Oral Active Carbon Quantum Dots for Diabetes
Abstract
:1. Introduction
2. Results
2.1. The One-Step Production of MetCQDs
2.2. Characterization of MetCQDs
2.2.1. Physical Appearance, Particle Size and Distribution, and Zeta Potential
2.2.2. Fluorescence
2.2.3. Quantum Yield
2.2.4. Stability
2.3. Assay
2.3.1. In Vivo Experiments
2.3.2. Determination of Blood Glucose Levels
2.3.3. Effects on Normal and Glucose-Loaded Rats (NG-OGTT)
2.3.4. Acute Antidiabetic Effect
2.4. Histopathological Examinations
2.4.1. Macroscopic Observations
2.4.2. Histopathological Observations
Histopathological Results of the Pancreatic Tissue
Histopathological Results of the Liver Tissue
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. The One-Step Production of MetCQDs
- Heat up to 160 °C for 5 min;
- Maintain a temperature of 160 °C for 20 min;
- Cool gradually to reach room temperature.
- Finally, the MetCQDs were successfully created and checked under UV light (365 nm) for rapid confirmation. After the reaction, surface modification was achieved by adding 0.02 g of PEG 3350.
4.2.2. Characterization of the MetCQDs
Physical Appearance, Particle Size and Distribution, and Zeta Potential
Fluorescence
Quantum Yield
4.2.3. Assay
Stability
The In Vivo Experiments
The Determination of Blood Glucose Levels
The Effects on Normal and Glucose-Loaded Rats (NG-OGTT)
The Diabetes Model
- Groups:
Histopathological Examination
Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bailey, C.J. Metformin: Historical Overview. Diabetologia 2017, 60, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M.; Sahin, S. Microparticulate and Nanoparticulate Drug Delivery Systems for Metformin Hydrochloride. Drug Deliv. 2016, 23, 2796–2805. [Google Scholar] [CrossRef] [PubMed]
- Flory, J.; Lipska, K. Metformin in 2019. JAMA 2019, 321, 1926. [Google Scholar] [CrossRef] [PubMed]
- Hundal, R.S.; Inzucchi, S.E. Metformin. Drugs 2003, 63, 1879–1894. [Google Scholar] [CrossRef]
- Nasri, H.; Rafieian-Kopaei, M. Metformin: Current Knowledge. J. Res. Med. Sci. 2014, 19, 658–664. [Google Scholar]
- Hernández-Velázquez, E.D.; Alba-Betancourt, C.; Alonso-Castro, Á.J.; Ortiz-Alvarado, R.; López, J.A.; Meza-Carmen, V.; Solorio-Alvarado, C.R. Metformin, a Biological and Synthetic Overview. Bioorg Med. Chem. Lett. 2023, 86, 129241. [Google Scholar] [CrossRef]
- Foretz, M.; Guigas, B.; Viollet, B. Metformin: Update on Mechanisms of Action and Repurposing Potential. Nat. Rev. Endocrinol. 2023, 19, 460–476. [Google Scholar] [CrossRef]
- Ilbasmiş-Tamer, S.; Yilmaz, Ş.; Banoğlu, E.; Değim, I.T. Carbon Nanotubes to Deliver Drug Molecules. J. Biomed. Nanotechnol. 2010, 6, 20–27. [Google Scholar] [CrossRef]
- Wang, R.; Lu, K.-Q.; Tang, Z.-R.; Xu, Y.-J. Recent Progress in Carbon Quantum Dots: Synthesis, Properties and Applications in Photocatalysis. J. Mater. Chem. A Mater. 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Saud, A.; Oves, M.; Shahadat, M.; Arshad, M.; Adnan, R.; Qureshi, M.A. Graphene-Based Organic-Inorganic Hybrid Quantum Dots for Organic Pollutants Treatment. In Graphene Quantum Dots; Elsevier: Amsterdam, The Netherlands, 2023; pp. 133–155. [Google Scholar]
- Camlik, G.; Bilakaya, B.; Uyar, P.; Degim, Z.; Degim, I.T. New Generation of Composite Carbon Quantum Dots for Imaging, Diagnosing, and Treatment of Cancer. In Functionalized Nanomaterials for Cancer Research; Elsevier: Amsterdam, The Netherlands, 2024; pp. 543–557. [Google Scholar]
- Camlik, G.; Ozakca, I.; Bilakaya, B.; Ozcelikay, A.T.; Velaro, A.J.; Wasnik, S.; Degim, I.T. Development of Composite Carbon Quantum Dots-Insulin Formulation for Oral Administration. J. Drug Deliv. Sci. Technol. 2022, 76, 103833. [Google Scholar] [CrossRef]
