Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use
Abstract
:1. Introduction
2. Exploration of Advantages and Disadvantages of In Vitro Approaches
3. The Amazon Rainforest as a Source of Potential Natural Pharmaceuticals
4. Why Do Some Extracts Exhibit Multiple Pharmaceutical Properties?
5. Chemical Characterization of Phenolic Compounds
5.1. Antioxidant, Anti-Inflammatory, and Antineoplastic Activity of Phenolic Compounds
5.2. Microbiological and Antiparasitic Activity of Phenolic Compounds
6. Chemical Characterization of Terpenes
Antioxidant, Anti-Inflammatory, Antineoplastic, and Antiparasitic Activity of Terpenes
7. Other Molecules with Pharmaceutical Activity: Fatty Acids and Quinones
8. What Is Needed for Biocompounds to Be Used as Medications?
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cardoso, D.; Särkinen, T.; Alexander, S.; Amorim, A.M.; Bittrich, V.; Celis, M.; Daly, D.C.; Fiaschi, P.; Funk, V.A.; Giacomin, L.L.; et al. Amazon Plant Diversity Revealed by a Taxonomically Verified Species List. Proc. Natl. Acad. Sci. USA 2017, 114, 10695–10700. [Google Scholar] [CrossRef] [PubMed]
- Skirycz, A.; Kierszniowska, S.; Méret, M.; Willmitzer, L.; Tzotzos, G. Medicinal Bioprospecting of the Amazon Rainforest: A Modern Eldorado? Trends Biotechnol. 2016, 34, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Vander Velden, F. Biodiversity in the Amazon from 1950 to the Present. In Biodiversity–Handbook of the Anthropocene in Latin America II; Bielefeld University Press/transcript Verlag: Bielefeld, Germany, 2024; pp. 335–362. [Google Scholar]
- Verpoorte, R. Exploration of Nature’s Chemodiversity: The Role of Secondary Metabolites as Leads in Drug Development. Drug Discov. Today 1998, 3, 232–238. [Google Scholar] [CrossRef]
- Liu, K.; Abdullah, A.A.; Huang, M.; Nishioka, T.; Altaf-Ul-Amin, M.; Kanaya, S. Novel Approach to Classify Plants Based on Metabolite-Content Similarity. Biomed. Res. Int. 2017, 2017, 5296729. [Google Scholar] [CrossRef]
- Spielmann, H.; Liebsch, M. Lessons Learned from Validation of in Vitro Toxicity Test: From Failure to Acceptance into Regulatory Practice. Toxicol. Vitr. 2001, 15, 585–590. [Google Scholar] [CrossRef]
- Schmidt, M.; Skaf, J.; Gavril, G.; Polednik, C.; Roller, J.; Kessler, M.; Holzgrabe, U. The Influence of Osmunda Regalis Root Extract on Head and Neck Cancer Cell Proliferation, Invasion and Gene Expression. BMC Complement. Altern. Med. 2017, 17, 518. [Google Scholar] [CrossRef]
- Bell, S.M.; Chang, X.; Wambaugh, J.F.; Allen, D.G.; Bartels, M.; Brouwer, K.L.R.; Casey, W.M.; Choksi, N.; Ferguson, S.S.; Fraczkiewicz, G.; et al. In Vitro to in Vivo Extrapolation for High Throughput Prioritization and Decision Making. Toxicol. Vitr. 2018, 47, 213–227. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant Activity, Total Phenolics and Flavonoids Contents: Should We Ban In Vitro Screening Methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Oladele, E.O.; Adewumi, O.O.; Taiwo, I.A. Genotoxicity of Momordica Charantia Extract in Swiss Albino Mice (Mus musculus). Niger. J. Environ. Sci. Technol. 2019, 3, 62–68. [Google Scholar]
- Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of In-Vitro Bioassay Methods: Application in Herbal Drug Research. Profiles Drug Subst. Excip. Relat. Methodol. 2021, 46, 273–307. [Google Scholar]
- Aslantürk, Ö.S. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. In Genotoxicity–A Predictable Risk to Our Actual World; Larramendy, M.L., Soloneski, S., Eds.; InTech Open printer: Buenos Aires, Argentina, 2018; pp. 64–80. [Google Scholar]
- Katt, M.E.; Placone, A.L.; Wong, A.D.; Xu, Z.S.; Searson, P.C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front. Bioeng. Biotechnol. 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadou, S.; Githiori, J.; Kyriazakis, I. Medicinal Plants for Helminth Parasite Control: Facts and Fiction. Animal 2007, 1, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Bjornsson, T.D.; Callaghan, J.T.; Einolf, H.J.; Fischer, V.; Gan, L.; Grimm, S.; Kao, J.; King, S.P.; Miwa, G.; Ni, L.; et al. The conduct of in vitro and in vivo drug-drug interaction studies: A pharmaceutical research and manufacturers of america (phrma) perspective. Drug Metab. Dispos. 2003, 31, 815–832. [Google Scholar] [CrossRef]
- Kerns, E. Pharmaceutical Profiling in Drug Discovery. Drug Discov. Today 2003, 8, 316–323. [Google Scholar] [CrossRef]
- Beretta, G.; Facino, R.M. Recent Advances in the Assessment of the Antioxidant Capacity of Pharmaceutical Drugs: From in Vitro to in Vivo Evidence. Anal. Bioanal. Chem. 2010, 398, 67–75. [Google Scholar] [CrossRef]
- Hughes, D.L.; Hughes, A.; Soonawalla, Z.; Mukherjee, S.; O’Neill, E. Dynamic Physiological Culture of Ex Vivo Human Tissue: A Systematic Review. Cancers 2021, 13, 2870. [Google Scholar] [CrossRef]
- Blaauboer, B.J. Biokinetic Modeling and in Vitro–in Vivo Extrapolations. J. Toxicol. Environ. Health Part. B 2010, 13, 242–252. [Google Scholar] [CrossRef]
- Staton, C.A.; Reed, M.W.R.; Brown, N.J. A Critical Analysis of Current in Vitro and in Vivo Angiogenesis Assays. Int. J. Exp. Pathol. 2009, 90, 195–221. [Google Scholar] [CrossRef]
- Mak, I.W.; Evaniew, N.; Ghert, M. Lost in Translation: Animal Models and Clinical Trials in Cancer Treatment. Am. J. Transl. Res. 2014, 6, 114–118. [Google Scholar]
- Jaroch, K.; Jaroch, A.; Bojko, B. Cell Cultures in Drug Discovery and Development: The Need of Reliable in Vitro-In Vivo Extrapolation for Pharmacodynamics and Pharmacokinetics Assessment. J. Pharm. Biomed. Anal. 2018, 147, 297–312. [Google Scholar] [CrossRef]
- Xu, Y.; Shrestha, N.; Préat, V.; Beloqui, A. An Overview of in Vitro, Ex Vivo and in Vivo Models for Studying the Transport of Drugs across Intestinal Barriers. Adv. Drug Deliv. Rev. 2021, 175, 113795. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.K.d.L.; Lamarão, C.V.; Aranha, E.; Souza, R.O.S.; Oliveira, P.D.; Vasconcellos, M.; Lima, E.S.; Veiga-Junior, V.F. HPLC-DAD Profile of Phenolic Compounds, Cytotoxicity, Antioxidant and Anti-Inflammatory Activities of the Amazon Fruit Caryocar Villosum. Quim. Nova 2017, 40, 483–490. [Google Scholar] [CrossRef]
- Esposito, T.; Pisanti, S.; Martinelli, R.; Celano, R.; Mencherini, T.; Re, T.; Aquino, R.P. Couroupita Guianensis Bark Decoction: From Amazonian Medicine to the UHPLC-HRMS Chemical Profile and Its Role in Inflammation Processes and Re-Epithelialization. J. Ethnopharmacol. 2023, 313, 116579. [Google Scholar] [CrossRef]
- Cabral, F.L.; Bernardes, V.M.; Passos, D.F.; de Oliveira, J.S.; Doleski, P.H.; Silveira, K.L.; Horvarth, M.C.; Bremm, J.M.; Barbisan, F.; Azzolin, V.F.; et al. Astrocaryum Aculeatum Fruit Improves Inflammation and Redox Balance in Phytohemagglutinin-Stimulated Macrophages. J. Ethnopharmacol. 2020, 247, 112274. [Google Scholar] [CrossRef]
- Alqurashi, R.M.; Alarifi, S.N.; Walton, G.E.; Costabile, A.F.; Rowland, I.R.; Commane, D.M. In Vitro Approaches to Assess the Effects of Açai (Euterpe oleracea) Digestion on Polyphenol Availability and the Subsequent Impact on the Faecal Microbiota. Food Chem. 2017, 234, 190–198. [Google Scholar] [CrossRef]
