Special Issue “Drug Candidates for the Treatment of Infectious Diseases”
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
- De Rycker, M.; Baragaña, B.; Duce, S.L.; Gilbert, I.H. Challenges and recent progress in drug discovery for tropical diseases. Nature 2018, 559, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Ma-Lauer, Y.; Lei, J.; Hilgenfeld, R.; von Brunn, A. Virus-host interactomes—Antiviral drug discovery. Curr. Opin. Virol. 2012, 2, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Prescott, T.A.K.; Hill, R.; Mas-Claret, E.; Gaya, E.; Burns, E. Fungal Drug Discovery for Chronic Disease: History, New Discoveries and New Approaches. Biomolecules 2023, 13, 986. [Google Scholar] [CrossRef]
- Lewis, K. The Science of Antibiotic Discovery. Cell 2020, 181, 29–45. [Google Scholar] [CrossRef]
- Huemer, M.; Mairpady Shambat, S.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [Google Scholar] [CrossRef]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Alipanah, N.; Jarlsberg, L.; Miller, C.; Linh, N.N.; Falzon, D.; Jaramillo, E.; Nahid, P. Adherence interventions and outcomes of tuberculosis treatment: A systematic review and meta-analysis of trials and observational studies. PLoS Med. 2018, 15, e1002595. [Google Scholar] [CrossRef]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Blakemore, D.C.; Castro, L.; Churcher, I.; Rees, D.C.; Thomas, A.W.; Wilson, D.M.; Wood, A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 2018, 10, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Herath, H.M.P.D.; Taki, A.C.; Rostami, A.; Jabbar, A.; Keiser, J.; Geary, T.G.; Gasser, R.B. Whole-organism phenotypic screening methods used in early-phase anthelmintic drug discovery. Biotechnol. Adv. 2022, 57, 107937. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, S.; Thomas, S.E.; Ochoa Montano, B.; Blundell, T.L. Structure-guided, target-based drug discovery—Exploiting genome information from HIV to mycobacterial infections. Postepy Biochem. 2016, 62, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, I.H. Drug discovery for neglected diseases: Molecular target-based and phenotypic approaches. J. Med. Chem. 2013, 56, 7719–7726. [Google Scholar] [CrossRef] [PubMed]
- Sykes, M.L.; Avery, V.M. Approaches to protozoan drug discovery: Phenotypic screening. J. Med. Chem. 2013, 56, 7727–7740. [Google Scholar] [CrossRef]
- Blay, V.; Tolani, B.; Ho, S.P.; Arkin, M.R. High-Throughput Screening: Today’s biochemical and cell-based approaches. Drug Discov. Today 2020, 25, 1807–1821. [Google Scholar] [CrossRef]
- Ejalonibu, M.A.; Ogundare, S.A.; Elrashedy, A.A.; Ejalonibu, M.A.; Lawal, M.M.; Mhlongo, N.N.; Kumalo, H.M. Drug Discovery for Mycobacterium tuberculosis Using Structure-Based Computer-Aided Drug Design Approach. Int. J. Mol. Sci. 2021, 22, 13259. [Google Scholar] [CrossRef] [PubMed]
- Boparai, J.K.; Sharma, P.K. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept. Lett. 2020, 27, 4–16. [Google Scholar] [CrossRef]
- Wang, C.; Hong, T.; Cui, P.; Wang, J.; Xia, J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv. Drug Deliv. Rev. 2021, 175, 113818. [Google Scholar] [CrossRef]
