Sodium-Glucose Cotransporter-2 Inhibitors in Diabetic Patients with Heart Failure: An Update
Abstract
:1. Introduction
2. Mechanism of Action of Sodium-Glucose Cotransporter-2 Inhibitors
3. Heart Failure
4. SGLT2i in Heart Failure: Mechanisms of Action
5. SGLT2i and Chronic Heart Failure with Reduced Left Ventricular Ejection Fraction
Study | n | Diabetes | SGTL2i | Follow Up | Outcomes | Events P.O. | Result | |
---|---|---|---|---|---|---|---|---|
SGTL2i | Placebo | |||||||
DAPA-HF [19] | 4744 | 45.0% | D | 18.2 months | Composite outcome of worsening SGLT2i or death from CV causes | 386 | 502 | Reduced risk |
Composite of hospitalization for HF or CV death | 382 | 495 | Reduced risk | |||||
Composite of number of hospitalizations for HF and CV death | 567 | 742 | Reduced risk | |||||
Composite of worsening renal function (decline in the eGFR or renal death) | 28 | 39 | No effect | |||||
Death from any cause | 276 | 329 | No effect | |||||
8 months | Change from baseline of KCCQ | N/A | N/A | Improved patient-reported symptoms | ||||
DAPA-HF [20] | 4742 | 18.2 months | Worsening of HF or CV death accordingly to the frailty index | N/A | N/A | Reduced risk regardless of frailty status. Absolute reductions were larger in more frail patients. | ||
Palau et al. [25] | 90 | 54.5% | D | 1 and 3 months | Change from baseline in mean peakVO2 | N/A | N/A | Improvement in peakVO2 at 1 and 3 months |
EMPIRE HF [27] | 190 | 20.0% | E | 90 days | Change of N-terminal pro-brain natriuretic peptide (NT-proBNP) | N/A | N/A | No change |
EMPIRE HF [28] | 190 | 20.0% | E | 12 weeks | Changes in erythropoiesis and iron metabolism | N/A | N/A | Increased erythropoiesis and augmented early iron utilization |
EMPEROR-Reduced 32865377 | 3730 | 49.8% | E | 18 months | Composite of cardiovascular death or hospitalization for worsening SGLT2i | 361 | 462 | Reduced risk |
EMPEROR-Reduced [29] | 3730 | 49.8% | E | 12, 32, and 52 weeks | Changes in body weight | N/A | N/A | Benefits of SGTL2i were present across all BMI categories. Weight loss was associated with higher risk of all-cause mortality, regardless of treatment group. |
DEFINE_HF [26] | 85 | 75.6% | D | 12 weeks | Changes in lung fluid volumes | N/A | N/A | Reduced lung congestion |
6. SGLT2i and Chronic Heart Failure with Preserved Left Ventricular Ejection Fraction
7. SGLT2i and Acute Heart Failure
8. Additional Effects of SGTL2 Inhibitors
8.1. SGLT2i and Left Ventricular Mass
8.2. SGLT2i and Acid Uric Metabolism
8.3. SGLT2i and Iron Metabolism
9. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinclair, A.; Saeedi, P.; Kaundal, A.; Karuranga, S.; Malanda, B.; Williams, R. Diabetes and global ageing among 65–99-year-old adults: Findings from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2020, 162, 108078. [Google Scholar] [CrossRef] [PubMed]
- Mather, A.; Pollock, C. Glucose handling by the kidney. Kidney Int. Suppl. 2011, 79, S1–S6. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.M.; Loo, D.D.; Hirayama, B.A. Biology of human sodium glucose transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef] [PubMed]
- Profili, N.I.; Castelli, R.; Gidaro, A.; Manetti, R.; Maioli, M.; Petrillo, M.; Capobianco, G.; Delitala, A.P. Possible Effect of Polycystic Ovary Syndrome (PCOS) on Cardiovascular Disease (CVD): An Update. J. Clin. Med. 2024, 13, 698. [Google Scholar] [CrossRef]
- Castelli, R.; Gidaro, A.; Casu, G.; Merella, P.; Profili, N.I.; Donadoni, M.; Maioli, M.; Delitala, A.P. Aging of the Arterial System. Int. J. Mol. Sci. 2023, 24, 6910. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. Corrigendum to: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 4901. [Google Scholar] [CrossRef]
