variants with Periodontitis and Type 2 Diabetes Mellitus in a Brazilian Population. Int. J. Mol. Sci. 2023, 24, 6760. [Google Scholar] [CrossRef]
- Combarros, O.; Rodríguez-Rodríguez, E.; Mateo, I.; Vázquez-Higuera, J.L.; Infante, J.; Berciano, J.; Sánchez-Juan, P. APOE dependent-association of PPAR-γ genetic variants with Alzheimer’s disease risk. Neurobiol. Aging 2011, 32, 541.e1–547.e6. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, H.; Wang, Y.; Chen, J.; Ji, Z.; Sun, H. Sirtuin 3 is required for osteogenic differentiation through maintenance of PGC-1α-SOD2-mediated regulation of mitochondrial function. Int. J. Biol. Sci. 2017, 13, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-de-Diego, C.; Artigas, N.; Pimenta-Lopes, C.; Valer, J.A.; Torrejon, B.; Gama-Pérez, P.; Villena, J.A.; Garcia-Roves, P.M.; Rosa, J.L.; Ventura, F. Glucose Restriction Promotes Osteocyte Specification by Activating a PGC-1α-Dependent Transcriptional Program. iScience 2019, 15, 79–94. [Google Scholar] [CrossRef]
- Colaianni, G.; Lippo, L.; Sanesi, L.; Brunetti, G.; Celi, M.; Cirulli, N.; Passeri, G.; Reseland, J.; Schipani, E.; Faienza, M.F.; et al. Deletion of the Transcription Factor PGC-1α in Mice Negatively Regulates Bone Mass. Calcif. Tissue Int. 2018, 103, 638–652. [Google Scholar] [CrossRef]
- Kadlec, A.O.; Chabowski, D.S.; Ait-Aissa, K.; Gutterman, D.D. Role of PGC-1α in vascular regulation: Implications for atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1467–1474. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Gao, Y.; Ehirchiou, D.; Cao, C.; Kikuiri, T.; Le, A.; Shi, S.; Zhang, L. Bisphosphonates cause osteonecrosis of the jaw-like disease in mice. Am. J. Pathol. 2010, 177, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Lee, J.H.; Kim, H.J.; Park, W.; Lee, J.H.; Kim, J.H. Genetic association between VEGF polymorphisms and BRONJ in the Korean population. Oral Dis. 2015, 21, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Matharoo, K.; Kapoor, R.; Bhanwer, A.J.S. Association of PGC-1α gene with type 2 diabetes in three unrelated endogamous groups of North-West India (Punjab): A case-control and meta-analysis study. Mol. Genet. Genom. 2018, 293, 317–329. [Google Scholar] [CrossRef]
- Ek, J.; Andersen, G.; Urhammer, S.A.; Gaede, P.H.; Drivsholm, T.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia 2001, 44, 2220–2226. [Google Scholar] [CrossRef] [Green Version]
- Thumbigere-Math, V.; Tu, L.; Huckabay, S.; Dudek, A.Z.; Lunos, S.; Basi, D.L.; Hughes, P.J.; Leach, J.W.; Swenson, K.K.; Gopalakrishnan, R. A retrospective study evaluating frequency and risk factors of osteonecrosis of the jaw in 576 cancer patients receiving intravenous bisphosphonates. Am. J. Clin. Oncol. 2012, 35, 386–392. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chang, C.T.; Muo, C.H.; Tsai, C.H.; Shen, Y.F.; Wu, C.Z. Impact of bisphosphonate-related osteonecrosis of the jaw on osteoporotic patients after dental extraction: A population-based cohort study. PLoS ONE 2015, 10, e0120756. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.L.; Dodson, T.B.; Fantasia, J.; Goodday, R.; Aghaloo, T.; Mehrotra, B.; O’Ryan, F. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw—2014 update. J. Oral Maxillofac. Surg. 2014, 72, 1938–1956. [Google Scholar] [CrossRef]
