Photodynamic Antimicrobial Activity of a Novel 5,10,15,20-Tetrakis (4-Ethylphenyl) Porphyrin against Clinically Important Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Porphyrin Structural Characterization via UV-Vis
2.2. FTIR Spectra
2.3. Fluorescence Quantum Yield
2.4. Singlet-Oxygen Quantum Yield
2.5. Photodynamic Antimicrobial Effect
3. Materials and Methods
3.1. Synthesis and Characterization of Porphyrins
3.2. Photophysical Properties
3.3. Strain and Growth Conditions
3.4. Photodynamic Antimicrobial Therapy
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genevieve, L.; Limaye, A. Infections in Transplant Patients. Med. Clin. N. Am. 2013, 97, 581–600. [Google Scholar] [CrossRef]
- Hou, J.; Long, X.; Wang, X.; Li, L.; Mao, D.; Luo, Y.; Ren, H. Global Trend of Antimicrobial Resistance in Common Bacterial Pathogens in Response to Antibiotic Consumption. J. Hazard. Mater. 2023, 442, 130042. [Google Scholar] [CrossRef] [PubMed]
- Juan-Ignacio, A. Resistencia bacteriana a los antibióticos: Una crisis global. Enferm. Infecc. Microbiol. Clin. 2015, 33, 692–699. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, W.E.; Yang, Q. Clinical Perspective of Antimicrobial Resistance in Bacteria. Infect. Drug Resist. 2022, 15, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Pérez, N.; Pavas, N.; Rodríguez, I.E. Resistencia de Staphylococcus aureus a Los Antibióticos En Un Hospital de La Orinoquia Colombiana. Infectio 2010, 14, 167–173. Available online: http://www.scielo.org.co/pdf/inf/v14n3/v14n3a03.pdf (accessed on 15 April 2023). [CrossRef]
- Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial Resistance: Prevalence, Economic Burden, Mechanisms of Resistance and Strategies to Overcome. Eur. J. Pharm. Sci. 2022, 170, 106103. [Google Scholar] [CrossRef]
- Boscencu, R.; Radulea, N.; Manda, G.; Ferreira, I.; Petre, R.; Lupuliasa, D.; Burloiu, A.; Mihai, D.; Vieira, L. Porphyrin Macrocycles: General Properties and Theranostic Potential. Molecules 2023, 28, 1149. [Google Scholar] [CrossRef]
- Seeger, M.G.; Ries, A.S.; Gressler, L.T.; Botton, S.A.; Iglesias, B.A.; Cargnelutti, J.F. In vitro Antimicrobial Photodynamic Therapy Using Tetra-Cationic Porphyrins against Multidrug-Resistant Bacteria Isolated from Canine Otitis. Photodiagnosis Photodyn. Ther. 2020, 32, 101982. [Google Scholar] [CrossRef]
- Sobotta, L.; Skupin-Mrugalska, P.; Piskorz, J.; Mielcarek, J. Porphyrinoid Photosensitizers Mediated Photodynamic Inactivation against Bacteria. Eur. J. Med. Chem. 2019, 175, 72–106. [Google Scholar] [CrossRef]
- Li, H.; Xiao, W.; Tian, Z.; Liu, Z.; Shi, L.; Wang, Y.; Liu, Y.; Liu, Y. Reaction Mechanism of Nanomedicine Based on Porphyrin Skeleton and Its Application Prospects. Photodiagnosis Photodyn. Ther. 2023, 41, 103236. [Google Scholar] [CrossRef]