- van Riet, E.E.; Hoes, A.W.; Limburg, A.; Landman, M.A.; van der Hoeven, H.; Rutten, F.H. Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur. J. Heart Fail. 2014, 16, 772–777. [Google Scholar] [CrossRef]
- Sha, S.; Polidori, D.; Heise, T.; Natarajan, J.; Farrell, K.; Wang, S.S.; Sica, D.; Rothenberg, P.; Plum-Morschel, L. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2014, 16, 1087–1095. [Google Scholar] [CrossRef]
- Griffin, M.; Rao, V.S.; Ivey-Miranda, J.; Fleming, J.; Mahoney, D.; Maulion, C.; Suda, N.; Siwakoti, K.; Ahmad, T.; Jacoby, D.; et al. Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation 2020, 142, 1028–1039. [Google Scholar] [CrossRef]
- Damman, K.; Beusekamp, J.C.; Boorsma, E.M.; Swart, H.P.; Smilde, T.D.J.; Elvan, A.; van Eck, J.W.M.; Heerspink, H.J.L.; Voors, A.A. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur. J. Heart Fail. 2020, 22, 713–722. [Google Scholar] [CrossRef]
- Nassif, M.E.; Windsor, S.L.; Tang, F.; Khariton, Y.; Husain, M.; Inzucchi, S.E.; McGuire, D.K.; Pitt, B.; Scirica, B.M.; Austin, B.; et al. Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients with Heart Failure with Reduced Ejection Fraction: The DEFINE-HF Trial. Circulation 2019, 140, 1463–1476. [Google Scholar] [CrossRef] [PubMed]
- Margonato, D.; Galati, G.; Mazzetti, S.; Cannistraci, R.; Perseghin, G.; Margonato, A.; Mortara, A. Renal protection: A leading mechanism for cardiovascular benefit in patients treated with SGLT2 inhibitors. Heart Fail. Rev. 2021, 26, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Kato, E.T.; Silverman, M.G.; Mosenzon, O.; Zelniker, T.A.; Cahn, A.; Furtado, R.H.M.; Kuder, J.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; et al. Effect of Dapagliflozin on Heart Failure and Mortality in Type 2 Diabetes Mellitus. Circulation 2019, 139, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M.K.; Heinzel, A.; Mayer, G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019, 62, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, K.; Tousoulis, D. The impact of SGLT2 inhibitors on inflammation: A systematic review and meta-analysis of studies in rodents. Int. Immunopharmacol. 2022, 111, 109080. [Google Scholar] [CrossRef]
- Byrne, N.J.; Matsumura, N.; Maayah, Z.H.; Ferdaoussi, M.; Takahara, S.; Darwesh, A.M.; Levasseur, J.L.; Jahng, J.W.S.; Vos, D.; Parajuli, N.; et al. Empagliflozin Blunts Worsening Cardiac Dysfunction Associated with Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure. Circ. Heart Fail. 2020, 13, e006277. [Google Scholar] [CrossRef]
- Gao, Y.M.; Feng, S.T.; Wen, Y.; Tang, T.T.; Wang, B.; Liu, B.C. Cardiorenal protection of SGLT2 inhibitors-Perspectives from metabolic reprogramming. EBioMedicine 2022, 83, 104215. [Google Scholar] [CrossRef]
- Pandey, A.K.; Bhatt, D.L.; Pandey, A.; Marx, N.; Cosentino, F.; Pandey, A.; Verma, S. Mechanisms of benefits of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction. Eur. Heart J. 2023, 44, 3640–3651. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Kober, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Belohlavek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Butt, J.H.; Dewan, P.; Merkely, B.; Belohlavek, J.; Drozdz, J.; Kitakaze, M.; Inzucchi, S.E.; Kosiborod, M.N.; Martinez, F.A.; Tereshchenko, S.; et al. Efficacy and Safety of Dapagliflozin according to Frailty in Heart Failure with Reduced Ejection Fraction: A Post Hoc Analysis of the DAPA-HF Trial. Ann. Intern. Med. 2022, 175, 820–830. [Google Scholar] [CrossRef]