- Calandrini de Azevedo, L.F.; Alves Ferreira, T.A.; Melo, K.M.; Porfírio Dias, C.L.; Bastos, C.E.M.C.; Santos, S.F.; da Silva Santos, A.; Nagamachi, C.Y.; Pieczarka, J.C. Aqueous Ethanol Extract of Libidibia Ferrea (Mart. Ex Tul) L.P. Queiroz (Juca) Exhibits Antioxidant and Migration-Inhibiting Activity in Human Gastric Adenocarcinoma (ACP02) Cells. PLoS ONE 2020, 15, e0226979. [Google Scholar] [CrossRef]
- Higuchi, K.; Miyake, T.; Ohmori, S.; Tani, Y.; Minoura, K.; Kikuchi, T.; Yamada, T.; Tanaka, R. Carapanosins A–C from Seeds of Andiroba (Carapa guianensis, Meliaceae) and Their Effects on LPS-Activated NO Production. Molecules 2017, 22, 502. [Google Scholar] [CrossRef]
- de Carvalho, V.S.; Lima, K.M.M.; de Azevedo, L.F.C.; das Neves, P.A.P.F.G.; Borges, R.d.S.; Nagamachi, C.Y.; Pieczarka, J.C. New Derivative of Trans-Dehydrocrotonin Isolated from Croton Cajucara Shows Reduced Cytotoxic and Genotoxic Effects in Hepatocellular Carcinoma (HepG2) Cell Line. Toxicon 2022, 220, 106940. [Google Scholar] [CrossRef]
- Álvarez, A.; JimÉnez, Á.; Méndez, J.; Murillo, E. Chemical and biological study of eugenia stipitata mc vaugh collected in the colombian andean region. Asian J. Pharm. Clin. Res. 2018, 11, 362. [Google Scholar] [CrossRef]
- Alves, C.F.d.S.; Bonez, P.C.; Ebling, M.d.S.; Casagrande, C.; Freitas, L.; Dolwitsch, C.; Pires, F.; Sagrillo, M.R.; de Brum, G.F.; de Campos, M.M.A.; et al. Antimicrobial, Cyto and Genotoxic Activities of Equisetum Hyemale. Pharmacogn. J. 2019, 11, 1563–1571. [Google Scholar] [CrossRef]
- Nogueira-Lima, S.H.C.; Gomes, P.W.P.; Navegantes-Lima, K.C.; Reis, J.D.E.; Carvalho, A.R.V.; Pamplona, S.d.G.S.R.; Muribeca, A.d.J.B.; da Silva, M.N.; Monteiro, M.C.; e Silva, C.Y.Y. The Roots of Deguelia Nitidula as a Natural Antibacterial Source against Staphylococcus Aureus Strains. Metabolites 2022, 12, 1083. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.-H.; Vallejo, G.A.; Garavito, G. Trypanocidal Activity of Traditional Antiparasitic Medicinal Plants from the Amazon. Pharmacogn. Res. 2021, 13, 227–232. [Google Scholar] [CrossRef]
- Da Silva, J.; Da Trindade, R.; Moreira, E.; Maia, J.; Dosoky, N.; Miller, R.; Cseke, L.; Setzer, W. Chemical Diversity, Biological Activity, and Genetic Aspects of Three Ocotea Species from the Amazon. Int. J. Mol. Sci. 2017, 18, 1081. [Google Scholar] [CrossRef] [PubMed]
- de Souza, G.A.; da Silva, N.C.; de Souza, J.; de Oliveira, K.R.; da Fonseca, A.L.; Baratto, L.C.; de Oliveira, E.C.; Varotti, F.d.P.; Moraes, W.P. In Vitro and In Vivo Antimalarial Potential of Oleoresin Obtained from Copaifera Reticulata Ducke (Fabaceae) in the Brazilian Amazon Rainforest. Phytomedicine 2017, 24, 111–118. [Google Scholar] [CrossRef]
- Gatea, F.; Dumitra Teodor, E.; Maria Seciu, A.; Nagodă, E.; Lucian Radu, G. Chemical Constituents and Bioactive Potential of Portulaca pilosa L. vs. Portulaca oleracea L. Med. Chem. Res. 2017, 26, 1516–1527. [Google Scholar] [CrossRef]
- Porfírio-Dias, C.L.; Melo, K.M.; Bastos, C.E.M.C.; Ferreira, T.A.A.; Azevedo, L.F.C.; Salgado, H.L.; Santos, A.S.; Rissino, J.D.; Nagamachi, C.Y.; Pieczarka, J.C. Andiroba Oil (Carapa guianensisAubl) Shows Cytotoxicity but No Mutagenicity in the ACPP02 Gastric Cancer Cell Line. J. Appl. Toxicol. 2020, 40, 1060–1066. [Google Scholar] [CrossRef]
- Jerônimo, L.B.; da Costa, J.S.; Pinto, L.C.; Montenegro, R.C.; Setzer, W.N.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Antioxidant and Cytotoxic Activities of Myrtaceae Essential Oils Rich in Terpenoids from Brazil. Nat. Prod. Commun. 2021, 16. [Google Scholar] [CrossRef]
- Da Silva, J.; Andrade, E.; Barreto, L.; Da Silva, N.; Ribeiro, A.; Montenegro, R.; Maia, J. Chemical Composition of Four Essential Oils of Eugenia from the Brazilian Amazon and Their Cytotoxic and Antioxidant Activity. Medicines 2017, 4, 51. [Google Scholar] [CrossRef]
- Chura, S.S.D.; Memória, K.A.S.; Lopes, A.T.; Pelissari, F.M.; Da Silveira, J.V.W.; Bezerra, J.d.A.; Chaves, F.C.M.; Rodrigues, A.P.; Faria, J.A.Q.A.; Carneiro, G. Red Sacaca Essential Oil-Loaded Nanostructured Lipid Carriers Optimized by Factorial Design: Cytotoxicity and Cellular Reactive Oxygen Species Levels. Front. Pharmacol. 2023, 14, 1176629. [Google Scholar] [CrossRef]
- Marques, E.S.; Tsuboy, M.S.F.; Carvalho, J.C.T.; Rosa, P.C.P.; Perazzo, F.F.; Gaivão, I.O.M.; Maistro, E.L. Research Article First Cytotoxic, Genotoxic, and Antigenotoxic Assessment of Euterpe Oleracea Fruit Oil (Açaí) in Cultured Human Cells. Genet. Mol. Res. 2017, 16, gmr16039700. [Google Scholar] [CrossRef]
- Castro, A.L.G.; Cruz, J.N.; Sodré, D.F.; Correa-Barbosa, J.; Azonsivo, R.; de Oliveira, M.S.; de Sousa Siqueira, J.E.; da Rocha Galucio, N.C.; de Oliveira Bahia, M.; Burbano, R.M.R.; et al. Evaluation of the Genotoxicity and Mutagenicity of Isoeleutherin and Eleutherin Isolated from Eleutherine Plicata Herb. Using Bioassays and in Silico Approaches. Arab. J. Chem. 2021, 14, 103084. [Google Scholar] [CrossRef]
- Pires, F.C.S.; Oliveira, J.C.d.; Menezes, E.G.O.; Silva, A.P.; Ferreira, M.C.R.; Siqueira, L.M.M.; Almada-Vilhena, A.O.; Pieczarka, J.C.; Nagamachi, C.Y.; Carvalho Junior, R.N.d. Bioactive Compounds and Evaluation of Antioxidant, Cytotoxic and Cytoprotective Effects of Murici Pulp Extracts (Byrsonima crassifolia) Obtained by Supercritical Extraction in HepG2 Cells Treated with H2O2. Foods 2021, 10, 737. [Google Scholar] [CrossRef] [PubMed]
- Pavan, E.; Damazo, A.S.; Lemos, L.M.S.; Adzu, B.; Balogun, S.O.; Arunachalam, K.; Martins, D.T.d.O. Evaluation of Genotoxicity and Subchronic Toxicity of the Standardized Leaves Infusion Extract of Copaifera Malmei Harms in Experimental Models. J. Ethnopharmacol. 2018, 211, 70–77. [Google Scholar] [CrossRef]
- Araujo-Lima, C.F.; Fernandes, A.S.; Gomes, E.M.; Oliveira, L.L.; Macedo, A.F.; Antoniassi, R.; Wilhelm, A.E.; Aiub, C.A.F.; Felzenszwalb, I. Antioxidant Activity and Genotoxic Assessment of Crabwood (Andiroba, Carapa guianensis Aublet) Seed Oils. Oxid. Med. Cell Longev. 2018, 2018, 3246719. [Google Scholar] [CrossRef]
- Quadros Gomes, A.R.; da Rocha Galucio, N.C.; de Albuquerque, K.C.O.; Brígido, H.P.C.; Varela, E.L.P.; Castro, A.L.G.; Vale, V.V.; Bahia, M.O.; Rodriguez Burbano, R.M.; de Molfeta, F.A.; et al. Toxicity Evaluation of Eleutherine plicata Herb. Extracts and Possible Cell Death Mechanism. Toxicol. Rep. 2021, 8, 1480–1487. [Google Scholar] [CrossRef]
- Milhomem-Paixão, S.S.R.; Fascineli, M.L.; Muehlmann, L.A.; Melo, K.M.; Salgado, H.L.C.; Joanitti, G.A.; Pieczarka, J.C.; Azevedo, R.B.; Santos, A.S.; Grisolia, C.K. Andiroba Oil (Carapa Guianensis Aublet) Nanoemulsions: Development and Assessment of Cytotoxicity, Genotoxicity, and Hematotoxicity. J. Nanomater. 2017, 2017, 4362046. [Google Scholar] [CrossRef]