- Boonyapakorn, T.; Schirmer, I.; Reichart, P.A.; Sturm, I.; Massenkeil, G. Bisphosphonate-induced osteonecrosis of the jaws: Prospective study of 80 patients with multiple myeloma and other malignancies. Oral Oncol. 2008, 44, 857–869. [Google Scholar] [CrossRef]
- Palaska, P.K.; Cartsos, V.; Zavras, A.I. Bisphosphonates and time to osteonecrosis development. Oncologist 2009, 14, 1154–1166. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Y.; Tang, W.; Chen, Y.; Liu, C.; Kang, M.; Xie, J. Association between PPARγ, PPARGC1A, and PPARGC1B genetic variants and susceptibility of gastric cancer in an Eastern Chinese population. BMC Med. Genom. 2022, 15, 274. [Google Scholar] [CrossRef]
- Gallicchio, L.; Kalesan, B.; Huang, H.Y.; Strickland, P.; Hoffman, S.C.; Helzlsouer, K.J. Genetic polymorphisms of peroxisome proliferator-activated receptors and the risk of cardiovascular morbidity and mortality in a community-based cohort in washington county, Maryland. PPAR Res. 2008, 2008, 276581. [Google Scholar] [CrossRef] [Green Version]
- Weydt, P.; Soyal, S.M.; Gellera, C.; Didonato, S.; Weidinger, C.; Oberkofler, H.; Landwehrmeyer, G.B.; Patsch, W. The gene coding for PGC-1alpha modifies age at onset in Huntington’s Disease. Mol. Neurodegener. 2009, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.Q.; Tucker, K.L.; Parnell, L.D.; Adiconis, X.; García-Bailo, B.; Griffith, J.; Meydani, M.; Ordovás, J.M. PPARGC1A variation associated with DNA damage, diabetes, and cardiovascular diseases: The Boston Puerto Rican Health Study. Diabetes 2008, 57, 809–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geoffroy, P.A.; Etain, B.; Lajnef, M.; Zerdazi, E.H.; Brichant-Petitjean, C.; Heilbronner, U.; Hou, L.; Degenhardt, F.; Rietschel, M.; McMahon, F.J.; et al. Circadian genes and lithium response in bipolar disorders: Associations with PPARGC1A (PGC-1α) and RORA. Genes Brain Behav. 2016, 15, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Case (n = 56) | Control (n = 67) | p-Value |
---|---|---|---|
Age (years) | 0.003 | ||
<70 | 9 (16.1) | 27 (40.9) | |
≥70 | 47 (83.9) | 39 (59.1) | |
Co-morbidity | |||
Hypertension | 35 (62.5) | 28 (41.8) | 0.022 |
Cardiovascular disease | 7 (12.5) | 8 (11.9) | 0.925 |
Diabetes mellitus | 17 (30.4) | 16 (23.9) | 0.419 |
Rheumatoid arthritis | 6 (10.7) | 2 (3.0) | 0.140 a |
Thyroid disease | 4 (7.1) | 2 (3.0) | 0.286 |
Kidney disease | 2 (3.6) | 3 (4.5) | 1.000 a |
Liver disease | 0 (0) | 2 (3.0) | 0.500 a |
Cancer | 2 (3.6) | 6 (9.1) | 0.289 a |
Types of bisphosphonates * | 0.225 a | ||
Alendronate | 9 (34.6) | 12 (36.4) | |
Ibandronate | 5 (19.2) | 12 (36.4) | |
Pamidronate | 2 (7.7) | 0 (0) | |
Risedronate | 10 (38.5) | 9 (27.3) | |
Route of administration | 0.210 | ||
Intravenous | 9 (20.5) | 18 (31.6) | |
Oral | 35 (79.5) | 39 (68.4) | |
Treatment duration (months) | 0.001 | ||
<60 | 26 (52.0) | 45 (83.3) | |
≥60 | 24 (48.0) | 9 (16.7) |
Gene Polymorphism | MAF | Grouped Genotypes | Case (n = 56) | Control (n = 67) | p-Value |
---|---|---|---|---|---|
PPARγ | |||||
rs1151999 | 0.390 | GG, GT | 52 (92.9) | 55 (82.1) | 0.077 |