- Docherty, K.F.; Ogunniyi, M.O.; Anand, I.S.; Desai, A.S.; Diez, M.; Howlett, J.G.; Nicolau, J.C.; O’Meara, E.; Verma, S.; Inzucchi, S.E.; et al. Efficacy of Dapagliflozin in Black Versus White Patients with Heart Failure and Reduced Ejection Fraction. JACC Heart Fail. 2022, 10, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Butt, J.H.; Docherty, K.F.; Jhund, P.S.; de Boer, R.A.; Bohm, M.; Desai, A.S.; Howlett, J.G.; Inzucchi, S.E.; Kosiborod, M.N.; Martinez, F.A.; et al. Dapagliflozin and atrial fibrillation in heart failure with reduced ejection fraction: Insights from DAPA-HF. Eur. J. Heart Fail. 2022, 24, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Carson, P.; Anand, I.; Doehner, W.; Haass, M.; et al. Effect of Empagliflozin on the Clinical Stability of Patients with Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation 2021, 143, 326–336. [Google Scholar] [CrossRef]
- Palau, P.; Amiguet, M.; Dominguez, E.; Sastre, C.; Mollar, A.; Seller, J.; Garcia Pinilla, J.M.; Larumbe, A.; Valle, A.; Gomez Doblas, J.J.; et al. Short-term effects of dapagliflozin on maximal functional capacity in heart failure with reduced ejection fraction (DAPA-VO(2)): A randomized clinical trial. Eur. J. Heart Fail. 2022, 24, 1816–1826. [Google Scholar] [CrossRef]
- Nassif, M.E.; Windsor, S.L.; Tang, F.; Husain, M.; Inzucchi, S.E.; McGuire, D.K.; Pitt, B.; Scirica, B.M.; Austin, B.; Fong, M.W.; et al. Dapagliflozin effects on lung fluid volumes in patients with heart failure and reduced ejection fraction: Results from the DEFINE-HF trial. Diabetes Obes. Metab. 2021, 23, 1426–1430. [Google Scholar] [CrossRef]
- Jensen, J.; Omar, M.; Kistorp, C.; Poulsen, M.K.; Tuxen, C.; Gustafsson, I.; Kober, L.; Gustafsson, F.; Faber, J.; Fosbol, E.L.; et al. Twelve weeks of treatment with empagliflozin in patients with heart failure and reduced ejection fraction: A double-blinded, randomized, and placebo-controlled trial. Am. Heart J. 2020, 228, 47–56. [Google Scholar] [CrossRef]
- Fuchs Andersen, C.; Omar, M.; Glenthoj, A.; El Fassi, D.; Moller, H.J.; Lindholm Kurtzhals, J.A.; Styrishave, B.; Kistorp, C.; Tuxen, C.; Poulsen, M.K.; et al. Effects of empagliflozin on erythropoiesis in heart failure: Data from the Empire HF trial. Eur. J. Heart Fail. 2023, 25, 226–234. [Google Scholar] [CrossRef]
- Anker, S.D.; Khan, M.S.; Butler, J.; Ofstad, A.P.; Peil, B.; Pfarr, E.; Doehner, W.; Sattar, N.; Coats, A.J.S.; Filippatos, G.; et al. Weight change and clinical outcomes in heart failure with reduced ejection fraction: Insights from EMPEROR-Reduced. Eur. J. Heart Fail. 2023, 25, 117–127. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Mc Causland, F.R.; Claggett, B.L.; Vaduganathan, M.; Desai, A.; Jhund, P.; Vardeny, O.; Fang, J.C.; de Boer, R.A.; Docherty, K.F.; Hernandez, A.F.; et al. Decline in Estimated Glomerular Filtration Rate after Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction: A Prespecified Secondary Analysis of the DELIVER Randomized Clinical Trial. JAMA Cardiol. 2024, 9, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Butt, J.H.; Lu, H.; Kondo, T.; Bachus, E.; de Boer, R.A.; Inzucchi, S.E.; Jhund, P.S.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.A.; et al. Heart failure, chronic obstructive pulmonary disease and efficacy and safety of dapagliflozin in heart failure with mildly reduced or preserved ejection fraction: Insights from DELIVER. Eur. J. Heart Fail. 2023, 25, 2078–2090. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.T.; Lindenfeld, J.; Ponikowski, P.; Agostoni, P.; Butler, J.; Desai, A.S.; Filippatos, G.; Gniot, J.; Fu, M.; Gullestad, L.; et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur. Heart J. 2021, 42, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Bohm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Nassif, M.E.; Windsor, S.L.; Borlaug, B.A.; Kitzman, D.W.; Shah, S.J.; Tang, F.; Khariton, Y.; Malik, A.O.; Khumri, T.; Umpierrez, G.; et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: A multicenter randomized trial. Nat. Med. 2021, 27, 1954–1960. [Google Scholar] [CrossRef]
