Identification of Estrogen-Responsive Proteins in Mouse Seminal Vesicles Through Mass Spectrometry-Based Proteomics
Abstract
:1. Introduction
2. Results
2.1. Discovery-Driven Seminal Vesicle Proteomics
2.2. Bioinformatics-Based Biomarker Identification
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animal Model
4.3. Proteomics
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conde, D.M.; Verdade, R.C.; Valadares, A.L.R.; Mella, L.F.B.; Pedro, A.O.; Costa-Paiva, L. Menopause and cognitive impairment: A narrative review of current knowledge. World J. Psychiatry 2021, 11, 412–428. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, B.; Byemerwa, J.; Krebs, T.; Lim, F.; Chang, C.-Y.; McDonnell, D.P. Estrogen receptor signaling in the immune system. Endocr. Rev. 2023, 44, 117–141. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar] [CrossRef]
- Khatpe, A.; Adebayo, A.; Herodotou, C.; Kumar, B.; Nakshatri, H. Nexus between PI3K/AKT and estrogen receptor signaling in breast cancer. Cancers 2021, 13, 369. [Google Scholar] [CrossRef]
- Xu, F.; Ma, J.; Wang, X.; Wang, X.; Fang, W.; Sun, J.; Li, Z.; Liu, J. The role of G protein-coupled estrogen receptor (GPER) in vascular pathology and physiology. Biomolecules 2023, 13, 1410. [Google Scholar] [CrossRef] [PubMed]
- Bagrodia, A.; Diblasio, C.J.; Wake, R.W.; Derweesh, I.H. Adverse effects of androgen deprivation therapy in prostate cancer: Current management issues. Indian J. Urol. 2009, 25, 169–176. [Google Scholar] [CrossRef]
- Hess, R.A. Estrogen in the adult male reproductive tract: A review. Reprod. Biol. Endocrinol. 2003, 1, 52. [Google Scholar] [CrossRef]
- Russell, N.; Cheung, A.; Grossmann, M. Estradiol for the mitigation of adverse effects of androgen deprivation therapy. Endocr.-Relat. Cancer 2017, 24, R297–R313. [Google Scholar] [CrossRef]
- Ockrim, J.L.; Lalani, E.N.; Laniado, M.E.; Carter, S.S.; Abel, P.D. Transdermal estradiol therapy for advanced prostate cancer—forward to the past? J. Urol. 2003, 169, 1735–1737. [Google Scholar] [CrossRef]
- Langley, R.E.; Gilbert, D.C.; Duong, T.; Clarke, N.W.; Nankivell, M.; Rosen, S.D.; Mangar, S.; Macnair, A.; Sundaram, S.K.; Laniado, M.E.; et al. Transdermal oestradiol for androgen suppression in prostate cancer: Long-term cardiovascular outcomes from the randomised Prostate Adenocarcinoma Transcutaneous Hormone (PATCH) trial programme. Lancet 2021, 397, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, Y.; Frydenberg, M.; van Poppel, H.; van Moorselaar, R.J.A.; Roos, E.P.M.; Somford, D.M.; Roeleveld, T.A.; de Haan, T.D.; van Melick, H.H.E.; Reisman, Y.; et al. Estetrol prevents hot flushes and improves quality of life in patients with advanced prostate cancer treated with androgen deprivation therapy: The PCombi study. Eur. Urol. Open Sci. 2022, 45, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Cho, L.; Kaunitz, A.M.; Faubion, S.S.; Hayes, S.N.; Lau, E.S.; Pristera, N.; Scott, N.; Shifren, J.L.; Shufelt, C.L.; Stuenkel, C.A.; et al. Rethinking menopausal hormone therapy: For whom, what, when, and how long? Circulation 2023, 147, 597–610. [Google Scholar] [CrossRef] [PubMed]
- de Ronde, W.; de Jong, F.H. Aromatase inhibitors in men: Effects and therapeutic options. Reprod. Biol. Endocrinol. 2011, 9, 93. [Google Scholar] [CrossRef]
- DelbèS, G.R.; Levacher, C.; Habert, R. Estrogen effects on fetal and neonatal testicular development. Reproduction 2006, 132, 527–538. [Google Scholar] [CrossRef]
