Ginsenoside Rb1 Reduces Hyper-Vasoconstriction Induced by High Glucose and Endothelial Dysfunction in Rat Aorta
Abstract
:1. Introduction
2. Results
2.1. Effects of HG on Vasoconstriction in Rat Aorta
2.2. Effects of Rb1 on Hyper-Vasoconstriction Induced by HG and ED in Rat Aorta
2.3. Effect of K+ Channel Blockers on Rb1-Treated Hyper-Vasoconstriction Induced by HG and ED in Rat Aorta
2.4. Effect of SR Ca2+ Release and Extracellular Ca2+ Influx on Rb1-Treated Hyper-Vasoconstriction Induced by HG and ED in Rat Aorta
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Preparation of Aortic Rings
4.3. Involvement of K+ Channel in Vasoconstriction
4.4. Measurement of SR Ca2+ Release-Induced Vasoconstriction
4.5. Measurement of Extracellular Ca2+ Influx-Induced Vasoconstriction
4.6. Chemicals
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richardson, A.; Park, W.G. Acute pancreatitis and diabetes mellitus: A review. Korean J. Intern. Med. 2021, 36, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Dumnicka, P.; Maduzia, D.; Ceranowicz, P.; Olszanecki, R.; Drożdż, R.; Kuśnierz-Cabala, B. The interplay between inflammation, coagulation and endothelial injury in the early phase of acute pancreatitis: Clinical implications. Int. J. Mol. Sci. 2017, 18, 354. [Google Scholar] [CrossRef]
- Sinha, A.; Vyavahare, N.R. High-glucose levels and elastin degradation products accelerate osteogenesis in vascular smooth muscle cells. Diab. Vasc. Dis. Res. 2013, 10, 410–419. [Google Scholar] [CrossRef]
- Carrillo-Sepulveda, M.A.; Maddie, N.; Johnson, C.M.; Burke, C.; Lutz, O.; Yakoub, B.; Kramer, B.; Persand, D. Vascular hyperacetylation is associated with vascular smooth muscle dysfunction in a rat model of non-obese type 2 diabetes. Mol. Med. 2022, 28, 30. [Google Scholar] [CrossRef]
- Meza, C.A.; La Favor, J.D.; Kim, D.-H.; Hickner, R.C. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int. J. Mol. Sci. 2019, 20, 3775. [Google Scholar] [CrossRef]
- Mah, E.; Noh, S.K.; Ballard, K.D.; Matos, M.E.; Volek, J.S.; Bruno, R.S. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine: Arginine. J. Nutr. 2011, 141, 1961–1968. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 2020, 370, m2297. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Zhong, C.; Pu, Y.; Yang, Z.; Bao, Y. Structure characteristics and immunomodulatory activities of a polysaccharide RGRP-1b from radix ginseng Rubra. Int. J. Biol. Macromol. 2021, 189, 980–992. [Google Scholar] [CrossRef]
- Lee, J.H.; Min, D.S.; Lee, C.W.; Song, K.H.; Kim, Y.S.; Kim, H.P. Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: Inhibition of the MAPKs/NF-κB/c-Fos pathways. J. Ginseng Res. 2018, 42, 476–484. [Google Scholar] [CrossRef]
- Lee, S.M.; Bae, B.S.; Park, H.W.; Ahn, N.G.; Cho, B.G.; Cho, Y.L.; Kwak, Y.S. Characterization of korean red ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J. Ginseng Res. 2015, 39, 384–391. [Google Scholar] [CrossRef]
- Yu, S.; Zhou, X.; Li, F.; Xu, C.; Zheng, F.; Li, J.; Zhao, H.; Dai, Y.; Liu, S.; Feng, Y. Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Sci. Rep. 2017, 7, 138. [Google Scholar] [CrossRef]
- Cheng, Y.; Shen, L.-h.; Zhang, J.-t. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol. Sin. 2005, 26, 143–149. [Google Scholar] [CrossRef]
- Xu, M.; Ma, Q.; Fan, C.; Chen, X.; Zhang, H.; Tang, M. Ginsenosides Rb1 and Rg1 protect primary cultured astrocytes against oxygen-glucose deprivation/reoxygenation-induced injury via improving mitochondrial function. Int. J. Mol. Sci. 2019, 20, 6086. [Google Scholar] [CrossRef]
- Lin, Z.; Xie, R.; Zhong, C.; Huang, J.; Shi, P.; Yao, H. Recent progress (2015–2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer. J. Ginseng Res. 2022, 46, 39–53. [Google Scholar] [CrossRef]