- Tromp, J.; Kosiborod, M.N.; Angermann, C.E.; Collins, S.P.; Teerlink, J.R.; Ponikowski, P.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; et al. Treatment effects of empagliflozin in hospitalized heart failure patients across the range of left ventricular ejection fraction—Results from the EMPULSE trial. Eur. J. Heart Fail. 2024, 26, 963–970. [Google Scholar] [CrossRef]
- Schulze, P.C.; Bogoviku, J.; Westphal, J.; Aftanski, P.; Haertel, F.; Grund, S.; von Haehling, S.; Schumacher, U.; Mobius-Winkler, S.; Busch, M. Effects of Early Empagliflozin Initiation on Diuresis and Kidney Function in Patients with Acute Decompensated Heart Failure (EMPAG-HF). Circulation 2022, 146, 289–298. [Google Scholar] [CrossRef]
- Yeoh, S.E.; Osmanska, J.; Petrie, M.C.; Brooksbank, K.J.M.; Clark, A.L.; Docherty, K.F.; Foley, P.W.X.; Guha, K.; Halliday, C.A.; Jhund, P.S.; et al. Dapagliflozin vs. metolazone in heart failure resistant to loop diuretics. Eur. Heart J. 2023, 44, 2966–2977. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef]
- Pitt, B.; Bhatt, D.L.; Szarek, M.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Effect of Sotagliflozin on Early Mortality and Heart Failure-Related Events: A Post Hoc Analysis of SOLOIST-WHF. JACC Heart Fail. 2023, 11, 879–889. [Google Scholar] [CrossRef]
- Burgos, L.M.; Ballari, F.N.; Spaccavento, A.; Ricciardi, B.; Suarez, L.L.; Baro Vila, R.C.; De Bortoli, M.A.; Conde, D.; Diez, M. In-hospital initiation of sodium-glucose cotransporter-2 inhibitors in patients with heart failure and reduced ejection fraction: 90-day prescription patterns and clinical implications. Curr. Probl. Cardiol. 2024, 49, 102779. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Mazer, C.D.; Yan, A.T.; Mason, T.; Garg, V.; Teoh, H.; Zuo, F.; Quan, A.; Farkouh, M.E.; Fitchett, D.H.; et al. Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation 2019, 140, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gallego, C.G.; Vargas-Delgado, A.P.; Requena-Ibanez, J.A.; Garcia-Ropero, A.; Mancini, D.; Pinney, S.; Macaluso, F.; Sartori, S.; Roque, M.; Sabatel-Perez, F.; et al. Randomized Trial of Empagliflozin in Nondiabetic Patients with Heart Failure and Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2021, 77, 243–255. [Google Scholar] [CrossRef]
- Kanellis, J.; Kang, D.H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin. Nephrol. 2005, 25, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Coutinho Tde, A.; Turner, S.T.; Peyser, P.A.; Bielak, L.F.; Sheedy, P.F., 2nd; Kullo, I.J. Associations of serum uric acid with markers of inflammation, metabolic syndrome, and subclinical coronary atherosclerosis. Am. J. Hypertens 2007, 20, 83–89. [Google Scholar] [CrossRef]
- Ruggiero, C.; Cherubini, A.; Ble, A.; Bos, A.J.; Maggio, M.; Dixit, V.D.; Lauretani, F.; Bandinelli, S.; Senin, U.; Ferrucci, L. Uric acid and inflammatory markers. Eur. Heart J. 2006, 27, 1174–1181. [Google Scholar] [CrossRef]
- Baker, J.F.; Krishnan, E.; Chen, L.; Schumacher, H.R. Serum uric acid and cardiovascular disease: Recent developments, and where do they leave us? Am. J. Med. 2005, 118, 816–826. [Google Scholar] [CrossRef]