- Kawauchi, S.; Morimoto, Y.; Sato, S.; Arai, T.; Seguchi, K.; Asanuma, H.; Kikuchi, M. Differences between Cytotoxicity in Photodynamic Therapy Using a Pulsed Laser and a Continuous Wave Laser: Study of Oxygen Consumption and Photobleaching. Lasers Med. Sci. 2004, 18, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Hajim, K.I.; Salih, D.S.; Rassam, Y.Z. Laser Light Combined with a Photosensitizer May Eliminate Methicillin-Resistant Strains of Staphylococcus aureus. Lasers Med. Sci. 2010, 25, 743–748. [Google Scholar] [CrossRef]
- Ding, L.G.; Wang, S.; Yao, B.J.; Li, F.; Li, Y.A.; Zhao, G.Y.; Dong, Y. Bin Synergistic Antibacterial and Anti-Inflammatory Effects of a Drug-Loaded Self-Standing Porphyrin-COF Membrane for Efficient Skin Wound Healing. Adv. Healthc. Mater. 2021, 10, 2001821. [Google Scholar] [CrossRef]
- Zhang, Q.; He, J.; Yu, W.; Li, Y.; Liu, Z.; Zhou, B.; Liu, Y. A Promising Anticancer Drug: A Photosensitizer Based on the Porphyrin Skeleton. RSC Med. Chem. 2020, 11, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Gourlot, C.; Gosset, A.; Glattard, E.; Aisenbrey, C.; Rangasamy, S.; Rabineau, M.; Ouk, T.-S.; Sol, V.; Lavalle, P.; Gourlaouen, C.; et al. Antibacterial Photodynamic Therapy in the Near-Infrared Region with a Targeting Antimicrobial Peptide Connected to a π-Extended Porphyrin. ACS Infect. Dis. 2022, 8, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Tasli, H.; Akbiyik, A.; Alptuzun, V.; Parlar, S. Antibacterial Activity of Porphyrin Derivatives against Multidrug-Resistant Bacteria. Pak. J. Pharm. Sci. 2019, 32, 2369–2373. [Google Scholar]
- Lavi, A.; Weitman, H.; Holmes, R.; Smith, K.; Ehrenberg, B. The Depth of Porphyrin in a Membrane and the Membrane’s Physical Properties Affect the Photosensitizing Efficiency. Biophys. J. 2002, 82, 2101–2110. [Google Scholar] [CrossRef] [Green Version]
- Park, J.M.; Hong, K.I.; Lee, H.; Jang, W.D. Bioinspired Applications of Porphyrin Derivatives. Acc. Chem. Res. 2021, 54, 2249–2260. [Google Scholar] [CrossRef]
- Breitenbach, T.; Kuimova, M.; Gbur, P.; Hatz, S.; Bitsch, N.; Pedersen, B.; Lambert, J.; Poulsen, L.; Ogilby, P. Photosensitized production of singlet oxygen: Spatially-resolved optical studies in single cells. J. Photochem. Photobiol. Sci. 2009, 8, 442–452. [Google Scholar] [CrossRef]
- Nishida, K.; Tojo, T.; Kondo, T.; Yuasa, M. Evaluation of the correlation between porphyrin accumulation in cancer cells and functional positions for application as a drug carrier. Sci. Rep. 2021, 11, 2046. [Google Scholar] [CrossRef]
- Rojkiewicz, M.; Kus, P.; Kozub, P.; Kempa, M. The synthesis of new potential photosensitizers [1]. Part 2. Tetrakis-(hydroxyphenyl)porphyrins with long alkyl chain in the molecule. Dyes Pigm. 2013, 99, 627–635. [Google Scholar] [CrossRef]
- Nikolaou, V.; Charisiadis, A.; Stangel, C.; Charalambidis, G.; Coutsolelos, A.G. Porphyrinoid–Fullerene Hybrids as Candidates in Artificial Photosynthetic Schemes. C 2019, 5, e57. [Google Scholar] [CrossRef] [Green Version]
- Dias, L.D.; Rodrigues, F.M.S.; Calvete, M.J.F.; Carabineiro, S.A.C.; Scherer, M.D.; Caires, A.R.L.; Buijnsters, J.G.; Figueiredo, J.L.; Bagnato, V.S.; Pereira, M.M. Porphyrin–Nanodiamond Hybrid Materials—Active, Stable and Reusable Cyclohexene Oxidation Catalysts. Catalysts 2020, 10, 1402. [Google Scholar] [CrossRef]
