Hot Melt Extrusion for Improving the Physicochemical Properties of Polydatin Derived from Polygoni cuspidati Extract; A Solution Recommended for Buccal Applications
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Preparation of Solid Dispersions
3.3.1. Preparation of Lyophilized Extract
3.3.2. Hot Melt Extrusion (HME)
3.3.3. Powder X-ray Diffraction (PXRD)
3.3.4. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)
3.3.5. Determination of Active Components Content
3.3.6. Dissolution/Release Studies
3.3.7. Permeability Studies
3.4. Tableting
3.4.1. Tablet Characterization
3.4.2. In Vitro Release Studies
3.4.3. Swelling Index
3.4.4. In Vitro Assessment of Mucin-Biopolymer Bioadhesive Bond Strength
3.4.5. Determination of the Residence Time
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Li, C.; Kwok, S.-T.; Zhang, Q.-W.; Chan, S.-W. A Review of the Pharmacological Effects of the Dried Root of Polygonum Cuspidatum (Hu Zhang) and Its Constituents. Evid.-Based Complement. Altern. Med. 2013, 2013, e208349. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-H.; Kim, S.-K.; Chang, K.-W.; Han, S.-K.; Yi, H.-K.; Jeon, J.-G. In Vitro Inhibitory Effects of Polygonum Cuspidatum on Bacterial Viability and Virulence Factors of Streptococcus Mutans and Streptococcus Sobrinus. Arch. Oral Biol. 2006, 51, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.; Kim, T.-J. Plant Extracts Inhibiting Biofilm Formation by Streptococcus Mutans without Antibiotic Activity. J. Korean Wood Sci. Technol. 2018, 46, 692–702. [Google Scholar] [CrossRef]
- Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int. J. Mol. Sci. 2019, 20, 1381. [Google Scholar] [CrossRef]
- Agrawal, A.M.; Dudhedia, M.S.; Zimny, E. Hot Melt Extrusion: Development of an Amorphous Solid Dispersion for an Insoluble Drug from Mini-Scale to Clinical Scale. AAPS PharmSciTech 2015, 17, 133–147. [Google Scholar] [CrossRef]
- Szafraniec-Szczęsny, J.; Antosik-Rogóż, A.; Kurek, M.; Gawlak, K.; Górska, A.; Peralta, S.; Knapik-Kowalczuk, J.; Kramarczyk, D.; Paluch, M.; Jachowicz, R. How Does the Addition of Kollidon®VA64 Inhibit the Recrystallization and Improve Ezetimibe Dissolution from Amorphous Solid Dispersions? Pharmaceutics 2021, 13, 147. [Google Scholar] [CrossRef]
- Biedrzycka, K.; Marcinkowska, A. The Use of Hot Melt Extrusion to Prepare a Solid Dispersion of Ibuprofen in a Polymer Matrix. Polymers 2023, 15, 2912. [Google Scholar] [CrossRef]
- Fan, W.; Zhu, W.; Zhang, X.; Xu, Y.; Di, L. Application of the Combination of Ball-Milling and Hot-Melt Extrusion in the Development of an Amorphous Solid Dispersion of a Poorly Water-Soluble Drug with High Melting Point. RSC Adv. 2019, 9, 22263–22273. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.-Y.; Di, L.-Q.; Fan, W.-L. Preparation of Solid Dispersion of Polygonum Cuspidatum Extract by Hot Melt Extrusion. Chin. Tradit. Herb. Drugs 2017, 48, 4865–4871. [Google Scholar] [CrossRef]
- Zhu, W.; Fan, W.; Zhang, X.; Gao, M. Sustained-Release Solid Dispersion of High-Melting-Point and Insoluble Resveratrol Prepared through Hot Melt Extrusion to Improve Its Solubility and Bioavailability. Molecules 2021, 26, 4982. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Y.; Li, S.; Lu, M. Improving Chemical Stability of Resveratrol in Hot Melt Extrusion Based on Formation of Eutectic with Nicotinamide. Int. J. Pharm. 2021, 607, 121042. [Google Scholar] [CrossRef]
- Du, Q.-H.; Peng, C.; Zhang, H. Polydatin: A Review of Pharmacology and Pharmacokinetics. Pharm. Biol. 2013, 51, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Hamid, A.; Faheem, H.I.; Rasul, A.; Baokbah, T.A.S.; Haris, M.; Yousaf, R.; Saleem, U.; Iqbal, S.; Alves, M.S.; et al. Uncovering the Anticancer Potential of Polydatin: A Mechanistic Insight. Molecules 2022, 27, 7175. [Google Scholar] [CrossRef] [PubMed]
- Kachrimanis, K.; Nikolakakis, I. Polymers as Formulation Excipients for Hot-Melt Extrusion Processing of Pharmaceuticals. In Handbook of Polymers for Pharmaceutical Technologies; Wiley Online Library: New York, NY, USA, 2015; Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119041412.ch5 (accessed on 4 January 2023).