- Sundstrom, J.; Sullivan, L.; D’Agostino, R.B.; Levy, D.; Kannel, W.B.; Vasan, R.S. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension 2005, 45, 28–33. [Google Scholar] [CrossRef]
- Xing, Y.J.; Liu, B.H.; Wan, S.J.; Cheng, Y.; Zhou, S.M.; Sun, Y.; Yao, X.M.; Hua, Q.; Meng, X.J.; Cheng, J.H.; et al. A SGLT2 Inhibitor Dapagliflozin Alleviates Diabetic Cardiomyopathy by Suppressing High Glucose-Induced Oxidative Stress in vivo and in vitro. Front. Pharmacol. 2021, 12, 708177. [Google Scholar] [CrossRef]
- Lu, Y.P.; Zhang, Z.Y.; Wu, H.W.; Fang, L.J.; Hu, B.; Tang, C.; Zhang, Y.Q.; Yin, L.; Tang, D.E.; Zheng, Z.H.; et al. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J. Transl. Med. 2022, 20, 420. [Google Scholar] [CrossRef]
- Suijk, D.L.S.; van Baar, M.J.B.; van Bommel, E.J.M.; Iqbal, Z.; Krebber, M.M.; Vallon, V.; Touw, D.; Hoorn, E.J.; Nieuwdorp, M.; Kramer, M.M.H.; et al. SGLT2 Inhibition and Uric Acid Excretion in Patients with Type 2 Diabetes and Normal Kidney Function. Clin. J. Am. Soc. Nephrol. 2022, 17, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Chang, Y.P.; Li, T.; Han, F.; Li, C.J.; Li, X.Y.; Xue, M.; Cheng, Y.; Meng, Z.Y.; Han, Z.; et al. Empagliflozin Attenuates Hyperuricemia by Upregulation of ABCG2 via AMPK/AKT/CREB Signaling Pathway in Type 2 Diabetic Mice. Int. J. Biol. Sci. 2020, 16, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Alnuwaysir, R.I.S.; Hoes, M.F.; van Veldhuisen, D.J.; van der Meer, P.; Grote Beverborg, N. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J. Clin. Med. 2021, 11, 125. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Kirwan, B.A.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Fabien, V.; Filippatos, G.; Gohring, U.M.; Keren, A.; et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: A multicentre, double-blind, randomised, controlled trial. Lancet 2020, 396, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Docherty, K.F.; Welsh, P.; Verma, S.; De Boer, R.A.; O’Meara, E.; Bengtsson, O.; Kober, L.; Kosiborod, M.N.; Hammarstedt, A.; Langkilde, A.M.; et al. Iron Deficiency in Heart Failure and Effect of Dapagliflozin: Findings From DAPA-HF. Circulation 2022, 146, 980–994. [Google Scholar] [CrossRef]
- Docherty, K.F.; McMurray, J.J.V.; Kalra, P.R.; Cleland, J.G.F.; Lang, N.N.; Petrie, M.C.; Robertson, M.; Ford, I. Intravenous iron and SGLT2 inhibitors in iron-deficient patients with heart failure and reduced ejection fraction. ESC Heart Fail. 2024, 11, 1875–1879. [Google Scholar] [CrossRef]
- Swedberg, K.; Young, J.B.; Anand, I.S.; Cheng, S.; Desai, A.S.; Diaz, R.; Maggioni, A.P.; McMurray, J.J.; O’Connor, C.; Pfeffer, M.A.; et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J. Med. 2013, 368, 1210–1219. [Google Scholar] [CrossRef]
Study | n | Type of HF | Diabetes | SGTL2i | Follow Up | Outcomes | Events P.O. | Result | ||
---|---|---|---|---|---|---|---|---|---|---|
SGTL2i | Placebo | |||||||||
DELIVER [31] | 5788 | NFmrEF HFpEF | 42–50% | D | 1 month | Kidney composite outcome (first occurrence of ≥50% decline in eGFR within 1 month, development of end-stage kidney disease, or death to kidney cause) | N/A | N/A | Initial eGFR decline after Dapagliflozin, which was not associated with subsequent risk of cardiovascular or kidney events. | |
DELIVER [30] | 2216 | NFmrEF | 44.7% * | D | 2.3 years | Composite of worsening HF or CV death | 207 | 229 | Reduced risk | |
2064 | HFpEF | 44.7% * | 2.3 years | Composite of worsening HF or CV death | 305 | 381 | Reduced risk | |||
3131 | NFmrEF HFpEF | 44.7% * | 2.3 years | Total number of worsening SGLT2i events and cardiovascular death | 815 | 1057 | Reduced number | |||