- Prinsloo, G.; Nogemane, N. The Effects of Season and Water Availability on Chemical Composition, Secondary Metabolites and Biological Activity in Plants. Phytochem. Rev. 2018, 17, 889–902. [Google Scholar] [CrossRef]
- Saleem, H.; Ahmad, I.; Zengin, G.; Mahomoodally, F.M.; Khan, K.-U.-R.; Ahsan, H.M.; Abidin, S.A.Z.; Ahemad, N. Comparative Secondary Metabolites Profiling and Biological Activities of Aerial, Stem and Root Parts of Salvadora oleoides Decne (Salvadoraceae). Nat. Prod. Res. 2020, 34, 3373–3377. [Google Scholar] [CrossRef]
- Hamdi, D.; Hafidi, A.; Lemaire, J.J.; Messaoud, C. A Comparative Study of Secondary Metabolites Profiling and Biological Activity of Smyrnium olusatrum L. Leaf, Flower and Fruit. Nat. Prod. Res. 2024, 2024, 1–15. [Google Scholar] [CrossRef]
- Gadetskaya, A.V.; Mohamed, S.M.; Tarawneh, A.H.; Mohamed, N.M.; Ma, G.; Ponomarev, B.N.; Zhusupova, G.E.; Cantrell, C.L.; Cutler, S.J.; Ross, S.A. Phytochemical Characterization and Biological Activity of Secondary Metabolites from Three Limonium Species. Med. Chem. Res. 2017, 26, 2743–2750. [Google Scholar] [CrossRef]
- Rafińska, K.; Pomastowski, P.; Rudnicka, J.; Krakowska, A.; Maruśka, A.; Narkute, M.; Buszewski, B. Effect of Solvent and Extraction Technique on Composition and Biological Activity of Lepidium sativum Extracts. Food Chem. 2019, 289, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic Substances Biological Activity at the Plant-Soil Interface. Plant Signal Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Irina, I.; Mohame, G. Biological Activities and Effects of Food Processing on Flavonoids as Phenolic Antioxidants. Advances in Applied Biotechnology, InTech: Houston TX, USA, 2012. [Google Scholar]
- Lu, X.; Li, W.; Wang, Q.; Wang, J.; Qin, S. Progress on the Extraction, Separation, Biological Activity, and Delivery of Natural Plant Pigments. Molecules 2023, 28, 5364. [Google Scholar] [CrossRef]
- Santos, J.S.; Escher, G.B.; Vieira do Carmo, M.; Azevedo, L.; Boscacci Marques, M.; Daguer, H.; Molognoni, L.; Inés Genovese, M.; Wen, M.; Zhang, L.; et al. A New Analytical Concept Based on Chemistry and Toxicology for Herbal Extracts Analysis: From Phenolic Composition to Bioactivity. Food Res. Int. 2020, 132, 109090. [Google Scholar] [CrossRef]
- Adamski, Z.; Blythe, L.L.; Milella, L.; Bufo, S.A. Biological Activities of Alkaloids: From Toxicology to Pharmacology. Toxins 2020, 12, 210. [Google Scholar] [CrossRef]
- Taroncher, M.; Vila-Donat, P.; Tolosa, J.; Ruiz, M.J.; Rodríguez-Carrasco, Y. Biological Activity and Toxicity of Plant Nutraceuticals: An Overview. Curr. Opin. Food Sci. 2021, 42, 113–118. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F. Phenolic Compounds in Olive Oil: Antioxidant, Health and Organoleptic Activities According to Their Chemical Structure. Inflammopharmacology 2009, 17, 76–84. [Google Scholar] [CrossRef]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 253–271. [Google Scholar]
- Vermerris, W.; Nicholson, R. Phenolic Compound Biochemistry; Springer Netherlands: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-5163-0. [Google Scholar]
- Tsimogiannis, D.; Oreopoulou, V. Classification of Phenolic Compounds in Plants. In Polyphenols in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 263–284. [Google Scholar]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Phenolic Compounds. In Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. [Google Scholar]
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. In Phenolic Compounds–Biological Activity; InTech: Orlando, FL, USA, 2017. [Google Scholar]
- Sauceda, A.E.Q.; Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Wall-Medrano, A.; de la Rosa, L.A.; González-Aguilar, G.A.; Álvarez-Parrilla, E. Biological Actions of Phenolic Compounds. In Fruit and Vegetable Phytochemicals; Wiley: Hoboken, NJ, USA, 2017; pp. 125–138. [Google Scholar]
- Kang, J.; Thakali, K.M.; Xie, C.; Kondo, M.; Tong, Y.; Ou, B.; Jensen, G.; Medina, M.B.; Schauss, A.G.; Wu, X. Bioactivities of Açaí (Euterpe precatoria Mart.) Fruit Pulp, Superior Antioxidant and Anti-Inflammatory Properties to Euterpe Oleracea Mart. Food Chem. 2012, 133, 671–677. [Google Scholar] [CrossRef]
- de Oliveira, A.C.; Miyagawa, L.M.; Monteiro, K.M.; Dias, A.L.S.; Longato, G.B.; Spindola, H.; Vendramini-Costa, D.B.; Quetin-Leclercq, J.; Carvalho, J.E.; Rogez, H. Phenolic Composition, Antiproliferative and Antiulcerogenic Activities of a Polyphenol-rich Purified Extract from Açai (Euterpe oleracea) Fruits. Int. J. Food Sci. Technol. 2021, 56, 6626–6634. [Google Scholar] [CrossRef]
- de Moura, R.S.; Resende, Â.C. Cardiovascular and Metabolic Effects of Açaí, an Amazon Plant. J. Cardiovasc. Pharmacol. 2016, 68, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Azevedo, D.; Barata, P.; Soares, R.; Guido, L.F.; Carvalho, D.O. Antiangiogenic and Antioxidant In Vitro Properties of Hydroethanolic Extract from Açaí (Euterpe oleracea) Dietary Powder Supplement. Molecules 2021, 26, 2011. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.K.; Andreazza, A.C.; da Silva, T.M.; Boligon, A.A.; do Nascimento, V.; Scola, G.; Duong, A.; Cadoná, F.C.; Ribeiro, E.E.; da Cruz, I.B.M. Neuroprotective Effects of Açaí (Euterpe oleracea Mart.) against Rotenone In Vitro Exposure. Oxid. Med. Cell Longev. 2016, 2016, 8940850. [Google Scholar] [CrossRef] [PubMed]
- ALNasser, M.N.; AlSaadi, A.M.; Whitby, A.; Kim, D.-H.; Mellor, I.R.; Carter, W.G. Acai Berry (Euterpe sp.) Extracts Are Neuroprotective against L-Glutamate-Induced Toxicity by Limiting Mitochondrial Dysfunction and Cellular Redox Stress. Life 2023, 13, 1019. [Google Scholar] [CrossRef]
- Moazzen, A.; Öztinen, N.; Ak-Sakalli, E.; Koşar, M. Structure-Antiradical Activity Relationships of 25 Natural Antioxidant Phenolic Compounds from Different Classes. Heliyon 2022, 8, e10467. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 882458. [Google Scholar] [CrossRef]
- Charlton, N.C.; Mastyugin, M.; Török, B.; Török, M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023, 28, 1057. [Google Scholar] [CrossRef]
- Chen, M.; Li, Z.; Sun, G.; Jin, S.; Hao, X.; Zhang, C.; Liu, L.; Zhang, L.; Liu, H.; Xue, Y. Theoretical Study on the Free Radical Scavenging Potency and Mechanism of Natural Coumestans: Roles of Substituent, Noncovalent Interaction and Solvent. Phytochemistry 2023, 207, 113580. [Google Scholar] [CrossRef]
- Ceramella, J.; Loizzo, M.R.; Iacopetta, D.; Bonesi, M.; Sicari, V.; Pellicanò, T.M.; Saturnino, C.; Malzert-Fréon, A.; Tundis, R.; Sinicropi, M.S. Anchusa Azurea Mill. (Boraginaceae) Aerial Parts Methanol Extract Interfering with Cytoskeleton Organization Induces Programmed Cancer Cells Death. Food Funct. 2019, 10, 4280–4290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Liu, M.; Ma, Q.; Hao, Z.; Tang, S.; Dai, C. Ellagic Acid Supplementation Ameliorates Cisplatin-Induced Liver Injury in Mice by Inhibiting the NF-ΚB Pathway and Activating the Nrf2/HO-1 Pathway. One Health Adv. 2024, 2, 20. [Google Scholar] [CrossRef]