- Paczkowska-Walendowska, M.; Szymańska, E.; Winnicka, K.; Szwajgier, D.; Baranowska-Wójcik, E.; Ruchała, M.A.; Simon, M.; Cielecka-Piontek, J. Cyclodextrin as Functional Carrier in Development of Mucoadhesive Tablets Containing Polygoni Cuspidati Extract with Potential for Dental Applications. Pharmaceutics 2021, 13, 1916. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Miklaszewski, A.; Cielecka-Piontek, J. Is It Possible to Improve the Bioavailability of Resveratrol and Polydatin Derived from Polygoni Cuspidati Radix as a Result of Preparing Electrospun Nanofibers Based on Polyvinylpyrrolidone/Cyclodextrin? Nutrients 2022, 14, 3897. [Google Scholar] [CrossRef]
- Maddineni, S.; Battu, S.K.; Morott, J.; Majumdar, S.; Murthy, S.N.; Repka, M.A. Influence of Process and Formulation Parameters on Dissolution and Stability Characteristics of Kollidon® VA 64 Hot-Melt Extrudates. AAPS PharmSciTech 2014, 16, 444–454. [Google Scholar] [CrossRef]
- Ardelean, F.; Tăculescu, E.; Păcurariu, C.; Antal, D.; Dehelean, C.; Toma, C.-C.; Dragan, S. Invasive Polygonum Cuspidatum: Physico-Chemical Analysis of a Plant Extract with Pharmaceutical Potential. Stud. Univ. Vasile Goldis Arad Ser. Stiintele Vietii 2016, 26, 415–421. [Google Scholar]
- Dong, L.; Mai, Y.; Liu, Q.; Zhang, W.; Yang, J. Mechanism and Improved Dissolution of Glycyrrhetinic Acid Solid Dispersion by Alkalizers. Pharmaceutics 2020, 12, 82. [Google Scholar] [CrossRef]
- Lan, Y.; Ali, S.; Langley, N. Characterization of Soluplus® by FTIR and Raman Spectroscopy. In Proceedings of the CRS 2010 Annual Conference, Portland, OR, USA, 10–14 July 2010. [Google Scholar] [CrossRef]
- Sav, A.; Desai, H.; Tarique, M.; Amin, P. Solubility and Dissolution Rate Enhancement of Curcumin Using Kollidon VA64 by Solid Dispersion Technique. Int. J. PharmTech Res. 2012, 4, 1055–1064. [Google Scholar]
- Strojewski, D.; Krupa, A. Kollidon® VA 64 and Soluplus® as Modern Polymeric Carriers for Amorphous Solid Dispersions. Polim. Med. 2022, 52, 19–29. [Google Scholar] [CrossRef]
- Lou, Y.; Yu, K.; Wu, X.; Wang, Z.; Cui, Y.; Bao, H.; Wang, J.; Hu, X.; Ji, Y.; Tang, G. Co-Crystals of Resveratrol and Polydatin with L-Proline: Crystal Structures, Dissolution Properties, and In Vitro Cytotoxicities. Molecules 2021, 26, 5722. [Google Scholar] [CrossRef]
- Grymonpré, W.; Verstraete, G.; Van Bockstal, P.J.; Van Renterghem, J.; Rombouts, P.; De Beer, T.; Remon, J.P.; Vervaet, C. In-Line Monitoring of Compaction Properties on a Rotary Tablet Press during Tablet Manufacturing of Hot-Melt Extruded Amorphous Solid Dispersions. Int. J. Pharm. 2017, 517, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, M.; Wang, W. Improvement of Dissolution and Tabletability of Carbamazepine Solid Dispersions with High Drug Loading Prepared by Hot-Melt Extrusion. Pharmazie 2019, 74, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Fu, Y.; Kao, W.J. Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Ullah, M.; Ullah, H.; Murtaza, G.; Mahmood, Q.; Hussain, I. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets. BioMed Res. Int. 2015, 2015, 870656. [Google Scholar] [CrossRef]
- Altamimi, M.A.; Neau, S.H. Investigation of the in Vitro Performance Difference of Drug-Soluplus® and Drug-PEG 6000 Dispersions When Prepared Using Spray Drying or Lyophilization. Saudi Pharm. J. 2017, 25, 419–439. [Google Scholar] [CrossRef]
- Agarwal, S.; Murthy, R.S.R. Effect of Different Polymer Concentration on Drug Release Rate and Physicochemical Properties of Mucoadhesive Gastroretentive Tablets. Indian J. Pharm. Sci. 2015, 77, 705–714. [Google Scholar] [CrossRef]
- Chen, X.; Yan, J.; Yu, S.; Wang, P. Formulation and In Vitro Release Kinetics of Mucoadhesive Blend Gels Containing Matrine for Buccal Administration. AAPS PharmSciTech 2018, 19, 470–480. [Google Scholar] [CrossRef]