44.7% * | 8 months | Change from baseline of KCCQ | N/A | N/A | Improved patient-reported symptoms | |||||
44.7% * | 2.3 years | Cardiovascular death and from any cause | 497 | 526 | No difference | |||||
DELIVER [32] | NO COPD | 5567 | NFmrEF HFpEF | 44.6% | D | 8 months | Composite of worsening heart or cardiovascular death | N/A | N/A | Mild to moderate COPD is associated with worse outcomes but did not affect the beneficial effects of Dapagliflozin |
COPD | 694 | NFmrEF HFpEF | 46.5% | D | 8 months | N/A | N/A | |||
EMPERIAL-Preserved Trial [33] | 315 | HFpEF | 51.1% | E | 12 weeks | Change from baseline in 6MWT | N/A | N/A | Neutral effect on exercise ability | |
Change from baseline in KCCQ-TSS and CHQ-SAS dyspnoea score | N/A | N/A | No effect on specific dyspnoea score | |||||||
EMPEROR-Preserved trial [34] | 5988 | HFpEF | 44.8% | D | 26.2 months | Combined risk of CV death or hospitalization for HF | 415 | 511 | Reduced risk, regardless of diabetes | |
Occurrence of all adjudicated hospitalizations for HF | 407 | 541 | Reduction of hospitalization for HF | |||||||
Rate of decline in the eGFR during treatment | N/A | N/A | Reduction of rate of decline | |||||||
PRESERVED-HF [35] | 324 | HFpEF | 56.6% | D | 12 weeks | Change in KCCQ-CS at 12 weeks | N/A | N/A | Improved patient-reported symptoms | |
Meaningful (five points or greater) change in KCCQ-CS and -OS | N/A | N/A | Magnitude of benefit higher in patients treated with SGTL2i | |||||||
Change in 6MWT distance | N/A | N/A | Improved exercise function |
Study | n | % Reduced LVEF | Treatment | Follow-Up | Results | ||
---|---|---|---|---|---|---|---|
Type | Start | Duration | |||||
EMPULSE [36] | 530 | 67% 1 | Empagliflozin 10 mg/day vs. placebo | 1–5 days after hospital admission | 90 days | 90 days | Clinical benefit (hierarchical composite of death from any cause, number of SGLT2i events, and KCCQ-SC) |
EMPAG-HF [37] | 59 | 20.7% 2 | Empagliflozin 10 mg/day vs. placebo | Within 12 h | 5 days | 30 days | 25% increase in cumulative urine output without affection of renal function |
EMPA-REPONSE-AHF [10] | 79 | 100% 3 | Empagliflozin 10 mg/day vs. placebo | Within 24 h | 30 days | 60 days | Increased urinary output and reduced combined endpoint (worsening HF, rehospitalization for HF or death at 60 days). No effect on VAS dyspnea, diuretic response, NT-pro-BNP, or length of hospital stay. |
DAPA-RESIST [38] | 54 | 44% 4 | Dapagliflozin 10 mg/day vs. Metalozone 5–10 mg/day | Within 24 h | 5 days | 90 days | Weight reduction at up to 96 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Profili, N.I.; Castelli, R.; Gidaro, A.; Manetti, R.; Maioli, M.; Delitala, A.P. Sodium-Glucose Cotransporter-2 Inhibitors in Diabetic Patients with Heart Failure: An Update. Pharmaceuticals 2024, 17, 1419. https://doi.org/10.3390/ph17111419
Profili NI, Castelli R, Gidaro A, Manetti R, Maioli M, Delitala AP. Sodium-Glucose Cotransporter-2 Inhibitors in Diabetic Patients with Heart Failure: An Update. Pharmaceuticals. 2024; 17(11):1419. https://doi.org/10.3390/ph17111419
Chicago/Turabian StyleProfili, Nicia I., Roberto Castelli, Antonio Gidaro, Roberto Manetti, Margherita Maioli, and Alessandro P. Delitala. 2024. "Sodium-Glucose Cotransporter-2 Inhibitors in Diabetic Patients with Heart Failure: An Update" Pharmaceuticals 17, no. 11: 1419. https://doi.org/10.3390/ph17111419
APA StyleProfili, N. I., Castelli, R., Gidaro, A., Manetti, R., Maioli, M., & Delitala, A. P. (2024). Sodium-Glucose Cotransporter-2 Inhibitors in Diabetic Patients with Heart Failure: An Update. Pharmaceuticals, 17(11), 1419. https://doi.org/10.3390/ph17111419