- Stewart, M.K.; Mattiske, D.M.; Pask, A.J. Estrogen suppresses SOX9 and activates markers of female development in a human testis-derived cell line. BMC Mol. Cell Biol. 2020, 21, 66. [Google Scholar] [CrossRef]
- O’Donnell, L.; Robertson, K.M.; Jones, M.E.; Simpson, E.R. Estrogen and spermatogenesis. Endocr. Rev. 2001, 22, 289–318. [Google Scholar] [CrossRef]
- Wu, X.; Liu, G.; Zhang, Y.; Zhang, W.; Huang, H.; Jiang, H.; Zhang, X. High estradiol level is associated with erectile dysfunction: A systematic review and meta-analysis. Andrologia 2022, 54, e14432. [Google Scholar] [CrossRef]
- Amir, S.; Shah, S.T.A.; Mamoulakis, C.; Docea, A.O.; Kalantzi, O.I.; Zachariou, A.; Calina, D.; Carvalho, F.; Sofikitis, N.; Makrigiannakis, A.; et al. Endocrine disruptors acting on estrogen and androgen pathways cause reproductive disorders through multiple mechanisms: A review. Int. J. Environ. Res. Public Health 2021, 18, 1464. [Google Scholar] [CrossRef]
- Odum, J.; Lefevre, P.A.; Tittensor, S.; Paton, D.; Routledge, E.J.; Beresford, N.A.; Sumpter, J.P.; Ashby, J. The rodent uterotrophic assay: Critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul. Toxicol. Pharmacol. 1997, 25, 176–188. [Google Scholar] [CrossRef]
- Marty, M.S.; O’Connor, J.C. Key learnings from the endocrine disruptor screening program (EDSP) Tier 1 rodent uterotrophic and Hershberger assays. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2014, 101, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Takeyoshi, M.; Sawaki, M.; Imatanaka, N.; Shinoda, K.; Takatsuki, M. Immature rat uterotrophic assay of 18 chemicals and Hershberger assay of 30 chemicals. Toxicology 2003, 183, 93–115. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, S.; Ogasawara, Y.; Kitamura, Y.; Matsumoto, K.; Mori, K.J. Radiosensitivity of mouse seminal vesicle cells which show proliferative response to androgen and estrogen. Radiat. Res. 1984, 97, 132–138. [Google Scholar] [CrossRef]
- Yuasa, H.; Ono, Y.; Ohma, C.; Shimizu, N.; Yamanaka, H.; Uchida, T.; Mizunuma, H.; Aoki, K.; Suzuki, K. The estrogen-induced changes of estrogen receptor in seminal vesicle of immature castrated rat. Hinyokika Kiyo 1996, 42, 33–37. [Google Scholar]
- Skarda, J. Sensitivity and specificity of the bioassay of estrogenicity in mammary gland and seminal vesicles of male mice. Physiol. Res. 2002, 51, 267–276. [Google Scholar] [CrossRef]
- Bianco, J.J.; Handelsman, D.J.; Pedersen, J.S.; Risbridger, G.P. Direct response of the murine prostate gland and seminal vesicles to estradiol. Endocrinology 2002, 143, 4922–4933. [Google Scholar] [CrossRef]
- Prokai, L.; Rahlouni, F.; Zaman, K.; Nguyen, V.; Prokai-Tatrai, K. Proteomics complementation of the rat uterotrophic assay for estrogenic endocrine disruptors: A roadmap of advancing high resolution mass spectrometry-based shotgun survey to targeted biomarker quantifications. Int. J. Mol. Sci. 2021, 22, 1686. [Google Scholar] [CrossRef] [PubMed]
- Kong, A.T.; Leprevost, F.V.; Avtonomov, D.M.; Mellacheruvu, D.; Nesvizhskii, A.I. MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods 2017, 14, 513–520. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Stephens, C.R.; Need, E.F.; Lai, J.; Buchanan, G.; Clements, J.A. Long terminal repeats act as androgen-responsive enhancers for the PSA-kallikrein locus. Endocrinology 2012, 153, 3199–3210. [Google Scholar] [CrossRef]