- Pignatello, R.; Corsaro, R.; Bonaccorso, A.; Zingale, E.; Carbone, C.; Musumeci, T. Soluplus® Polymeric Nanomicelles Improve Solubility of BCS-Class II Drugs. Drug Deliv. Transl. Res. 2022, 12, 1991–2006. [Google Scholar] [CrossRef]
- Bartkowiak, A.; Rojewska, M.; Hyla, K.; Zembrzuska, J.; Prochaska, K. Surface and Swelling Properties of Mucoadhesive Blends and Their Ability to Release Fluconazole in a Mucin Environment. Colloids Surf. B Biointerfaces 2018, 172, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.W.; Flanner, H.H. Mathematical Comparison of Dissolution Profiles. Pharm. Technol. 1996, 20, 64–74. [Google Scholar]
- Tye, C.K.; Sun, C.C.; Amidon, G.E. Evaluation of the Effects of Tableting Speed on the Relationships between Compaction Pressure, Tablet Tensile Strength, and Tablet Solid Fraction. J. Pharm. Sci. 2005, 94, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Sousa Lobo, J.M. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
Sample | Lyophilized Extract | Kollidon® VA64 | Extract + Kollidon® VA64 Extrudate | Soluplus® | Extract + Soluplus® Extrudate |
---|---|---|---|---|---|
(1) Peak position [2θ] | - | 12.46 | 12.59 | 10.75 | 11.09 |
(2) Peak position [2θ] | 21.37 | 21.02 | 21.32 | 19.43 | 20.12 |
Matrix peak position displacement [2θ] | - | - | (1) 0.12 (2) 0.30 | - | (1) 0.34 (2) 1.47 |
Matrix peak position displacement [Å] | - | - | (1) −0.07 (2) −0.06 | - | (1) −0.24 (2) −0.16 |
Formulation | F1 | F2 | F3 | F4 |
---|---|---|---|---|
Residence time (min) | 210 ± 10 | >240 | 220 ± 10 | >240 |
Chemical Name | Trade Name | Composition of Extrudates | Processing Temperature | Screw Speed | Extruder Torque |
---|---|---|---|---|---|
Polyvinylpyrrolidone- co-vinyl acetate | Kollidon® VA64 | Extract 15% Kollidon® VA64 75% Glycerine 10% as a plasticizer | 130 °C | 150 rpm | 0.50 Nm |
Polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer | Soluplus® | Extract 15% Soluplus® 85% | 130 °C | 50 rpm | 1.12 Nm |
Polyvinyl alcohol–polyethylene glycol copolymer | Kollicoat IR® | Extract 15% Kollicoat IR® 85% | 160 °C | 150 rpm | 0.73 Nm |
Formulation 1 (F1) | Formulation 2 (F2) | Formulation 3 (F3) | Formulation 4 (F4) | |
---|---|---|---|---|
Content (mg) per 1 tablet | ||||
Lyophilized extract (15%)/Kollidon® VA64-extrudate | 100.0 | |||
Lyophilized extract/Soluplus®-extrudate | 100.0 | |||
Lyophilized extract | 15.0 | 15.0 | ||
Kollidon® VA64 | 85.0 | |||
Soluplus® | 85.0 | |||
HPMC 15.000 cP (20%) | 20.0 | 20.0 | 20.0 | 20.0 |
Stearate magnesium | 1.0 | 1.0 | 1.0 | 1.0 |
Total | 121.0 | 121.0 | 121.0 | 121.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paczkowska-Walendowska, M.; Tajber, L.; Miklaszewski, A.; Cielecka-Piontek, J. Hot Melt Extrusion for Improving the Physicochemical Properties of Polydatin Derived from Polygoni cuspidati Extract; A Solution Recommended for Buccal Applications. Pharmaceuticals 2023, 16, 1226. https://doi.org/10.3390/ph16091226
Paczkowska-Walendowska M, Tajber L, Miklaszewski A, Cielecka-Piontek J. Hot Melt Extrusion for Improving the Physicochemical Properties of Polydatin Derived from Polygoni cuspidati Extract; A Solution Recommended for Buccal Applications. Pharmaceuticals. 2023; 16(9):1226. https://doi.org/10.3390/ph16091226
Chicago/Turabian StylePaczkowska-Walendowska, Magdalena, Lidia Tajber, Andrzej Miklaszewski, and Judyta Cielecka-Piontek. 2023. "Hot Melt Extrusion for Improving the Physicochemical Properties of Polydatin Derived from Polygoni cuspidati Extract; A Solution Recommended for Buccal Applications" Pharmaceuticals 16, no. 9: 1226. https://doi.org/10.3390/ph16091226
APA StylePaczkowska-Walendowska, M., Tajber, L., Miklaszewski, A., & Cielecka-Piontek, J. (2023). Hot Melt Extrusion for Improving the Physicochemical Properties of Polydatin Derived from Polygoni cuspidati Extract; A Solution Recommended for Buccal Applications. Pharmaceuticals, 16(9), 1226. https://doi.org/10.3390/ph16091226