- Zhou, R.; He, D.; Zhang, H.; Xie, J.; Zhang, S.; Tian, X.; Zeng, H.; Qin, Y.; Huang, L. Ginsenoside Rb1 protects against diabetes-associated metabolic disorders in Kkay mice by reshaping gut microbiota and fecal metabolic profiles. J. Ethnopharmacol. 2023, 303, 115997. [Google Scholar] [CrossRef]
- Choi, K.T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 2008, 29, 1109–1118. [Google Scholar] [CrossRef]
- Mohanan, P.; Subramaniyam, S.; Mathiyalagan, R.; Yang, D.C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res. 2018, 42, 123–132. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, X.; Guo, M.; Guo, R.; Wang, L.; Zhang, Z.; Lin, Z.; Dong, M.; Dai, H.; Ji, X.; et al. Ginsenoside Rb1 ameliorates CKD-associated vascular calcification by inhibiting the Wnt/β-catenin pathway. J. Cell. Mol. Med. 2019, 23, 7088–7098. [Google Scholar] [CrossRef]
- Wang, R.X.; He, R.L.; Jiao, H.X.; Dai, M.; Mu, Y.P.; Hu, Y.; Wu, Z.J.; Sham, J.S.K.; Lin, M.J. Ginsenoside Rb1 attenuates agonist-induced contractile response via inhibition of store-operated calcium entry in pulmonary arteries of normal and pulmonary hypertensive rats. Cell. Physiol. Biochem. 2015, 35, 1467–1481. [Google Scholar] [CrossRef]
- Wang, R.-X.; He, R.-L.; Jiao, H.-X.; Zhang, R.-T.; Guo, J.-Y.; Liu, X.-R.; Gui, L.-X.; Lin, M.-J.; Wu, Z.-J. Preventive treatment with ginsenoside Rb1 ameliorates monocrotaline-induced pulmonary arterial hypertension in rats and involves store-operated calcium entry inhibition. Pharm. Biol. 2020, 58, 1055–1063. [Google Scholar] [CrossRef]
- Turpin, B.P.; Duckworth, W.C.; Solomon, S.S. Simulated hyperglycemic hyperosmolar syndrome. Impaired insulin and epinephrine effects upon lipolysis in the isolated rat fat cell. J. Clin. Investig. 1979, 63, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Shor, D.; Harrison, S.; Anacker, K.; Wiley, J. Acute pancreatitis as a sequela of hypertriglyceridemia due to hyperosmolar hyperglycemic syndrome. Cureus 2021, 13, e19640. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H.C. Endothelial dysfunction and vascular disease—A 30th anniversary update. Acta Physiol. 2017, 219, 22–96. [Google Scholar] [CrossRef]
- Xu, J.; Yang, H.; Yang, L.; Wang, Z.; Qin, X.; Zhou, J.; Dong, L.; Li, J.; Zhu, M.; Zhang, X.; et al. Acute glucose influx-induced mitochondrial hyperpolarization inactivates myosin phosphatase as a novel mechanism of vascular smooth muscle contraction. Cell Death Dis. 2021, 12, 176. [Google Scholar] [CrossRef]
- Han, A.Y.; Ha, S.M.; Shin, Y.K.; Seol, G.H. Ginsenoside Rg-1 prevents elevated cytosolic Ca2+ via store-operated Ca2+ entry in high-glucose–stimulated vascular endothelial and smooth muscle cells. BMC Complement. Med. Ther. 2022, 22, 166. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Q.; Lou, J. Blood glucose-related indicators are associated with in-hospital mortality in critically ill patients with acute pancreatitis. Sci. Rep. 2021, 11, 15351. [Google Scholar] [CrossRef]
- Zhang, X.-J.; He, C.; Tian, K.; Li, P.; Su, H.; Wan, J.-B. Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways. Vascul. Pharmacol. 2015, 73, 86–95. [Google Scholar] [CrossRef]
- Wang, N.; Wan, J.-B.; Chan, S.-W.; Deng, Y.-H.; Yu, N.; Zhang, Q.-W.; Wang, Y.-T.; Lee, S.M.-Y. Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion. Chin. Med. 2011, 6, 37. [Google Scholar] [CrossRef]
- Kinoshita, H.; Azma, T.; Nakahata, K.; Iranami, H.; Kimoto, Y.; Dojo, M.; Yuge, O.; Hatano, Y. Inhibitory effect of high concentration of glucose on relaxations to activation of ATP-sensitive K+ channels in human omental artery. Arter. Thromb Vasc. Biol. 2004, 24, 2290–2295. [Google Scholar] [CrossRef]
- Flechtner, I.; De Lonlay, P.; Polak, M. Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: Therapeutic consequences. Diabetes Metab. 2006, 32, 569–580. [Google Scholar] [CrossRef]