- Shiota, M.; Song, Y.; Yokomizo, A.; Tada, Y.; Kuroiwa, K.; Eto, M.; Oda, Y.; Inokuchi, J.; Uchiumi, T.; Fujimoto, N.; et al. Human heterochromatin protein 1 isoform HP1β enhances androgen receptor activity and is implicated in prostate cancer growth. Endocr.-Relat. Cancer 2010, 17, 455–467. [Google Scholar] [CrossRef]
- Zheng, S.-S.; Wu, J.-F.; Wu, W.-X.; Hu, J.-W.; Zhang, D.; Huang, C.; Zhang, B.-H. CBX1 is involved in hepatocellular carcinoma progression and resistance to sorafenib and lenvatinib via IGF-1R/AKT/SNAIL signaling pathway. Hepatol. Int. 2024, 18, 1499–1515. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Balk, S.P. Mechanisms mediating androgen receptor reactivation after castration. Urol. Oncol. 2009, 27, 36–41. [Google Scholar] [CrossRef]
- Romejko, K.; Markowska, M.; Niemczyk, S. The review of current knowledge on neutrophil gelatinase-associated lipocalin (NGAL). Int. J. Mol. Sci. 2023, 24, 10470. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Ma, Q.; Prada, A.; Mitsnefes, M.; Zahedi, K.; Yang, J.; Barasch, J.; Devarajan, P. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 2003, 14, 2534–2543. [Google Scholar] [CrossRef]
- Jang, Y.; Lee, J.H.; Wang, Y.; Sweeney, G. Emerging clinical and experimental evidence for the role of lipocalin-2 in metabolic syndrome. Clin. Exp. Pharmacol. Physiol. 2012, 39, 194–199. [Google Scholar] [CrossRef]
- Xu, F.; Shi, J.; Qin, X.; Zheng, Z.; Chen, M.; Lin, Z.; Ye, J.; Li, M. Hormone-glutamine metabolism: A critical regulatory axis in endocrine-related cancers. Int. J. Mol. Sci. 2022, 23, 10086. [Google Scholar] [CrossRef]
- Haghighat, N. Estrogen (17β-estradiol) enhances glutamine synthetase activity in C6-glioma cells. Neurochem. Res. 2005, 30, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Turula, H.; Wobus, C.E. The Role of the polymeric immunoglobulin receptor and secretory immunoglobulins during mucosal infection and immunity. Viruses 2018, 10, 237. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Agarwal, A.; Baskaran, S. Proteomic analysis of seminal plasma from bilateral varicocele patients indicates an oxidative state and increased inflammatory response. Asian J. Androl. 2019, 21, 544–550. [Google Scholar] [CrossRef]
- Carrillo, G.L.; Su, J.; Monavarfeshani, A.; Fox, M.A. F-spondin is essential for maintaining circadian rhythms. Front. Neural Circuits 2018, 12, 13. [Google Scholar] [CrossRef]
- Tam, N.N.; Szeto, C.Y.; Sartor, M.A.; Medvedovic, M.; Ho, S.M. Gene expression profiling identifies lobe-specific and common disruptions of multiple gene networks in testosterone-supported, 17β-estradiol- or diethylstilbestrol-induced prostate dysplasia in Noble rats. Neoplasia 2008, 10, 20–40. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.Z.; Guo, X.B.; Zhang, W.S.; Zhou, J.H.; Yang, C.; Bian, J.; Chen, M.K.; Guo, W.B.; Wang, P.; Qi, T.; et al. Expressions of miR-525-3p and its target gene SEMG1 in the spermatozoa of patients with asthenozoospermia. Andrology 2019, 7, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Kahlon, T.; Carlisle, S.; Otero Mostacero, D.; Williams, N.; Trainor, P.; DeFilippis, A.P. Angiotensinogen: More than its downstream products: Evidence from population studies and novel therapeutics. JACC Heart Fail. 2022, 10, 699–713. [Google Scholar] [CrossRef]