G > T | TT | 4 (7.1) | 12 (17.9) | ||
rs3856806 | 0.107 | CC | 46 (82.1) | 53 (80.3) | 0.796 |
C > T | CT, TT | 10 (17.9) | 13 (19.7) | ||
rs1152003 | 0.402 | GG, GC | 47 (83.9) | 50 (74.6) | 0.208 |
G > C | CC | 9 (16.1) | 17 (25.4) | ||
rs1801282 | 0.041 | CC | 53 (94.6) | 61 (91.0) | 0.508 a |
C > G | CG, GG | 3 (5.4) | 6 (9.0) | ||
rs1175543 | 0.402 | AA, AG | 50 (90.9) | 55 (82.1) | 0.162 |
A > G | GG | 5 (9.1) | 12 (17.9) | ||
PPARGC1A | |||||
rs8192678 | 0.415 | CC | 22 (39.3) | 19 (28.4) | 0.200 |
C > T | CT, TT | 34 (60.7) | 48 (71.6) | ||
rs2946385 | 0.291 | GG | 35 (62.5) | 29 (43.3) | 0.034 |
G > T | GT, TT | 21 (37.5) | 38 (56.7) | ||
rs10020457 | 0.102 | GG | 40 (71.4) | 59 (88.1) | 0.020 |
G > A | GA, AA | 16 (28.6) | 8 (11.9) | ||
rs7665116 | 0.260 | TT | 27 (48.2) | 41 (61.2) | 0.149 |
T > C | TC, CC | 29 (51.8) | 26 (38.8) | ||
rs2970847 | 0.240 | TT, TC | 23 (41.1) | 29 (43.3) | 0.805 |
T * > C | CC | 33 (58.9) | 38 (56.7) | ||
rs3736265 | 0.146 | GG | 38 (67.9) | 53 (79.1) | 0.157 |
G > A | GA, AA | 18 (32.1) | 14 (20.9) | ||
PPARγ/PPARGC1A | |||||
rs1151999/rs2946385 | N/A | GG/GG | 16 (28.6) | 9 (13.4) | 0.038 |
Others | 40 (71.4) | 58 (86.6) | |||
rs1151999/rs10020457 | N/A | GT/GA | 12 (21.4) | 2 (3.0) | 0.001 |
Others | 44 (78.6) | 65 (97.0) |
Variables | Crude OR (95% CI) | Adjusted OR (95% CI) | ||
---|---|---|---|---|
Model I | Model II | Model III | ||
Age ≥ 70 years | 3.62 (1.52–8.59) ** | 3.94 (1.50–10.30) ** | 3.23 (1.18–8.84) * | 4.27 (1.57–11.64) ** |
Hypertension | 2.32 (1.12–4.80) * | 2.13 (0.87–5.24) | ||
Duration ≥ 60 months | 4.62 (1.87–11.42) *** | 3.32 (1.28–8.59) * | 4.27 (1.55–11.77) ** | 3.07 (1.17–8.07) * |
PPARγ rs1151999 GG, GT | 2.83 (0.86–9.09) | |||
PPARGC1A rs2946385 GG | 2.18 (1.06–4.50) * | |||
PPARGC1A rs10020457 GA, AA | 2.95 (1.15–7.54) * | |||
PPARγ/PPARGC1A rs1151999/rs2946385 GG/GG | 2.41 (1.17–4.99) * | 3.03 (1.01–9.11) * | ||
PPARγ/PPARGC1A rs1151999/rs10020457 GT/GA | 3.43 (1.29–9.08) * | 5.12 (0.89–29.57) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.S.; Kim, J.W.; Yee, J.; Kim, S.J.; Chung, J.E.; Gwak, H.S. Interactive Associations between PPARγ and PPARGC1A and Bisphosphonate-Related Osteonecrosis of the Jaw in Patients with Osteoporosis. Pharmaceuticals 2023, 16, 1035. https://doi.org/10.3390/ph16071035
Kim JS, Kim JW, Yee J, Kim SJ, Chung JE, Gwak HS. Interactive Associations between PPARγ and PPARGC1A and Bisphosphonate-Related Osteonecrosis of the Jaw in Patients with Osteoporosis. Pharmaceuticals. 2023; 16(7):1035. https://doi.org/10.3390/ph16071035
Chicago/Turabian StyleKim, Jung Sun, Jin Woo Kim, Jeong Yee, Sun Jong Kim, Jee Eun Chung, and Hye Sun Gwak. 2023. "Interactive Associations between PPARγ and PPARGC1A and Bisphosphonate-Related Osteonecrosis of the Jaw in Patients with Osteoporosis" Pharmaceuticals 16, no. 7: 1035. https://doi.org/10.3390/ph16071035
APA StyleKim, J. S., Kim, J. W., Yee, J., Kim, S. J., Chung, J. E., & Gwak, H. S. (2023). Interactive Associations between PPARγ and PPARGC1A and Bisphosphonate-Related Osteonecrosis of the Jaw in Patients with Osteoporosis. Pharmaceuticals, 16(7), 1035. https://doi.org/10.3390/ph16071035