- Liang, B.; Zhao, J.; Wang, J.; Li, Y.; Han, B.; Li, J.; Ding, X.; Xie, Z.; Wang, H.; Zhou, S. Nonlinear Optical Properties of Porphyrin-Based Covalent Organic Frameworks Determined by Steric-Orientation of Conjugation. J. Mater. Chem. C 2023, 11, 3354–3359. [Google Scholar] [CrossRef]
- Figueira, F.; Tomé, J.P.C.; Paz, F.A.A. Porphyrin NanoMetal-Organic Frameworks as Cancer Theranostic Agents. Molecules 2022, 27, e3111. [Google Scholar] [CrossRef]
- Shabangu, S.M.; Babu, B.; Soy, R.C.; Oyim, J.; Amuhaya, E.; Nyokong, T. Susceptibility of Staphylococcus aureus to Porphyrin-Silver Nanoparticle Mediated. Photodynamic Antimicrobial Chemotherapy. J. Lumin. 2020, 222, 117158. [Google Scholar] [CrossRef]
- Espitia-Almeida, F.; Díaz-Uribe, C.; Vallejo, W.; Gómez-Camargo, D.; Romero-Bohorquez, A.R.; Schott, E.; Zarate, X. Synthesis and Characterization of 5,10,15,20-Tetrakis(4-ethylphenyl)Porphyrin and (Zn2+, Mn2+, Sn2+, Ni2+, Al3+, V3+)-Derivatives: Photophysical and DFT Study. ChemistrySelect 2019, 4, 6290–6294. [Google Scholar] [CrossRef]
- Ksenofontov, A.; Stupikova, S.; Bocharov, P.; Lukanov, M.; Ksenofontova, K.; Khodov, I.; Antina, E. Novel fluorescent sensors based on zinc (II) bis (dipyrromethenate) s for furosemide detection in organic media. J. Photochem. Photobiol. A Chem. 2019, 382, 111899. [Google Scholar] [CrossRef]
- Imran, M.; Ramzan, M.; Qureshi, A.; Khan, M.; Tarip, M. Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging. Biosensors 2018, 8, 9521. [Google Scholar] [CrossRef] [Green Version]
- Calvete, M.; Yang, G.; Hanack, M. Porphyrins and phthalocyanines as materials for optical limiting. Synth. Met. 2004, 141, 231–243. [Google Scholar] [CrossRef]
- Quintana, L.; Prates, A.; Marquezan, P.; Vargas, T.; Almeida, B.; Vianna, R.; Kolinski, A.; Rorato, M. Antimicrobial activity and safety applications of meso-tetra(4-pyridyl)platinum(II)porphyrin. Microb. Pathog. 2018, 128, 47. [Google Scholar] [CrossRef]
- Espitia-Almeida, F.; Díaz-Uribe, C.; Vallejo, W.; Peña, O.; Gómez-Camargo, D.; Romero-Bohórquez, A.R.; Zarate, X.; Schott, E. Photophysical characterization and in vitro anti-leishmanial effect of 5,10,15,20-tetrakis(4-fluorophenyl) porphyrin and the metal (Zn(II), Sn(IV), Mn(III) and V(IV)) derivatives. Biometals 2022, 35, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Espitia-Almeida, F.; Díaz-Uribe, C.; Vallejo, W.; Gómez-Camargo, D.; Romero-Bohórquez, A.R.; Zarate, X.; Schott, E. Photodynamic effect of 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin and (Zn2+ and Sn4+) derivatives against Leishmania spp. in the promastigote stage: Experimental and DFT study. Chem. Pap. 2021, 75, 4817–4829. [Google Scholar] [CrossRef]
- Espitia-Almeida, F.; Diaz-Uribe, C.; Vallejo, W.; Gómez-Camargo, D.; Bohórquez, A.R.R.; Linares-Flores, C. Photophysical study and in vitro approach against Leishmania panamensis of dicloro-5,10,15,20-tetrakis(4-bromophenyl)porphyrinato Sn(IV). F1000Research 2021, 10, 379. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.L.; Bünzli, J.C.G.; Tanner, P.A. Quantum Yield and Brightness. J. Lumin. 2020, 224, 117256. [Google Scholar] [CrossRef]