- Zhu, X.; Xie, T.; Zhan, X.; Liu, L.; Yang, X.; Xu, X.; Ye, W.; Song, Y. Association of seminal angiotensinogen with sperm motility and morphology in male infertility. Andrologia 2019, 51, e13421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhu, T.; Miao, H.; Liang, B. The calcium binding protein S100A11 and its roles in diseases. Front. Cell Dev. Biol. 2021, 9, 693262. [Google Scholar] [CrossRef]
- Rehman, I.; Azzouzi, A.-R.; Cross, S.S.; Deloulme, J.C.; Catto, J.W.F.; Wylde, N.; Larre, S.; Champigneuille, J.; Hamdy, F.C. Dysregulated expression of S100A11 (calgizzarin) in prostate cancer and precursor lesions. Hum. Pathol. 2004, 35, 1385–1391. [Google Scholar] [CrossRef]
- Guo, A.J.; Wang, F.J.; Ji, Q.; Geng, H.W.; Yan, X.; Wang, L.Q.; Tie, W.W.; Liu, X.Y.; Thorne, R.F.; Liu, G.; et al. Proteome analyses reveal S100A11, S100P, and RBM25 are tumor biomarkers in colorectal cancer. Proteom. Clin. Appl. 2021, 15, e2000056. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Lin, X.; Chan, T.F.; Lai, K.P.; Li, R. Uncovering the functions of plasma proteins in ulcerative colitis and identifying biomarkers for BPA-induced severe ulcerative colitis: A plasma proteome analysis. Ecotoxicol. Environ. Saf. 2022, 242, 113897. [Google Scholar] [CrossRef]
- Lamberto, F.; Shashikadze, B.; Elkhateib, R.; Lombardo, S.D.; Horánszky, A.; Balogh, A.; Kistamás, K.; Zana, M.; Menche, J.; Fröhlich, T.; et al. Low-dose bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ. Pollut. 2023, 335, 122359. [Google Scholar] [CrossRef]
- Yang, S.; Jan, Y.-H.; Mishin, V.; Heck, D.E.; Laskin, D.L.; Laskin, J.D. Diacetyl/l-Xylulose Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells. Chem. Res. Toxicol. 2017, 30, 1406–1418. [Google Scholar] [CrossRef]
- Ebert, B.; Kisiela, M.; Maser, E. Human DCXR-another ‘moonlighting protein’ involved in sugar metabolism, carbonyl detoxification, cell adhesion and male fertility? Biol. Rev. Camb. Philos. Soc. 2015, 90, 254–278. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.F.; Meng, C.; Helm, D.; Pachl, F.; Schiller, J.; Ibrahim, E.; Lynne, C.M.; Brackett, N.L.; Bertolla, R.P.; Kuster, B. Towards understanding male infertility after spinal cord injury using quantitative proteomics. Mol. Cell Proteom. 2016, 15, 1424–1434. [Google Scholar] [CrossRef] [PubMed]
- Gertz, J.; Reddy, T.E.; Varley, K.E.; Garabedian, M.J.; Myers, R.M. Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012, 22, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Tegtmeyer, L.C.; Rust, S.; Van Scherpenzeel, M.; Ng, B.G.; Losfeld, M.-E.; Timal, S.; Raymond, K.; He, P.; Ichikawa, M.; Veltman, J.; et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N. Engl. J. Med. 2014, 370, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Hilakivi-Clarke, L.; de Assis, S.; Warri, A. Exposures to synthetic estrogens at different times during the life, and their effect on breast cancer risk. J. Mammary Gland Biol. Neoplasia 2013, 18, 25–42. [Google Scholar] [CrossRef]
- Nishimura, K.; Mori, J.; Sawada, T.; Nomura, S.; Kouzmenko, A.; Yamashita, K.; Kanemoto, Y.; Kurokawa, T.; Hayakawa, A.; Tokiwa, S.; et al. Profiling of androgen-dependent enhancer RNAs Expression in human prostate tumors: Search for malignancy transition markers. Res. Rep. Urol. 2021, 13, 705–713. [Google Scholar] [CrossRef]
- Schreiber, M.; Kolbus, A.; Piu, F.; Szabowski, A.; Möhle-Steinlein, U.; Tian, J.; Karin, M.; Angel, P.; Wagner, E.F. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 1999, 13, 607–619. [Google Scholar] [CrossRef]