- Camlik, G.; Bilakaya, B.; Ozsoy, Y.; Degim, I.T. A New Approach for the Treatment of Alzheimer’s Disease: Insulin-Quantum Dots. J. Microencapsul. 2024, 41, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.K.; Chandra, S.; Kumar, V.; Kumar, D.; Hasan, S.H. Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts 2023, 13, 422. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon Quantum Dots and Their Applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-L.; Bai, L.-F.; Geng, Z.-R.; Chen, H.; Xu, L.-T.; Xie, Y.-C.; Wang, D.-J.; Gu, H.-W.; Wang, X.-M. Carbon Quantum Dots: Preparation, Optical Properties, and Biomedical Applications. Mater. Today Adv. 2023, 18, 100376. [Google Scholar] [CrossRef]
- Camlik, G.; Kupeli Akkol, E.; Degim, Z.; Degim, I.T. Can Carbon Quantum Dots (CQDs) or Boron Compounds Be an Ultimate Solution for COVID-19 Therapy? Iran. J. Pharm. Res. 2021, 20, 9–20. [Google Scholar]
- Hoseini, B.; Jaafari, M.R.; Golabpour, A.; Momtazi-Borojeni, A.A.; Karimi, M.; Eslami, S. Application of Ensemble Machine Learning Approach to Assess the Factors Affecting Size and Polydispersity Index of Liposomal Nanoparticles. Sci. Rep. 2023, 13, 18012. [Google Scholar] [CrossRef]
- Chen, Y.; Shan, X.; Luo, C.; He, Z. Emerging Nanoparticulate Drug Delivery Systems of Metformin. J. Pharm. Investig. 2020, 50, 219–230. [Google Scholar] [CrossRef]
- Kenechukwu, F.C.; Nnamani, D.O.; Duhu, J.C.; Nmesirionye, B.U.; Momoh, M.A.; Akpa, P.A.; Attama, A.A. Potential Enhancement of Metformin Hydrochloride in Solidified Reverse Micellar Solution-Based PEGylated Lipid Nanoparticles Targeting Therapeutic Efficacy in Diabetes Treatment. Heliyon 2022, 8, e09099. [Google Scholar] [CrossRef]
- Rivera, D.; Onisko, N.; Cao, J.D.; Koyfman, A.; Long, B. High Risk and Low Prevalence Diseases: Metformin Toxicities. Am. J. Emerg. Med. 2023, 72, 107–112. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Wang, B.; Ma, Y.; Huang, H.; Liu, Y.; Shao, M.; Yao, B.; Kang, Z. Maltase Decorated by Chiral Carbon Dots with Inhibited Enzyme Activity for Glucose Level Control. Small 2019, 15, 1901512. [Google Scholar] [CrossRef]
- Song, Y.; Wu, Y.; Wang, H.; Liu, S.; Song, L.; Li, S.; Tan, M. Carbon Quantum Dots from Roasted Atlantic Salmon (Salmo salar L.): Formation, Biodistribution and Cytotoxicity. Food Chem. 2019, 293, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lin, Q.; Huang, Q.; Liu, H.; Bao, C.; Zhang, W.; Zhong, X.; Zhu, L. Semiconductor Quantum Dots Photosensitizing Release of Anticancer Drug. Chem. Commun. 2011, 47, 1482–1484. [Google Scholar] [CrossRef]
- Inzucchi, S.E. Oral Antihyperglycemic Therapy for Type 2 Diabetes. JAMA 2002, 287, 360. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; Zinman, B. Medical Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy. Diabetes Care 2009, 32, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Xu, N.; Fan, J.; Sun, W.; Peng, X. Carbon Dots for In Vivo Bioimaging and Theranostics. Small 2019, 15, 1805087. [Google Scholar] [CrossRef]
- Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angew. Chem. Int. Ed. 2013, 52, 3953–3957. [Google Scholar] [CrossRef]
- Viedma, C. Chiral Symmetry Breaking During Crystallization: Complete Chiral Purity Induced by Nonlinear Autocatalysis and Recycling. Phys. Rev. Lett. 2005, 94, 065504. [Google Scholar] [CrossRef]
- Barron, L.D. Chirality and Life. Space Sci. Rev. 2008, 135, 187–201. [Google Scholar] [CrossRef]