- Čižmáriková, M.; Michalková, R.; Mirossay, L.; Mojžišová, G.; Zigová, M.; Bardelčíková, A.; Mojžiš, J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023, 13, 1653. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Sezgin-Bayindir, Z.; Losada-Barreiro, S.; Paiva-Martins, F.; Saso, L.; Bravo-Díaz, C. Polyphenols as Antioxidants for Extending Food Shelf-Life and in the Prevention of Health Diseases: Encapsulation and Interfacial Phenomena. Biomedicines 2021, 9, 1909. [Google Scholar] [CrossRef]
- Rudrapal, M.; Eltayeb, W.A.; Rakshit, G.; El-Arabey, A.A.; Khan, J.; Aldosari, S.M.; Alshehri, B.; Abdalla, M. Dual Synergistic Inhibition of COX and LOX by Potential Chemicals from Indian Daily Spices Investigated through Detailed Computational Studies. Sci. Rep. 2023, 13, 8656. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Yilmaz, H.; Gultekin Subasi, B.; Celebioglu, H.U.; Ozdal, T.; Capanoglu, E. Chemistry of Protein-Phenolic Interactions Toward the Microbiota and Microbial Infections. Front. Nutr. 2022, 9, 914118. [Google Scholar] [CrossRef]
- Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-Inflammatory Effects of Flavonoids in Neurodegenerative Disorders. Eur. J. Med. Chem. 2018, 153, 105–115. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Jia, G.; Shao, X.; Zhao, R.; Zhang, T.; Zhou, X.; Yang, Y.; Li, T.; Chen, Z.; Liu, Y. Portulaca oleracea L. Polysaccharides Enhance the Immune Efficacy of Dendritic Cell Vaccine for Breast Cancer. Food Funct. 2021, 12, 4046–4059. [Google Scholar] [CrossRef]
- Farooqi, A.A.; Rakhmetova, V.; Kapanova, G.; Mussakhanova, A.; Tashenova, G.; Tulebayeva, A.; Akhenbekova, A.; Xu, B. Suppressive Effects of Bioactive Herbal Polysaccharides against Different Cancers: From Mechanisms to Translational Advancements. Phytomedicine 2023, 110, 154624. [Google Scholar] [CrossRef] [PubMed]
- Pragti; Kundu, B.K.; Mukhopadhyay, S. Target Based Chemotherapeutic Advancement of Ruthenium Complexes. Coord. Chem. Rev. 2021, 448, 214169. [Google Scholar] [CrossRef]
- Estrela, J.M.; Mena, S.; Obrador, E.; Benlloch, M.; Castellano, G.; Salvador, R.; Dellinger, R.W. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. J. Med. Chem. 2017, 60, 9413–9436. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Rodrigues, S.; Fonseca, R.; Silva, L.R. Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports. Pharmaceuticals 2024, 17, 590. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An Overview on the Role of Dietary Phenolics for the Treatment of Cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef]
- Gahtori, R.; Tripathi, A.H.; Kumari, A.; Negi, N.; Paliwal, A.; Tripathi, P.; Joshi, P.; Rai, R.C.; Upadhyay, S.K. Anticancer Plant-Derivatives: Deciphering Their Oncopreventive and Therapeutic Potential in Molecular Terms. Futur. J. Pharm. Sci. 2023, 9, 14. [Google Scholar] [CrossRef]
- Rajaselvi, N.D.; Jida, M.D.; Ajeeshkumar, K.K.; Nair, S.N.; John, P.; Aziz, Z.; Nisha, A.R. Antineoplastic Activity of Plant-Derived Compounds Mediated through Inhibition of Histone Deacetylase: A Review. Amino Acids 2023, 55, 1803–1817. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Seidel, V.; Izabela, M.; Monserrat-Mequida, M.; Sureda, A.; Ormazabal, V.; Zuniga, F.A.; Mangalpady, S.S.; Pezzani, R.; Ydyrys, A.; et al. Phenolic Compounds as Nrf2 Inhibitors: Potential Applications in Cancer Therapy. Cell Commun. Signal. 2023, 21, 89. [Google Scholar] [CrossRef]
- Ahmad, S.; Alam, K.; Hossain, M.M.; Fatima, M.; Firdaus, F.; Zafeer, M.F.; Arif, Z.; Ahmed, M.; Nafees, K.A. Anti-Arthritogenic and Cardioprotective Action of Hesperidin and Daidzein in Collagen-Induced Rheumatoid Arthritis. Mol. Cell Biochem. 2016, 423, 115–127. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhu, Y.; Liu, J.; Liu, S. Subclinical Hypothyroidism Contributes to Poor Glycemic Control in Patients with Type 2 Diabetes Mellitus, and Ellagic Acid Attenuates Methimazole-induced Abnormal Glucose Metabolism in Mice Model. J. Food Biochem. 2021, 45, e13753. [Google Scholar] [CrossRef]
- Ghorani, V.; Alavinezhad, A.; Rajabi, O.; Mohammadpour, A.H.; Boskabady, M.H. Safety and Tolerability of Carvacrol in Healthy Subjects: A Phase I Clinical Study. Drug Chem. Toxicol. 2021, 44, 177–189. [Google Scholar] [CrossRef]
- Ghadimi, M.; Foroughi, F.; Hashemipour, S.; Rashidi Nooshabadi, M.; Ahmadi, M.H.; Ahadi Nezhad, B.; Khadem Haghighian, H. Randomized Double-blind Clinical Trial Examining the Ellagic Acid Effects on Glycemic Status, Insulin Resistance, Antioxidant, and Inflammatory Factors in Patients with Type 2 Diabetes. Phytother. Res. 2021, 35, 1023–1032. [Google Scholar] [CrossRef]
- Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi Foroushani, A.; Jazayeri, S. The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial. J. Am. Coll. Nutr. 2017, 36, 9–15. [Google Scholar] [CrossRef]
- Cao, J.; Han, J.; Xiao, H.; Qiao, J.; Han, M. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics. Nutrients 2016, 8, 762. [Google Scholar] [CrossRef]
- Samuel, V.P.; Gupta, G.; Dahiya, R.; Jain, D.A.; Mishra, A.; Dua, K. Current Update on Preclinical and Clinical Studies of Resveratrol, a Naturally Occurring Phenolic Compound. Crit. Rev. Eukaryot. Gene Expr. 2019, 29, 529–537. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
- Puupponen-Pimia, R.; Nohynek, L.; Meier, C.; Kahkonen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.-M. Antimicrobial Properties of Phenolic Compounds from Berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
- Mandal, S.M.; Dias, R.O.; Franco, O.L. Phenolic Compounds in Antimicrobial Therapy. J. Med. Food 2017, 20, 1031–1038. [Google Scholar] [CrossRef]
- Dikpınar, T.; Süzgeç-Selçuk, S. Antimicrobial Activities of Medicinal Plants Containing Phenolic Compounds. Nat. Prod. J. 2020, 10, 514–534. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Vila-Nova, N.S.; Morais, S.M.; Falcão, M.J.C.; Bevilaqua, C.M.L.; Rondon, F.C.M.; Wilson, M.E.; Vieira, I.G.P.; Andrade, H.F. Leishmanicidal and Cholinesterase Inhibiting Activities of Phenolic Compounds of Dimorphandra Gardneriana and Platymiscium Floribundum, Native Plants from Caatinga Biome. Pesqui. Veterinária Bras. 2012, 32, 1164–1168. [Google Scholar] [CrossRef]
- Kauffmann, A.C.; Castro, V.S. Phenolic Compounds in Bacterial Inactivation: A Perspective from Brazil. Antibiotics 2023, 12, 645. [Google Scholar] [CrossRef] [PubMed]
- Masiala, A.; Vingadassalon, A.; Aurore, G. Polyphenols in Edible Plant Leaves: An Overview of Their Occurrence and Health Properties. Food Funct. 2024, 15, 6847–6882. [Google Scholar] [CrossRef]
- Mahamud, A.U.; Ashrafudoulla; Nahar, S.; Chowdhury, A.H.; Park, S.H.; Ha, S.-D. Luteolin Exhibits Antimicrobial Actions against Salmonella Typhimurium and Escherichia coli: Impairment of Cell Adhesion, Membrane Integrity, and Energy Metabolism. Food Control 2024, 166, 110734. [Google Scholar] [CrossRef]
- Ding, Y.; Wen, G.; Wei, X.; Zhou, H.; Li, C.; Luo, Z.; Ou, D.; Yang, J.; Song, X. Antibacterial Activity and Mechanism of Luteolin Isolated from Lophatherum Gracile Brongn. against Multidrug-Resistant Escherichia coli. Front. Pharmacol. 2024, 15, 1430564. [Google Scholar] [CrossRef]