- Yamanaka, T.; Xiao, Z.; Tsujita, N.; Awad, M.; Umehara, T.; Shimada, M. Testosterone-induced metabolic changes in seminal vesicle epithelial cells alter plasma components to enhance sperm fertility. bioRxiv 2024. [Google Scholar] [CrossRef]
- Calabrese, E.J. Estrogen and related compounds: Biphasic dose responses. Crit. Rev. Toxicol. 2001, 31, 503–515. [Google Scholar] [CrossRef]
- Bellows, C.F.; Jaffe, B.M. Glutamine Is essential for nitric oxide synthesis by murine macrophages. J. Surg. Res. 1999, 86, 213–219. [Google Scholar] [CrossRef]
- Wigby, S.; Suarez, S.S.; Lazzaro, B.P.; Pizzari, T.; Wolfner, M.F. Sperm success and immunity. Curr. Top. Dev. Biol. 2019, 135, 287–313. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.T.; Heaton, N.S. The impact of estrogens and their receptors on immunity and inflammation during infection. Cancers 2022, 14, 909. [Google Scholar] [CrossRef] [PubMed]
- Lacy, P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin. Immunol. 2006, 2, 98–108. [Google Scholar] [CrossRef]
- Chiang, K.; Parthasarathy, S.; Santanam, N. Estrogen, neutrophils and oxidation. Life Sci. 2004, 75, 2425–2438. [Google Scholar] [CrossRef] [PubMed]
- Jansson, G. Oestrogen-induced enhancement of myeloperoxidase activity in human polymorphonuclear leukocytes-A possible cause of oxidative stress in inflammatory cells. Free Radic. Res. Commun. 1991, 14, 195–208. [Google Scholar] [CrossRef]
- Wu, W.; Sun, M.; Zhang, H.P.; Chen, T.; Wu, R.; Liu, C.; Yang, G.; Geng, X.R.; Feng, B.S.; Liu, Z.; et al. Prolactin mediates psychological stress-induced dysfunction of regulatory T cells to facilitate intestinal inflammation. Gut 2014, 63, 1883–1892. [Google Scholar] [CrossRef]
- Tripathi, A.; Sodhi, A. Prolactin-induced production of cytokines in macrophages in vitro involves JAK/STAT and JNK MAPK pathways. Int. Immunol. 2008, 20, 327–336. [Google Scholar] [CrossRef]
- Du, H.; Liang, L.; Li, J.; Xiong, Q.; Yu, X.; Yu, H. Lipocalin-2 alleviates LPS-induced inflammation through alteration of macrophage properties. J. Inflamm. Res. 2021, 14, 4189–4203. [Google Scholar] [CrossRef]
- La Manna, G.; Ghinatti, G.; Tazzari, P.L.; Alviano, F.; Ricci, F.; Capelli, I.; Cuna, V.; Todeschini, P.; Brunocilla, E.; Pagliaro, P.; et al. Neutrophil gelatinase-associated lipocalin increases HLA-G(+)/FoxP3(+) T-regulatory cell population in an in vitro model of PBMC. PLoS ONE 2014, 9, e89497. [Google Scholar] [CrossRef]
- Guardado, S.; Ojeda-Juárez, D.; Kaul, M.; Nordgren, T.M. Comprehensive review of lipocalin 2-mediated effects in lung inflammation. Am. J. Physiol.-Lung Cell Mol. Physiol. 2021, 321, L726–L733. [Google Scholar] [CrossRef]
- Sciarra, F.; Campolo, F.; Franceschini, E.; Carlomagno, F.; Venneri, M. Gender-specific impact of sex hormones on the immune system. Int. J. Mol. Sci. 2023, 24, 6302. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J. Granzyme A activates another way to die. Immunol. Rev. 2010, 235, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Ohs, I.; van den Broek, M.; Nussbaum, K.; Münz, C.; Arnold, S.J.; Quezada, S.A.; Tugues, S.; Becher, B. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat. Commun. 2016, 7, 13708. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Rodriguez-Garcia, M.; Wira, C.R. The immune system in menopause: Pros and cons of hormone therapy. J. Steroid Biochem. Mol. Biol. 2014, 142, 171–175. [Google Scholar] [CrossRef]