- Aguilar-Bryan, L.; John, P.; Clement, I.; Gonzalez, G.; Kunjilwar, K.; Babenko, A.; Bryan, J. Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 1998, 78, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.J.; Li, J.L.; Zhou, Q.M.; Cai, F.F.; Chen, X.L.; Lu, Y.Y.; Zhao, M.; Su, S.B. Ginsenoside Rb1 pretreatment attenuates myocardial ischemia by reducing calcium/calmodulin-dependent protein kinase II-medicated calcium release. World J. Trad. Chin. Med. 2020, 6, 284–294. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Chen, L.M.; Zhang, J.; Pan, X.D.; Zhu, Y.G.; Ye, Q.Y.; Huang, H.P.; Chen, X.C. Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels in cultured rat hippocampal neurons. Acta Pharmacol. Sin. 2012, 33, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, P.V.; Speckmann, T.; Lynn, F.C. Friend and foe: β-cell Ca2+ signaling and the development of diabetes. Mol. Metab. 2019, 21, 1–12. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Z.Y.; Lin, C.C.; Li, H.; Sun, J.H.; Chen, J.G.; Wang, C.M. Schisantherin A causes endothelium-dependent and -independent vasorelaxation in isolated rat thoracic aorta. Life Sci. 2020, 245, 117357. [Google Scholar] [CrossRef]
- Peng, H.; Xing, Y.F.; Ye, Z.C.; Li, C.M.; Luo, P.L.; Li, M.; Lou, T.Q. High glucose induces activation of the local renin-angiotensin system in glomerular endothelial cells. Mol. Med. Rep. 2014, 9, 450–456. [Google Scholar] [CrossRef]
- Cosentino, F.; Eto, M.; Paolis, P.D.; Loo, B.v.d.; Bachschmid, M.; Ullrich, V.; Kouroedov, A.; Gatti, C.D.; Joch, H.; Volpe, M.; et al. High Glucose Causes Upregulation of Cyclooxygenase-2 and Alters Prostanoid Profile in Human Endothelial Cells. Circulation 2003, 107, 1017–1023. [Google Scholar] [CrossRef]
- Padilla, J.; Carpenter, A.J.; Das, N.A.; Kandikattu, H.K.; López-Ongil, S.; Martinez-Lemus, L.A.; Siebenlist, U.; DeMarco, V.G.; Chandrasekar, B. TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H52–H64. [Google Scholar] [CrossRef]
- Zhou, P.; Xie, W.; He, S.; Sun, Y.; Meng, X.; Sun, G.; Sun, X. Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis. Cells 2019, 8, 204. [Google Scholar] [CrossRef]
- Zhuang, Y.; Chan, D.K.; Haugrud, A.B.; Miskimins, W.K. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS ONE 2014, 9, e108444. [Google Scholar] [CrossRef]
- Wong, N.L.; Achike, F.I. Gender discrimination in the influence of hyperglycemia and hyperosmolarity on rat aortic tissue responses to insulin. Regul. Pept. 2010, 163, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-S.; Lin, Y.-S.; Chio, L.-M.; Liang, W.-Z. Evaluation of the mycotoxin patulin on cytotoxicity and oxidative stress in human glioblastoma cells and investigation of protective effect of the antioxidant N-acetylcysteine (NAC). Toxicon 2023, 221, 106957. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Shin, Y.K.; Kim, U.; Seol, G.H. Ginsenoside Rb1 Reduces Hyper-Vasoconstriction Induced by High Glucose and Endothelial Dysfunction in Rat Aorta. Pharmaceuticals 2023, 16, 1238. https://doi.org/10.3390/ph16091238
Park J, Shin YK, Kim U, Seol GH. Ginsenoside Rb1 Reduces Hyper-Vasoconstriction Induced by High Glucose and Endothelial Dysfunction in Rat Aorta. Pharmaceuticals. 2023; 16(9):1238. https://doi.org/10.3390/ph16091238
Chicago/Turabian StylePark, Jubin, You Kyoung Shin, Uihwan Kim, and Geun Hee Seol. 2023. "Ginsenoside Rb1 Reduces Hyper-Vasoconstriction Induced by High Glucose and Endothelial Dysfunction in Rat Aorta" Pharmaceuticals 16, no. 9: 1238. https://doi.org/10.3390/ph16091238
APA StylePark, J., Shin, Y. K., Kim, U., & Seol, G. H. (2023). Ginsenoside Rb1 Reduces Hyper-Vasoconstriction Induced by High Glucose and Endothelial Dysfunction in Rat Aorta. Pharmaceuticals, 16(9), 1238. https://doi.org/10.3390/ph16091238