- Rote, A.R.; Ravindranath, B. Saudagar Estimation of Metformin Hydrochloride by UV Spectrophotometric Method in Pharmaceutical Formulation. World J. Pharm. Sci. 2014, 2, 1841–1845. [Google Scholar]
- Vijayaraghavan, K.; Iyyam Pillai, S.; Subramanian, S.P. Design, Synthesis and Characterization of Zinc-3 Hydroxy Flavone, a Novel Zinc Metallo Complex for the Treatment of Experimental Diabetes in Rats. Eur. J. Pharmacol. 2012, 680, 122–129. [Google Scholar] [CrossRef]
- Kesari, A.N.; Gupta, R.K.; Singh, S.K.; Diwakar, S.; Watal, G. Hypoglycemic and Antihyperglycemic Activity of Aegle Marmelos Seed Extract in Normal and Diabetic Rats. J. Ethnopharmacol. 2006, 107, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-W.; Deng, Y.-P.; Han, X.; Ren, G.-F.; Cai, J.; Jiang, G.-J. Metformin Improves the Angiogenic Functions of Endothelial Progenitor Cells via Activating AMPK/ENOS Pathway in Diabetic Mice. Cardiovasc. Diabetol. 2016, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-P.; Xin, R.-J.; Yang, H.; Jiang, G.-J.; Deng, Y.-P.; Li, D.-J.; Shen, F.-M. Diazoxide Accelerates Wound Healing by Improving EPC Function. Front. Biosci. 2016, 21, 1039–1051. [Google Scholar]
- Szkudelski, T. The Mechanism of Alloxan and Streptozotocin Action in B Cells of the Rat Pancreas. Physiol. Res. 2001, 50, 537–546. [Google Scholar] [CrossRef] [PubMed]
Formulation | Particle Size (nm) | Zeta Potential (mV) | Polydispersity Index (%) (PDI %) |
---|---|---|---|
MetCQDs | 9.02 ± 0.04 | −10.4 ± 0.214 | 15.1 ± 0.045 |
Group | Blood Glucose Concentration ± S.E.M. (Inhibition %) | ||||||
---|---|---|---|---|---|---|---|
0 min | 30 min | 60 min (+Glucose) | 90 min | 120 min | 240 min | 360 min | |
Control | 102.5 ± 4.8 | 109.2 ± 6.3 | 124.7 ± 6.1 | 183.0 ± 5.2 | 151.3 ± 4.8 | 130.2 ± 4.4 | 114.6 ± 4.9 |
Metformin | 106.2 ± 5.7 | 71.2 ± 3.9 * | 80.6 ± 3.1 ** | 89.4 ± 3.6 ** | 73.6 ± 3.2 ** | 71.6 ± 3.5 ** | 70.8 ± 4.2 * |
MetCQD | 99.3 ± 4.1 | 45.1 ± 3.7 ** | 49.4 ± 3.2 ** | 53.8 ± 3.3 ** | 46.3 ± 3.1 ** | 45.5 ± 3.2 ** | 43.7 ± 3.0 ** |
Groups | Blood Glucose Concentration ± S.E.M. (Inhibition %) | ||||||
---|---|---|---|---|---|---|---|
0 min | 30 min | 60 min | 90 min | 120 min | 240 min | 360 min | |
Diabetic Control | 314.3 ± 9.9 | 347.1 ± 10.8 | 356.3 ± 9.1 | 331.5 ± 8.2 | 322.7 ± 8.4 | 310.1 ± 6.3 | 285.5 ± 4.6 |
STZ + Metformin | 315.9 ± 8.5 | 338.6 ± 8.2 | 271.2 ± 6.3 * | 234.2 ± 5.1 * | 244.5 ± 5.0 * | 213.7 ± 5.1 ** | 218.2 ± 4.9 |
STZ + MetCQDs | 309.7 ± 10.4 | 229.9 ± 4.9 | 168.6 ± 4.1 ** | 150.9 ± 3.3 ** | 152.5 ± 3.5 ** | 132.1 ± 3.4 ** | 131.3 ± 2.2 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camlik, G.; Bilakaya, B.; Küpeli Akkol, E.; Velaro, A.J.; Wasnik, S.; Muhar, A.M.; Degim, I.T.; Sobarzo-Sánchez, E. Oral Active Carbon Quantum Dots for Diabetes. Pharmaceuticals 2024, 17, 1395. https://doi.org/10.3390/ph17101395
Camlik G, Bilakaya B, Küpeli Akkol E, Velaro AJ, Wasnik S, Muhar AM, Degim IT, Sobarzo-Sánchez E. Oral Active Carbon Quantum Dots for Diabetes. Pharmaceuticals. 2024; 17(10):1395. https://doi.org/10.3390/ph17101395
Chicago/Turabian StyleCamlik, Gamze, Besa Bilakaya, Esra Küpeli Akkol, Adrian Joshua Velaro, Siddhanshu Wasnik, Adi Muradi Muhar, Ismail Tuncer Degim, and Eduardo Sobarzo-Sánchez. 2024. "Oral Active Carbon Quantum Dots for Diabetes" Pharmaceuticals 17, no. 10: 1395. https://doi.org/10.3390/ph17101395
APA StyleCamlik, G., Bilakaya, B., Küpeli Akkol, E., Velaro, A. J., Wasnik, S., Muhar, A. M., Degim, I. T., & Sobarzo-Sánchez, E. (2024). Oral Active Carbon Quantum Dots for Diabetes. Pharmaceuticals, 17(10), 1395. https://doi.org/10.3390/ph17101395