- Santiago-Sánchez, G.S.; Pita-Grisanti, V.; Quiñones-Díaz, B.; Gumpper, K.; Cruz-Monserrate, Z.; Vivas-Mejía, P.E. Biological functions and therapeutic potential of lipocalin 2 in cancer. Int. J. Mol. Sci. 2020, 21, 4365. [Google Scholar] [CrossRef]
- Miao, Q.; Ku, A.T.; Nishino, Y.; Howard, J.M.; Rao, A.S.; Shaver, T.M.; Garcia, G.E.; Le, D.N.; Karlin, K.L.; Westbrook, T.F.; et al. Tcf3 promotes cell migration and wound repair through regulation of lipocalin 2. Nat. Commun. 2014, 5, 4088. [Google Scholar] [CrossRef]
- Krizanac, M.; Mass Sanchez, P.B.; Weiskirchen, R.; Schröder, S.K. Overview of the expression patterns and roles of lipocalin 2 in the reproductive system. Front. Endocrinol. 2024, 15, 1365602. [Google Scholar] [CrossRef]
- Seth, P.; Porter, D.; Lahti-Domenici, J.; Geng, Y.; Richardson, A.; Polyak, K. Cellular and molecular targets of estrogen in normal human breast tissue. Cancer Res. 2002, 62, 4540–4544. [Google Scholar]
- Kessel, J.C.; Weiskirchen, R.; Schröder, S.K. Expression analysis of lipocalin 2 (LCN2) in reproductive and non-reproductive tissues of Esr1-deficient mice. Int. J. Mol. Sci. 2023, 24, 9280. [Google Scholar] [CrossRef]
- Bayram, Ș.; Razzaque, Y.S.; Geisberger, S.; Pietzke, M.; Fürst, S.; Vechiatto, C.; Forbes, M.; Mastrobuoni, G.; Kempa, S. Investigating the role of GLUL as a survival factor in cellular adaptation to glutamine depletion via targeted stable isotope resolved metabolomics. Front. Mol. Biosci. 2022, 9, 859787. [Google Scholar] [CrossRef]
- Newsholme, P.; Lima, M.M.; Procopio, J.; Pithon-Curi, T.C.; Doi, S.Q.; Bazotte, R.B.; Curi, R. Glutamine and glutamate as vital metabolites. Braz. J. Med. Biol. Res. 2003, 36, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Dip, R.; Lenz, S.; Gmuender, H.; Naegeli, H. Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem. Toxicol. 2009, 47, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Okumura, K.; Nomura, S.; Maeda, N.; Miyasho, T.; Yokota, H. Oxidatively damaged proteins in the early stage of testicular toxicities in male rats by orally administered with a synthetic oestrogen, diethylstilbestrol. Reprod. Toxicol. 2011, 31, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, K.A.; Carey, A.J.; Finnie, J.M.; Bao, S.; Coon, C.; Jones, R.; Wijburg, O.; Strugnell, R.A.; Timms, P.; Beagley, K.W. Poly-immunoglobulin receptor-mediated transport of iga into the male genital tract is important for clearance of Chlamydia muridarum infection. Am. J. Reprod. Immunol. 2008, 60, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Kaetzel, C.S. The polymeric immunoglobulin receptor: Bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev. 2005, 206, 83–99. [Google Scholar] [CrossRef]
- Shparberg, R.; Glover, H.; Morris, M. modeling mammalian commitment to the neural lineage using embryos and embryonic stem cells. Front. Physiol. 2019, 10, 705. [Google Scholar] [CrossRef]
- Pyle-Chenault, R.A.; Stolk, J.A.; Molesh, D.A.; Boyle-Harlan, D.; McNeill, P.D.; Repasky, E.A.; Jiang, Z.; Fanger, G.R.; Xu, J. VSGP/F-spondin: A new ovarian cancer marker. Tumor Biol. 2005, 26, 245–257. [Google Scholar] [CrossRef]
- Miyakawa, R.; Kobayashi, M.; Sugimoto, K.; Endo, Y.; Kojima, M.; Kobayashi, Y.; Furukawa, S.; Honda, T.; Watanabe, T.; Asano, S.; et al. SPON1 is an independent prognostic biomarker for ovarian cancer. J. Ovarian Res. 2023, 16, 95. [Google Scholar] [CrossRef]