- Espitia-Almeida, F.; Díaz-Uribe, C.; Vallejo, W.; Gómez-Camargo, D.; Bohórquez, A.R.R. In vitro Anti-Leishmanial Effect of Metallic Meso-Substituted Porphyrin Derivatives against Leishmania Braziliensis and Leishmania Panamensis Promastigotes Properties. Molecules 2020, 25, 1887. [Google Scholar] [CrossRef] [Green Version]
- Ooi, N.; Miller, k.; Hobbs, J.; Rhys-Williams, W.; Love, W.; Chopra, I. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J. Antimicrob. Chemother. 2009, 64, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Musolino, S.; Shatila, F.; Tieman, G.; Masarsky, A.; Thibodeau, M.; Wulft, E.; Buckey, H. Light-Induced Anti-Bacterial Effect Against Staphylococcus aureus of Porphyrin Covalently Bonded to a Polyethylene Terephthalate Surface. ACS Omega 2022, 7, 29517–29525. Available online: http://pubs.acs.org/journal/acsodf (accessed on 15 April 2023). [CrossRef]
- Sułek, A.; Pucelik, B.; Kobielusz, M.; Barzowska, A.; Dąbrowski, J.M. Photodynamic Inactivation of Bacteria with Porphyrin Derivatives: Effect of Charge, Lipophilicity, Ros Generation, and Cellular Uptake on Their Biological Activity in vitro. Int. J. Mol. Sci. 2020, 21, 8716. [Google Scholar] [CrossRef]
- Amos-Tautua, B.M.; Songca, S.P.; Oluwafemi, O.S. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules 2019, 24, e2456. [Google Scholar] [CrossRef] [Green Version]
- Dulon, M.; Haamann, F.; Peters, C.; Schablon, A.; Nienhaus, A. MRSA prevalence in European healthcare settings: A review. BMC Infect. Dis. 2001, 11, 138. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.P.V.; Ortega, M.H.D.; Garzón, L.I.B.; Vargas, S.M.R.; Iguarán, D.E.H.; Botero, M.V.V.; Restrepo, C.G.R.; Castro, A.L.L. Tendencias de los fenotipos de resistencia bacteriana en hospitales públicos y privados de alta complejidad de Colombia. Rev. Panam. Salud Pública 2011, 30, 627. Available online: https://www.scielosp.org/article/rpsp/2011.v30n6/627-633/ (accessed on 15 April 2023). [CrossRef] [PubMed] [Green Version]
- Banfi, S.; Caruso, E.; Buccafurni, L.; Battini, V.; Zazzaron, S.; Barbieri, P.; Orlandi, V. Antibacterial activity of tetraaryl-porphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria. J. Photochem. Photobiol. B 2006, 85, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Ergaieg, K.; Chevanne, M.; Cillard, J.; Seux, R. Involvement of both Type I and Type II mechanisms in Gram-positive and Gram-negative bacteria photosensitization by a meso-substituted cationic porphyrin. Sol. Energy 2008, 82, 1107–1117. [Google Scholar] [CrossRef]
- Alves, E.; Costa, L.; Carvalho, C.; Tomé, J.; Faustino, M.; Neves, M.; Tomé, A.; Cavaleiro, J.; Cunha, A.; Almeida, A. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol. 2009, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skovsen, E.; Snyder, J.; Lambert, J.; Ogilby, P.R. Lifetime and Diffusion of Singlet Oxygen in a Cell. J. Phys. Chem. B 2005, 109, 8570–8573. [Google Scholar] [CrossRef]