- Reen, F.J.; Gutiérrez-Barranquero, J.A.; Parages, M.L.; O’Gara, F. Coumarin: A Novel Player in Microbial Quorum Sensing and Biofilm Formation Inhibition. Appl. Microbiol. Biotechnol. 2018, 102, 2063–2073. [Google Scholar] [CrossRef]
- Lipeeva, A.V.; Zakharov, D.O.; Burova, L.G.; Frolova, T.S.; Baev, D.S.; Shirokikh, I.V.; Evstropov, A.N.; Sinitsyna, O.I.; Tolsikova, T.G.; Shults, E.E. Design, Synthesis and Antibacterial Activity of Coumarin-1,2,3-Triazole Hybrids Obtained from Natural Furocoumarin Peucedanin. Molecules 2019, 24, 2126. [Google Scholar] [CrossRef]
- Ivanov, M.; Novović, K.; Malešević, M.; Dinić, M.; Stojković, D.; Jovčić, B.; Soković, M. Polyphenols as Inhibitors of Antibiotic Resistant Bacteria—Mechanisms Underlying Rutin Interference with Bacterial Virulence. Pharmaceuticals 2022, 15, 385. [Google Scholar] [CrossRef]
- Silvestre, A.J.D.; Gandini, A. Terpenes: Major Sources, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008; pp. 17–38. [Google Scholar]
- Déclaire Mabou, F.; Belinda, I.; Yossa, N. TERPENES: Structural Classification and Biological Activities. IOSR J. Pharm. Biol. Sci. (IOSR-JPBS) 2021, 16, 25–40. [Google Scholar] [CrossRef]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of Terpenes and Recent Advances in Plant Protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef]
- de Santana Souza, M.T.; Almeida, J.R.G.d.S.; de Souza Araujo, A.A.; Duarte, M.C.; Gelain, D.P.; Moreira, J.C.F.; dos Santos, M.R.V.; Quintans-Júnior, L.J. Structure–Activity Relationship of Terpenes with Anti-Inflammatory Profile—A Systematic Review. Basic. Clin. Pharmacol. Toxicol. 2014, 115, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Dambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygadlo, J.A. Terpenes: Natural Products for Controlling Insects of Importance to Human Health—A Structure-Activity Relationship Study. Psyche A J. Entomol. 2016, 2016, 4595823. [Google Scholar] [CrossRef]
- Del Prado-Audelo, M.L.; Cortés, H.; Caballero-Florán, I.H.; González-Torres, M.; Escutia-Guadarrama, L.; Bernal-Chávez, S.A.; Giraldo-Gomez, D.M.; Magaña, J.J.; Leyva-Gómez, G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front. Pharmacol. 2021, 12, 704197. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.M.; Figueira, M.M.; Schmitt, E.F.P.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. In Vitro Anti-Inflammatory Activity of Terpenes via Suppression of Superoxide and Nitric Oxide Generation and the NF-ΚB Signalling Pathway. Inflammopharmacology 2019, 27, 281–289. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.D.; Alvarez-Rivera, G.; Gallego, R.; Fagundes, M.B.; Valdés, A.; Mendiola, J.A.; Ibañez, E.; Cifuentes, A. Neuroprotective Potential of Terpenoid-Rich Extracts from Orange Juice by-Products Obtained by Pressurized Liquid Extraction. Food Chem. X 2022, 13, 100242. [Google Scholar] [CrossRef]
- Pan, X.; Rudolf, J.D.; Dong, L.-B. Class II Terpene Cyclases: Structures, Mechanisms, and Engineering. Nat. Prod. Rep. 2024, 41, 402–433. [Google Scholar] [CrossRef]
- Hosseini, M.; Pereira, D.M. The Chemical Space of Terpenes: Insights from Data Science and AI. Pharmaceuticals 2023, 16, 202. [Google Scholar] [CrossRef]
- Schervish, M.; Heinritzi, M.; Stolzenburg, D.; Dada, L.; Wang, M.; Ye, Q.; Hofbauer, V.; DeVivo, J.; Bianchi, F.; Brilke, S.; et al. Interactions of Peroxy Radicals from Monoterpene and Isoprene Oxidation Simulated in the Radical Volatility Basis Set. Environ. Sci. Atmos. 2024, 4, 740–753. [Google Scholar] [CrossRef]
- Câmara, J.S.; Perestrelo, R.; Ferreira, R.; Berenguer, C.V.; Pereira, J.A.M.; Castilho, P.C. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications—A Comprehensive Overview. Molecules 2024, 29, 3861. [Google Scholar] [CrossRef]
- Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Terpenoids: Natural Inhibitors of NF-ΚB Signaling with Anti-Inflammatory and Anticancer Potential. Cell. Mol. Life Sci. 2008, 65, 2979–2999. [Google Scholar] [CrossRef]
- Yuan, H.-L.; Zhao, Y.-L.; Ding, C.-F.; Zhu, P.-F.; Jin, Q.; Liu, Y.-P.; Ding, Z.-T.; Luo, X.-D. Anti-Inflammatory and Antinociceptive Effects of Curcuma Kwangsiensis and Its Bioactive Terpenoids in Vivo and in Vitro. J. Ethnopharmacol. 2020, 259, 112935. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Tan, X.; Chen, X.; Hu, T.; Jiang, J.; Li, Q.; Chen, X.; Tan, H.; Qian, B. D-Limonenefor Regulating Metabolism-associated Fatty Liver Disease (MAFLD) and Analysis of the TCM Constitution: A Protocol for an Exploratory, Randomized, Double-blind, Placebo-controlled Trial (DL-MAFLD-TCM). Food Front. 2022, 3, 550–559. [Google Scholar] [CrossRef]
- James, S.O.; Bouzidi, L.; Emery, R.J.N.; Narine, S.S. Lipid Fractionation and Physicochemical Characterization of Carapa Guianensis Seed Oil from Guyana. Processes 2023, 11, 2565. [Google Scholar] [CrossRef]
- Shi, Y.-S.; Zhang, Y.; Li, H.-T.; Wu, C.-H.; El-Seedi, H.R.; Ye, W.-K.; Wang, Z.-W.; Li, C.-B.; Zhang, X.-F.; Kai, G.-Y. Limonoids from Citrus: Chemistry, Anti-Tumor Potential, and Other Bioactivities. J. Funct. Foods 2020, 75, 104213. [Google Scholar] [CrossRef]
- Vu, T.O.; Seo, W.; Lee, J.-H.; Byung, S.-M.; Kim, J.A. Terpenoids from Citrus Unshiu Peels and Their Effects on NO Production. Nat. Product. Sci. 2020, 26, 176–181. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Z.; Li, C.; Qin, G.; Hu, X.; Guo, P.; Ding, A.; Xu, W.; Wang, W.; Xuan, L. Haperforatones A-M, Thirteen Undescribed Limonoids from Harrisonia Perforata with Anti-Inflammatory Activity. Bioorg. Chem. 2024, 151, 107631. [Google Scholar] [CrossRef]
- Penido, C.; Conte, F.P.; Chagas, M.S.S.; Rodrigues, C.A.B.; Pereira, J.F.G.; Henriques, M.G.M.O. Antiinflammatory Effects of Natural Tetranortriterpenoids Isolated from Carapa Guianensis Aublet on Zymosan-Induced Arthritis in Mice. Inflamm. Res. 2006, 55, 457–464. [Google Scholar] [CrossRef]
- Penido, C.; Costa, K.A.; Pennaforte, R.J.; Costa, M.F.S.; Pereira, J.F.G.; Siani, A.C.; Henriques, M.G.M.O. Anti-Allergic Effects of Natural Tetranortriterpenoids Isolated from Carapa Guianensis Aublet on Allergen-Induced Vascular Permeability and Hyperalgesia. Inflamm. Res. 2005, 54, 295–303. [Google Scholar] [CrossRef]
- Fonseca, A.S.A.d.; Monteiro, I.d.S.; dos Santos, C.R.; Carneiro, M.L.B.; Morais, S.S.; Araújo, P.L.; Santana, T.F.; Joanitti, G.A. Effects of Andiroba Oil (Carapa Guianensis Aublet) on the Immune System in Inflammation and Wound Healing: A Scoping Review. J. Ethnopharmacol. 2024, 327, 118004. [Google Scholar] [CrossRef]
- Wang, S.; Alseekh, S.; Fernie, A.R.; Luo, J. The Structure and Function of Major Plant Metabolite Modifications. Mol. Plant 2019, 12, 899–919. [Google Scholar] [CrossRef]