- De Cena, G.; Scavassa, B.; Conceição, K. In Silico Prediction of Anti-Infective and Cell-Penetrating Peptides from Thalassophryne nattereri Natterin Toxins. Pharmaceuticals 2022, 15, 1141. [Google Scholar] [CrossRef] [PubMed]
- Komatsuya, K.; Sakura, T.; Shiomi, K.; Ōmura, S.; Hikosaka, K.; Nozaki, T.; Kita, K.; Inaoka, D. Siccanin Is a Dual-Target Inhibitor of Plasmodium falciparum Mitochondrial Complex II and Complex III. Pharmaceuticals 2022, 15, 903. [Google Scholar] [CrossRef] [PubMed]
- Lagardère, P.; Mustière, R.; Amanzougaghene, N.; Hutter, S.; Franetich, J.; Azas, N.; Vanelle, P.; Verhaeghe, P.; Primas, N.; Mazier, D.; et al. 4-Substituted Thieno[3,2-d]pyrimidines as Dual-Stage Antiplasmodial Derivatives. Pharmaceuticals 2022, 15, 820. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.; Ahmad, A.; Maluf, S.; Moura, I.; Souza, G.; Guerra, G.; Barros, R.; Gazarini, M.; Aguiar, A.; Burtoloso, A.; et al. Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors. Pharmaceuticals 2022, 15, 814. [Google Scholar] [CrossRef] [PubMed]
- Argüello-García, R.; Calzada, F.; Chávez-Munguía, B.; Matus-Meza, A.; Bautista, E.; Barbosa, E.; Velazquez, C.; Hernández-Caballero, M.; Ordoñez-Razo, R.; Velázquez-Domínguez, J. Linearolactone Induces Necrotic-like Death in Giardia intestinalis Trophozoites: Prediction of a Likely Target. Pharmaceuticals 2022, 15, 809. [Google Scholar] [CrossRef] [PubMed]
- Imperador, C.; Scarim, C.; Bosquesi, P.; Lopes, J.; Cardinalli Neto, A.; Giarolla, J.; Ferreira, E.; dos Santos, J.; Chin, C. Resveratrol and Curcumin for Chagas Disease Treatment—A Systematic Review. Pharmaceuticals 2022, 15, 609. [Google Scholar] [CrossRef]
- Marchand, A.; Van Bree, J.; Taki, A.; Moyat, M.; Turcatti, G.; Chambon, M.; Smith, A.; Doolan, R.; Gasser, R.; Harris, N.; et al. Novel High-Throughput Fluorescence-Based Assay for the Identification of Nematocidal Compounds That Target the Blood-Feeding Pathway. Pharmaceuticals 2022, 15, 669. [Google Scholar] [CrossRef]
- Shanley, H.; Taki, A.; Byrne, J.; Jabbar, A.; Wells, T.; Samby, K.; Boag, P.; Nguyen, N.; Sleebs, B.; Gasser, R. A High-Throughput Phenotypic Screen of the ‘Pandemic Response Box’ Identifies a Quinoline Derivative with Significant Anthelmintic Activity. Pharmaceuticals 2022, 15, 257. [Google Scholar] [CrossRef]
- Assylbekova, A.; Zhanapiya, A.; Grzywa, R.; Sienczyk, M.; Schönbach, C.; Burster, T. Camostat Does Not Inhibit the Proteolytic Activity of Neutrophil Serine Proteases. Pharmaceuticals 2022, 15, 500. [Google Scholar] [CrossRef]
- Singh, A.; Arkin, I. Targeting Viral Ion Channels: A Promising Strategy to Curb SARS-CoV-2. Pharmaceuticals 2022, 15, 396. [Google Scholar] [CrossRef]
- Lopes, J.; Prokopczyk, I.; Gerlack, M.; Man Chin, C.; Santos, J. Design and Synthesis of Hybrid Compounds as Epigenetic Modifiers. Pharmaceuticals 2021, 14, 1308. [Google Scholar] [CrossRef]