- Takiguchi, A.; Sakakibara, E.; Sugimoto, H.; Shoji, O.; Shinokubo, H. A Heme-Acquisition Protein Reconstructed with a Cobalt 5-Oxaporphyrinium Cation and Its Growth-Inhibition Activity Toward Multidrug-Resistant Pseudomonas aeruginosa. Angew. Chem. Int. Ed. 2022, 61, e202112456. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Hasan, T. Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 2004, 3, 436–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espitia-Almeida, F. Evaluación Fototóxica In Vitro de Fotosensibilizadores Tipo Porfirina y Metaloporfirina Frente a Parásitos del Género Leishmania. Ph.D. Thesis, Repositorio Universidad del Atlántico, Barranquilla, Colombia, 2019. Available online: https://www.researchgate.net/publication/351638411_EVALUACION_FOTOTOXICA_in_vitro_DE_FOTOSENSIBILIZADORES_TIPO_PORFIRINA_Y_METALOPORFIRINA_FRENTE_A_PARASITOS_DEL_GENERO_Leishmania (accessed on 3 April 2023).
- Espitia-Almeida, F.; Meléndez, C.M.; Ochoa-Díaz, M.; Valle-Molinares, R.; Gutiérrez, M.; Gómez, D. Antimicrobial and degradative bacterial DNA effects of new 2-alkyl (tetrahydroquinoline-4-yl)formamide. PharmacologyOnline 2016, 1, 72. Available online: https://pharmacologyonline.silae.it/front/archives_2016_1 (accessed on 17 April 2023).
Bacterium | Treatment | MIC (µg/mL) | R2 |
---|---|---|---|
P. aeruginosa | Irradiation | 54.71 | 0.98 |
P. aeruginosa | No irradiation | 402.9 | 0.98 |
S. aureus | Irradiation | 67.68 | 0.92 |
S. aureus | No irradiation | 58.26 | 0.99 |
MRSA | Irradiation | 69.42 | 0.99 |
MRSA | No irradiation | 109.9 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espitia-Almeida, F.; Valle-Molinares, R.; Navarro Quiroz, E.; Pacheco-Londoño, L.C.; Galán-Freyle, N.J. Photodynamic Antimicrobial Activity of a Novel 5,10,15,20-Tetrakis (4-Ethylphenyl) Porphyrin against Clinically Important Bacteria. Pharmaceuticals 2023, 16, 1059. https://doi.org/10.3390/ph16081059
Espitia-Almeida F, Valle-Molinares R, Navarro Quiroz E, Pacheco-Londoño LC, Galán-Freyle NJ. Photodynamic Antimicrobial Activity of a Novel 5,10,15,20-Tetrakis (4-Ethylphenyl) Porphyrin against Clinically Important Bacteria. Pharmaceuticals. 2023; 16(8):1059. https://doi.org/10.3390/ph16081059
Chicago/Turabian StyleEspitia-Almeida, Fabián, Roger Valle-Molinares, Elkin Navarro Quiroz, Leonardo C. Pacheco-Londoño, and Nataly J. Galán-Freyle. 2023. "Photodynamic Antimicrobial Activity of a Novel 5,10,15,20-Tetrakis (4-Ethylphenyl) Porphyrin against Clinically Important Bacteria" Pharmaceuticals 16, no. 8: 1059. https://doi.org/10.3390/ph16081059
APA StyleEspitia-Almeida, F., Valle-Molinares, R., Navarro Quiroz, E., Pacheco-Londoño, L. C., & Galán-Freyle, N. J. (2023). Photodynamic Antimicrobial Activity of a Novel 5,10,15,20-Tetrakis (4-Ethylphenyl) Porphyrin against Clinically Important Bacteria. Pharmaceuticals, 16(8), 1059. https://doi.org/10.3390/ph16081059