- Bauer, J.; Kuehnl, S.; Rollinger, J.M.; Scherer, O.; Northoff, H.; Stuppner, H.; Werz, O.; Koeberle, A. Carnosol and Carnosic Acids from Salvia officinalis Inhibit Microsomal Prostaglandin E2 Synthase-1. J. Pharmacol. Exp. Ther. 2012, 342, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Kingston, D.G.I. Taxol: The Chemistry and Structure-Activity Relationships of a Novel Anticancer Agent. Trends Biotechnol. 1994, 12, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Estévez-Sarmiento, F.; Saavedra, E.; Ruiz-Estévez, M.; León, F.; Quintana, J.; Brouard, I.; Estévez, F. Chlorinated Guaiane-Type Sesquiterpene Lactones as Cytotoxic Agents Against Human Tumor Cells. Int. J. Mol. Sci. 2020, 21, 9767. [Google Scholar] [CrossRef] [PubMed]
- Mun, H.; Townley, H.E. Mechanism of Action of the Sesquiterpene Compound Helenalin in Rhabdomyosarcoma Cells. Pharmaceuticals 2021, 14, 1258. [Google Scholar] [CrossRef]
- Dhyani, P.; Sati, P.; Sharma, E.; Attri, D.C.; Bahukhandi, A.; Tynybekov, B.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Suleria, H.A.R.; et al. Sesquiterpenoid Lactones as Potential Anti-Cancer Agents: An Update on Molecular Mechanisms and Recent Studies. Cancer Cell Int. 2022, 22, 305. [Google Scholar] [CrossRef]
- Yari, E.; Sari, S.; Kelidari, H.; Asare-Addo, K.; Nokhodchi, A. Effect of Rosa Damascena Essential Oil Loaded in Nanostructured Lipid Carriers on the Proliferation of Human Breast Cancer Cell Line MDA-MB-231 in Comparison with Cisplatin. J. Pharm. Innov. 2024, 19, 4. [Google Scholar] [CrossRef]
- Najjari, N.; Sari, S.; Saffari, M.; Kelidari, H.; Nokhodchi, A. Formulation Optimization and Characterization of Pistacia Atlantica Desf. Essential Oil-Loaded Nanostructured Lipid Carriers on the Proliferation of Human Breast Cancer Cell Line SKBR3 (In Vitro Studies). J. Herb. Med. 2022, 36, 100600. [Google Scholar] [CrossRef]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef]
- da Silva, G.H.R.; de Moura, L.D.; de Carvalho, F.V.; Geronimo, G.; Mendonça, T.C.; de Lima, F.F.; de Paula, E. Antineoplastics Encapsulated in Nanostructured Lipid Carriers. Molecules 2021, 26, 6929. [Google Scholar] [CrossRef]
- El-Baba, C.; Baassiri, A.; Kiriako, G.; Dia, B.; Fadlallah, S.; Moodad, S.; Darwiche, N. Terpenoids’ Anti-Cancer Effects: Focus on Autophagy. Apoptosis 2021, 26, 491–511. [Google Scholar] [CrossRef]
- Tomko, A.M.; Whynot, E.G.; Ellis, L.D.; Dupré, D.J. Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers 2020, 12, 1985. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.Y.; Sp, N.; Lee, J.-M.; Jang, K.-J. Antitumor Effects of Ursolic Acid through Mediating the Inhibition of STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer Cells. Biomedicines 2021, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Hei, B.; Liu, R.; Li, M. Ursolic Acid Inhibits Glioblastoma through Suppressing TGFβ-Mediated Epithelial-Mesenchymal Transition (EMT) and Angiogenesis. Heliyon 2024, 10, e27722. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, Y.; Zhu, Y.; Zhou, B.; Ren, C.; Liang, S.; Guo, Y. α-Pinene Induces Apoptotic Cell Death via Caspase Activation in Human Ovarian Cancer Cells. Med. Sci. Monit. 2019, 25, 6631–6638. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, R.; Kanimozhi, G.; Prasad, N.R.; Agilan, B.; Ganesan, M.; Srithar, G. Alpha Pinene Modulates UVA-Induced Oxidative Stress, DNA Damage and Apoptosis in Human Skin Epidermal Keratinocytes. Life Sci. 2018, 212, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.W.; Kim, M. β-Caryophyllene Oxide Inhibits Metastasis by Downregulating MMP-2, p-p38 and p-ERK in Human Fibrosarcoma Cells. J. Food Biochem. 2022, 46. [Google Scholar] [CrossRef]
- Cabaj, J.; Bąk, W.; Wróblewska-Łuczka, P. Anti-Cancer Effect of Betulin and Its Derivatives, with Particular Emphasis on the Treatment of Melanoma. J. Pre-Clin. Clin. Res. 2021, 15, 73–79. [Google Scholar] [CrossRef]
- Lombrea, A.; Scurtu, A.D.; Avram, S.; Pavel, I.Z.; Turks, M.; Lugiņina, J.; Peipiņš, U.; Dehelean, C.A.; Soica, C.; Danciu, C. Anticancer Potential of Betulonic Acid Derivatives. Int. J. Mol. Sci. 2021, 22, 3676. [Google Scholar] [CrossRef]
- Wróblewska-Łuczka, P.; Cabaj, J.; Bąk, W.; Bargieł, J.; Grabarska, A.; Góralczyk, A.; Łuszczki, J.J. Additive Interactions between Betulinic Acid and Two Taxanes in In Vitro Tests against Four Human Malignant Melanoma Cell Lines. Int. J. Mol. Sci. 2022, 23, 9641. [Google Scholar] [CrossRef]
- Jaskulska, A.; Janecka, A.E.; Gach-Janczak, K. Thapsigargin—From Traditional Medicine to Anticancer Drug. Int. J. Mol. Sci. 2020, 22, 4. [Google Scholar] [CrossRef]
- YANG, Y.-H.; MAO, J.-W.; TAN, X.-L. Research Progress on the Source, Production, and Anti-Cancer Mechanisms of Paclitaxel. Chin. J. Nat. Med. 2020, 18, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; et al. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. Oxid. Med. Cell Longev. 2021, 2021, 3687700. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of Cancer Cell Death Induction by Paclitaxel: An Updated Review. Apoptosis 2022, 27, 647–667. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Saleem, S.; Chaudhuri, A.; Ali, J.; Baboota, S. Docetaxel: An Update on Its Molecular Mechanisms, Therapeutic Trajectory and Nanotechnology in the Treatment of Breast, Lung and Prostate Cancer. J. Drug Deliv. Sci. Technol. 2020, 60, 101959. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Ye, Q.; Huang, H.; Zheng, W.-Y. An Overview of Available Antimalarials: Discovery, Mode of Action and Drug Resistance. Curr. Mol. Med. 2020, 20, 583–592. [Google Scholar] [CrossRef]
- Lyu, H.-N.; Ma, N.; Meng, Y.; Zhang, X.; Wong, Y.-K.; Xu, C.; Liao, F.; Jiang, T.; Tu, Y.; Wang, J. Study towards Improving Artemisinin-Based Combination Therapies. Nat. Prod. Rep. 2021, 38, 1243–1250. [Google Scholar] [CrossRef]
- Zhou, Q. Anticancer Potential of Artemisinin and Its Derivatives. Highlights Sci. Eng. Technol. 2023, 65, 129–133. [Google Scholar] [CrossRef]
- Qin, R.; Yang, S.; Fu, B.; Chen, Y.; Zhou, M.; Qi, Y.; Xu, N.; Wu, Q.; Hua, Q.; Wu, Y.; et al. Antibacterial Activity and Mechanism of the Sesquiterpene δ-Cadinene against Listeria Monocytogenes. Learn. Without Tears 2024, 203, 116388. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Feng, Q.; Liu, L.; Levin, D.E.; Roy, K.K.; Doerksen, R.J.; Baerson, S.R.; Shi, X.; Pan, X.; Xu, W.-H.; et al. Puupehenone, a Marine-Sponge-Derived Sesquiterpene Quinone, Potentiates the Antifungal Drug Caspofungin by Disrupting Hsp90 Activity and the Cell Wall Integrity Pathway. Msphere 2020, 5, 10–1128. [Google Scholar] [CrossRef]
- Annang, F.; Pérez-Victoria, I.; Appiah, T.; Pérez-Moreno, G.; Domingo, E.; Martín, J.; Mackenzie, T.; Ruiz-Pérez, L.; González-Pacanowska, D.; Genilloud, O.; et al. Antiprotozoan Sesterterpenes and Triterpenes Isolated from Two Ghanaian Mushrooms. Fitoterapia 2018, 127, 341–348. [Google Scholar] [CrossRef]
- Sadiq, M.B.; Tharaphan, P.; Chotivanich, K.; Tarning, J.; Anal, A.K. In Vitro Antioxidant and Antimalarial Activities of Leaves, Pods and Bark Extracts of Acacia nilotica (L.) Del. BMC Complement. Altern. Med. 2017, 17, 372. [Google Scholar] [CrossRef] [PubMed]