- Spunde, K.; Vigante, B.; Dubova, U.; Sipola, A.; Timofejeva, I.; Zajakina, A.; Jansons, J.; Plotniece, A.; Pajuste, K.; Sobolev, A.; et al. Design and Synthesis of Hepatitis B Virus (HBV) Capsid Assembly Modulators and Evaluation of Their Activity in Mammalian Cell Model. Pharmaceuticals 2022, 15, 773. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Alves, D.; de Castro, R.; Perez-Castillo, Y.; de Sousa, D. Synthesis of Coumarin and Homoisoflavonoid Derivatives and Analogs: The Search for New Antifungal Agents. Pharmaceuticals 2022, 15, 712. [Google Scholar] [CrossRef]
- Buravchenko, G.; Maslov, D.; Alam, M.; Grammatikova, N.; Frolova, S.; Vatlin, A.; Tian, X.; Ivanov, I.; Bekker, O.; Kryakvin, M.; et al. Synthesis and Characterization of Novel 2-Acyl-3-trifluoromethylquinoxaline 1,4-Dioxides as Potential Antimicrobial Agents. Pharmaceuticals 2022, 15, 155. [Google Scholar] [CrossRef] [PubMed]
- Mingoia, M.; Conte, C.; Di Rienzo, A.; Dimmito, M.; Marinucci, L.; Magi, G.; Turkez, H.; Cufaro, M.; Del Boccio, P.; Di Stefano, A.; et al. Synthesis and Biological Evaluation of Novel Cinnamic Acid-Based Antimicrobials. Pharmaceuticals 2022, 15, 228. [Google Scholar] [CrossRef] [PubMed]
- Frolov, N.; Detusheva, E.; Fursova, N.; Ostashevskaya, I.; Vereshchagin, A. Microbiological Evaluation of Novel Bis-Quaternary Ammonium Compounds: Clinical Strains, Biofilms, and Resistance Study. Pharmaceuticals 2022, 15, 514. [Google Scholar] [CrossRef]
- Calzada, F.; Bautista, E.; Hidalgo-Figueroa, S.; García-Hernández, N.; Velázquez, C.; Barbosa, E.; Valdes, M.; Solares-Pascasio, J. Understanding the Anti-Diarrhoeal Properties of Incomptines A and B: Antibacterial Activity against Vibrio cholerae and Its Enterotoxin Inhibition. Pharmaceuticals 2022, 15, 196. [Google Scholar] [CrossRef]
- Vuppala, S.; Kim, J.; Joo, B.; Choi, J.; Jang, J. A Combination of Pharmacophore-Based Virtual Screening, Structure-Based Lead Optimization, and DFT Study for the Identification of S. epidermidis TcaR Inhibitors. Pharmaceuticals 2022, 15, 635. [Google Scholar] [CrossRef]
- Almalki, A.; Ibrahim, T.; Elhady, S.; Hegazy, W.; Darwish, K. Computational and Biological Evaluation of alpha;beta;-Adrenoreceptor Blockers as Promising Bacterial Anti-Virulence Agents. Pharmaceuticals 2022, 15, 110. [Google Scholar] [CrossRef] [PubMed]
- Rizo-Liendo, A.; Arberas-Jiménez, I.; Martin-Encinas, E.; Sifaoui, I.; Reyes-Batlle, M.; Chao-Pellicer, J.; Alonso, C.; Palacios, F.; Piñero, J.; Lorenzo-Morales, J. Naphthyridine Derivatives Induce Programmed Cell Death in Naegleria fowleri. Pharmaceuticals 2021, 14, 1013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man Chin, C.; Dos Santos, J.L. Special Issue “Drug Candidates for the Treatment of Infectious Diseases”. Pharmaceuticals 2023, 16, 1257. https://doi.org/10.3390/ph16091257
Man Chin C, Dos Santos JL. Special Issue “Drug Candidates for the Treatment of Infectious Diseases”. Pharmaceuticals. 2023; 16(9):1257. https://doi.org/10.3390/ph16091257
Chicago/Turabian StyleMan Chin, Chung, and Jean Leandro Dos Santos. 2023. "Special Issue “Drug Candidates for the Treatment of Infectious Diseases”" Pharmaceuticals 16, no. 9: 1257. https://doi.org/10.3390/ph16091257
APA StyleMan Chin, C., & Dos Santos, J. L. (2023). Special Issue “Drug Candidates for the Treatment of Infectious Diseases”. Pharmaceuticals, 16(9), 1257. https://doi.org/10.3390/ph16091257