- Mendanha, S.A.; Alonso, A. Effects of Terpenes on Fluidity and Lipid Extraction in Phospholipid Membranes. Biophys. Chem. 2015, 198, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Scheelje, F.C.M.; Destaso, F.C.; Cramail, H.; Meier, M.A.R. Nitrogen-Containing Polymers Derived from Terpenes: Possibilities and Limitations. Macromol. Chem. Phys. 2023, 224, 2200403. [Google Scholar] [CrossRef]
- Vermaas, J.V.; Bentley, G.J.; Beckham, G.T.; Crowley, M.F. Membrane Permeability of Terpenoids Explored with Molecular Simulation. J. Phys. Chem. B 2018, 122, 10349–10361. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M.; Hoskins, A.A. Lehninger Principles of Biochemistry, 8th ed.; Springer: Berlin, Germany, 2022. [Google Scholar]
- Mukerjee, S.; Saeedan, A.S.; Ansari, M.N.; Singh, M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. Membranes 2021, 11, 479. [Google Scholar] [CrossRef]
- Scott, J.S.; Nassar, Z.D.; Swinnen, J.V.; Butler, L.M. Monounsaturated Fatty Acids: Key Regulators of Cell Viability and Intracellular Signaling in Cancer. Mol. Cancer Res. 2022, 20, 1354–1364. [Google Scholar] [CrossRef]
- Roy, R.; Roseblade, A.; Rawling, T. Expansion of the Structure-Activity Relationship of Branched Chain Fatty Acids: Effect of Unsaturation and Branching Group Size on Anticancer Activity. Chem. Phys. Lipids 2020, 232, 104952. [Google Scholar] [CrossRef]
- Asefy, Z.; Tanomand, A.; Hoseinnejhad, S.; Ceferov, Z.; Oshaghi, E.A.; Rashidi, M. Unsaturated Fatty Acids as a Co-Therapeutic Agents in Cancer Treatment. Mol. Biol. Rep. 2021, 48, 2909–2916. [Google Scholar] [CrossRef]
- Yan, D.; Ye, S.; He, Y.; Wang, S.; Xiao, Y.; Xiang, X.; Deng, M.; Luo, W.; Chen, X.; Wang, X. Fatty Acids and Lipid Mediators in Inflammatory Bowel Disease: From Mechanism to Treatment. Front. Immunol. 2023, 14, 1286667. [Google Scholar] [CrossRef]
- Vahid, F.; Bourbour, F.; Gholamalizadeh, M.; Shivappa, N.; Hébert, J.R.; Babakhani, K.; Mosavi Jarrahi, A.; Mirzaei Dahka, S.; Doaei, S. A Pro-Inflammatory Diet Increases the Likelihood of Obesity and Overweight in Adolescent Boys: A Case–Control Study. Diabetol. Metab. Syndr. 2020, 12, 29. [Google Scholar] [CrossRef]
- de Almeida Magalhães, T.S.S.; de Oliveira Macedo, P.C.; Converti, A.; Neves de Lima, Á.A. The Use of Euterpe oleracea Mart. As a New Perspective for Disease Treatment and Prevention. Biomolecules 2020, 10, 813. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Barbalho, S.M.; Araújo, A.C.; Guiguer, E.L.; Mondal, A.; Bachtel, G.; Bishayee, A. Açaí (Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023, 15, 989. [Google Scholar] [CrossRef] [PubMed]
- Silva, C. Effect of Andiroba on Control of Post-Whitening Tooth Sensitivity. Available online: https://app.trialscreen.org/trials/effect-andiroba-on-control-post-whitening-tooth-sensitivity-trial-nct06614764 (accessed on 1 April 2024).
- Bolton, J.L.; Trush, M.A.; Penning, T.M.; Dryhurst, G.; Monks, T.J. Role of Quinones in Toxicology. Chem. Res. Toxicol. 2000, 13, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.J.A.; Benito, P.B. Biological Activity of Quinones. Stud. Nat. Prod. Chem. 2005, 30, 303–366. [Google Scholar]
- Schieber, A. Reactions of Quinones—Mechanisms, Structures, and Prospects for Food Research. J. Agric. Food Chem. 2018, 66, 13051–13055. [Google Scholar] [CrossRef]
- Kogan, N.M.; Peters, M.; Mechoulam, R. Cannabinoid Quinones—A Review and Novel Observations. Molecules 2021, 26, 1761. [Google Scholar] [CrossRef]
- Swedan, H.K.; Kassab, A.E.; Gedawy, E.M.; Elmeligie, S.E. Topoisomerase II Inhibitors Design: Early Studies and New Perspectives. Bioorg. Chem. 2023, 136, 106548. [Google Scholar] [CrossRef]
- Biegański, P.; Godel, M.; Riganti, C.; Kawano, D.F.; Kopecka, J.; Kowalski, K. Click Ferrocenyl-Erlotinib Conjugates Active against Erlotinib-Resistant Non-Small Cell Lung Cancer Cells in Vitro. Bioorg. Chem. 2022, 119, 105514. [Google Scholar] [CrossRef]
- Ali, S.; Hénon, E.; Leroy, R.; Massiot, G. Addition of Vindoline to P-Benzoquinone: Regiochemistry, Stereochemistry and Symmetry Considerations. Molecules 2021, 26, 6395. [Google Scholar] [CrossRef]
- Napolitano, G.; Fasciolo, G.; Venditti, P. Mitochondrial Management of Reactive Oxygen Species. Antioxidants 2021, 10, 1824. [Google Scholar] [CrossRef]
- Monroy-Cárdenas, M.; Andrades, V.; Almarza, C.; Vera, M.J.; Martínez, J.; Pulgar, R.; Amalraj, J.; Araya-Maturana, R.; Urra, F.A. A New Quinone-Based Inhibitor of Mitochondrial Complex I in D-Conformation, Producing Invasion Reduction and Sensitization to Venetoclax in Breast Cancer Cells. Antioxidants 2023, 12, 1597. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, P.-Y.; Zhang, Y.; Li, N. Natural Products Targeting the Mitochondria in Cancers. Molecules 2020, 26, 92. [Google Scholar] [CrossRef] [PubMed]
- Vyas, M.; Simbo, D.A.; Mursalin, M.; Mishra, V.; Bashary, R.; Khatik, G.L. Drug Delivery Approaches for Doxorubicin in the Management of Cancers. Curr. Cancer Ther. Rev. 2020, 16, 320–331. [Google Scholar] [CrossRef]
- Sohail, M.; Sun, Z.; Li, Y.; Gu, X.; Xu, H. Research Progress in Strategies to Improve the Efficacy and Safety of Doxorubicin for Cancer Chemotherapy. Expert. Rev. Anticancer. Ther. 2021, 21, 1385–1398. [Google Scholar] [CrossRef]
- Pastor-Maldonado, C.J.; Suárez-Rivero, J.M.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Munuera-Cabeza, M.; Suárez-Carrillo, A.; Talaverón-Rey, M.; Sánchez-Alcázar, J.A. Coenzyme Q10: Novel Formulations and Medical Trends. Int. J. Mol. Sci. 2020, 21, 8432. [Google Scholar] [CrossRef]
- Cirilli, I.; Damiani, E.; Dludla, P.V.; Hargreaves, I.; Marcheggiani, F.; Millichap, L.E.; Orlando, P.; Silvestri, S.; Tiano, L. Role of Coenzyme Q10 in Health and Disease: An Update on the Last 10 Years (2010–2020). Antioxidants 2021, 10, 1325. [Google Scholar] [CrossRef]
- Cores, Á.; Carmona-Zafra, N.; Clerigué, J.; Villacampa, M.; Menéndez, J.C. Quinones as Neuroprotective Agents. Antioxidants 2023, 12, 1464. [Google Scholar] [CrossRef]
- Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Munuera-Cabeza, M.; Suárez-Carrillo, A.; Talaverón-Rey, M.; Sánchez-Alcázar, J.A. Coenzyme Q10 Analogues: Benefits and Challenges for Therapeutics. Antioxidants 2021, 10, 236. [Google Scholar] [CrossRef]
- Faizan, S.; Mohammed Abdo Mohsen, M.; Amarakanth, C.; Justin, A.; Ravishankar Rahangdale, R.; Raghu Chandrashekar, H.; Prashantha Kumar, B.R. Quinone Scaffolds as Potential Therapeutic Anticancer Agents: Chemistry, Mechanism of Actions, Structure-Activity Relationships and Future Perspectives. Results Chem. 2024, 7, 101432. [Google Scholar] [CrossRef]
- Doroshow, J.H. Effect of Anticancer Quinones on Reactive Oxygen Production by Adult Rat Heart Myocytes. Oxid. Med. Cell Longev. 2020, 2020, 8877100. [Google Scholar] [CrossRef]
- Aly, A.A.; Hassan, A.A.; Mohamed, N.K.; Ramadan, M.; Abd El-Aal, A.S.; Bräse, S.; Nieger, M. Synthesis of Quinone-Based Heterocycles of Broad-Spectrum Anticancer Activity. J. Chem. Res. 2021, 45, 562–571. [Google Scholar] [CrossRef]
- Ferreira, V.F.; de Carvalho, A.S.; Ferreira, P.G.; Lima, C.G.S.; Silva, F.d.C.d. Quinone-Based Drugs: An Important Class of Molecules in Medicinal Chemistry. Med. Chem. 2021, 17, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-S.; Ham, W.; Kim, J. Roles of NAD(P)H:Quinone Oxidoreductase 1 in Diverse Diseases. Life 2021, 11, 1301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J.; Cao, C.; Zhang, B.; Yang, W.; Shi, B.; Shan, A. Pyrroloquinoline Quinone Inhibits the Production of Inflammatory Cytokines via the SIRT1/NF-ΚB Signal Pathway in Weaned Piglet Jejunum. Food Funct. 2020, 11, 2137–2153. [Google Scholar] [CrossRef]
- Wu, K.; Liu, X.; Meng, X.; Cao, L.; Li, H.; Bi, Y.; Wang, M.; Wang, M.; Jiang, Y. Sauchinone Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis via NAD(P)H Dehydrogenase [Quinone] 1/NF-KB Pathway and Gut Microbiota. Front. Microbiol. 2023, 13, 1084257. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Cho, J.-Y.; Yoon, S.H.; Jang, I.-J.; Yu, K.-S. Pharmacokinetics and Tolerability of MB12066, a Beta-Lapachone Derivative Targeting NAD(P)H:Quinone Oxidoreductase 1: Two Independent, Double-Blind, Placebo-Controlled, Combined Single and Multiple Ascending Dose First-in-Human Clinical Trials. Drug Des. Devel Ther. 2017, 11, 3187–3195. [Google Scholar] [CrossRef]
- Nakano, M.; Yamamoto, T.; Okamura, H.; Tsuda, A.; Kowatari, Y. Effects of Oral Supplementation with Pyrroloquinoline Quinone on Stress, Fatigue, and Sleep. Funct. Foods Health Dis. 2012, 2, 307. [Google Scholar] [CrossRef]
- Snajdauf, M.; Havlova, K.; Vachtenheim, J.; Ozaniak, A.; Lischke, R.; Bartunkova, J.; Smrz, D.; Strizova, Z. The TRAIL in the Treatment of Human Cancer: An Update on Clinical Trials. Front. Mol. Biosci. 2021, 8, 628332. [Google Scholar] [CrossRef]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of Clinical Drug Development Fails and How to Improve It? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef]
Major Compound(s) | Plant Group/Species | Type of Extraction | Technique(s) Used to Measure Biological Activity | Biological Activity | Ref. | |
---|---|---|---|---|---|---|
MULTIPLE PHARMACEUTICAL PROPERTIES | Phenolic compounds | Caryocar villosum | Ethanolic and hydroethanolic extract | DPPH; ABTS; DCF-DA; alamar blue assay; NO assay; hemolytic assay | Anti-inflammatory; antineoplastic; antioxidant activity | [24] |
Phenolic compounds | Couroupita guianensis | Decoction | MTT; migration assay; Western blot | Anti-inflammatory; cicatrization | [25] | |
Phenolic compounds | Astrocaryum aculeatum | Hydroethanolic extract | MTT; flow cytometry; lipid and protein oxidation; SOD analysis; RT-PCR | Anti-inflammatory; decrease ROS species and increase in antioxidant defense; positive regulation of the cell cycle | [26] | |
Phenolic compounds | Euterpe oleracea | Methanol extract; liquid chromatography | Cell viability with DAPI; comet assay; FRAP | Antimicrobial; cytotoxicity; possible antigenotoxic effect | [27] | |
Phenolic compounds | Libidibia ferrea | Hydroethanolic extract | MTT; apoptosis/necrosis test; CBMN; comet assay; cell migration | Antioxidant activity; antineoplastic | [28] | |
Terpenes | Carapa guianensis | Seed oil; silica gel column chromatography | Cell viability (MTT); NO assay | Anti-inflammatory | [29] | |
Terpenes | Croton cajucara | Soxhlet; molecular modifications | Clonogenic assay; apoptosis/necrosis test, comet assay; CBMN | Modified molecules decreased cytogenotoxicity | [30] | |
ANTIPARASITIC ACTIVITY | Phenolic compounds | Eugenia sp. | Hydroethanolic extract; dichloromethanolic fraction; hydroalcoholic residue | MTT; DPPH; hematotoxicity | Anthelmintic | [31] |
Phenolic compounds | Equisetum hyemale | Hydroalcoholic extract; acetate, dichloromethanolic, and n-butanolic fractions | Cell viability (MTT); Comet Assay | Antimicrobial | [32] | |
Phenolic compounds | Deguelia nitidula | Ethanol extraction | MTT; antibacterial bioassay | Antimicrobial | [33] | |
Phenolic compounds; steroids | Abuta grandiflora; Ambelania duckei; Aspidosperma excelsium; Curarea toxicofera | Aqueous percolation | Resazurin assay | Anti-Trypanosoma cruzi activity | [34] | |
Terpenes | Ocotea sp. | Hydrodistillation to obtain essential oil | MTT | Antimicrobial | [35] | |
Terpenes | Copaifera reticulata | Manual extraction of oleoresins | MTT; anti-Plasmodium test in erythrocytes | Anti-Plasmodium activity | [36] | |
ANTINEOPLASTIC PROFILE | Phenolic compounds | Portulaca sp. | Aqueous and hydroalcoholic sonication | MTT; flow cytometry | Antineoplastic against colorectal adenocarcinoma | [37] |
Fatty acids | Carapa guianensis | Extraction handcrafted with organic solvent | MTT; apoptosis/necrosis test; CBMN | Antineoplastic against gastric adenocarcinoma | [38] | |
Terpenes | Seven species from Myrtaceae family | Hydrodistillation to obtain essential oil | MTT | Antineoplastic against melanoma, gastric and colon cancer | [39] | |
Terpenes | Eugenia sp. | Hydrodistillation to obtain essential oil | MTT | Antineoplastic against colon cancer | [40] | |
Terpenes | Croton cajucara | Hydrodistillation | Reazurin assay; DPPH; DCF-DA | Antineoplastic against basal alveolar adenocarcinoma | [41] | |
COSMECEUTICAL OR NUTRACEUTICAL | Phenolic compounds; fatty acids | Euterpe oleracea | Patent protected method | MTT; CBMN; comet assay | Absence of cytogenotoxicity | [42] |
Quinones | Eleutherine plicata | Chromatographic column | Allium cepa assay; CBMN | Genotoxicity | [43] | |
Fatty acids; phenolic compounds | Byrsonima crassifolia | Extraction with supercritical CO2 | MTT | Cytoprotectivity | [44] | |
Phenolic compounds | Copaifera malmei | Aqueous infusion | CBMN; comet assay | Antigenotoxic | [45] | |
Fatty acids | Carapa guianensis | Pressing dry seeds; heat treatment and Soxhlet extraction | DPPH; Ames test; CBMN | Cytogenotoxicity | [46] | |
Quinones | Eleutherine plicata | Ethanol extraction; dichloromethanolic fraction | MTT; comet assay | Cytogenotoxicity | [47] | |
Fatty acids | Carapa guianensis | Oil and nanoemulsion | MTT; CBMN; comet assay | Cytotoxicity | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almada-Vilhena, A.O.; dos Santos, O.V.M.; Machado, M.d.A.; Nagamachi, C.Y.; Pieczarka, J.C. Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals 2024, 17, 1449. https://doi.org/10.3390/ph17111449
de Almada-Vilhena AO, dos Santos OVM, Machado MdA, Nagamachi CY, Pieczarka JC. Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals. 2024; 17(11):1449. https://doi.org/10.3390/ph17111449
Chicago/Turabian Stylede Almada-Vilhena, Andryo O., Oscar V. M. dos Santos, Milla de A. Machado, Cleusa Y. Nagamachi, and Julio C. Pieczarka. 2024. "Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use" Pharmaceuticals 17, no. 11: 1449. https://doi.org/10.3390/ph17111449
APA Stylede Almada-Vilhena, A. O., dos Santos, O. V. M., Machado, M. d. A., Nagamachi, C. Y., & Pieczarka, J. C. (2024). Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals, 17(11), 1449. https://doi.org/10.3390/ph17111449