- Rincón-Rodriguez, R.; Mena, D.; Mena, J.; Díaz-Saldivar, P.; Guajardo-Correa, E.; Godoy-Guzman, C.; Cardenas, H.; Orihuela, P.A. F-spondin is the signal by which 2-methoxyestradiol induces apoptosis in the endometrial cancer cell line Ishikawa. Int. J. Mol. Sci. 2019, 20, 3850. [Google Scholar] [CrossRef]
- Kistler, M.K.; Taylor, R.E.; Kandala, J.C.; Kistler, W.S. Isolation of recombinant plasmids containing structural gene sequences for rat seminal vesicle secretory proteins IV and V. Biochem. Biophys. Res. Commun. 1981, 99, 1161–1166. [Google Scholar] [CrossRef]
- Lilja, H.; Abrahamsson, P.A.; Lundwall, Å. Semenogelin, the predominant protein in human semen: Primary structure and identification of closely related proteins in the male accessory sex glands and on the spermatozoa. J. Biol. Chem. 1989, 264, 1894–1900. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Pentecost, B.T.; McLachlan, J.A.; Teng, C.T. The androgen-dependent mouse seminal vesicle secretory protein IV: Characterization and complementary deoxyribonucleic acid cloning. Mol. Endocrinol. 1987, 1, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Naciff, J.M.; Hess, K.A.; Overmann, G.J.; Torontali, S.M.; Carr, G.J.; Tiesman, J.P.; Foertsch, L.M.; Richardson, B.D.; Martinez, J.E.; Daston, G.P. Gene expression changes induced in the testis by transplacental exposure to high and low doses of 17α-ethynyl estradiol, genistein, or bisphenol A. Toxicol. Sci. 2005, 86, 396–416. [Google Scholar] [CrossRef] [PubMed]
- Welsh, M.; Moffat, L.; Jack, L.; McNeilly, A.; Brownstein, D.; Saunders, P.T.; Sharpe, R.M.; Smith, L.B. Deletion of androgen receptor in the smooth muscle of the seminal vesicles impairs secretory function and alters its responsiveness to exogenous testosterone and estradiol. Endocrinology 2010, 151, 3374–3385. [Google Scholar] [CrossRef]
- Melo Junior, A.F.; Dalpiaz, P.L.M.; Escouto, L.d.S.; Sousa, G.J.; Aires, R.; Oliveira, N.D.; Carmona, A.K.; Gava, Á.L.; Bissoli, N.S. Involvement of sex hormones, oxidative stress, ACE and ACE2 activity in the impairment of renal function and remodelling in SHR. Life Sci. 2020, 257, 118138. [Google Scholar] [CrossRef] [PubMed]
- Proudler, A.J.; Ahmed, A.I.; Crook, D.; Fogelman, I.; Rymer, J.M.; Stevenson, J.C. Hormone replacement therapy and serum angiotensin-converting-enzyme activity in postmenopausal women. Lancet 1995, 346, 89–90. [Google Scholar] [CrossRef]
- Liu, X.M.; Ding, G.L.; Jiang, Y.; Pan, H.J.; Zhang, D.; Wang, T.T.; Zhang, R.J.; Shu, J.; Sheng, J.Z.; Huang, H.F. Down-regulation of S100A11, a calcium-binding protein, in human endometrium may cause reproductive failure. J. Clin. Endocrinol. Metab. 2012, 97, 3672–3683. [Google Scholar] [CrossRef]
- Jennen, D.G.; Magkoufopoulou, C.; Ketelslegers, H.B.; van Herwijnen, M.H.; Kleinjans, J.C.; van Delft, J.H. Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol. Sci. 2010, 115, 66–79. [Google Scholar] [CrossRef]
- Szczykutowicz, J.; Kałuża, A.; Kaźmierowska-Niemczuk, M.; Ferens-Sieczkowska, M. The potential role of seminal plasma in the fertilization outcomes. BioMed Res. Int. 2019, 2019, 5397804. [Google Scholar] [CrossRef]
- Riera Leal, A.; Ortiz-Lazareno, P.C.; Jave-Suárez, L.F.; De Arellano, R.A.; Aguilar-Lemarroy, A.; Ortiz-García, Y.M.; Barrón-Gallardo, C.A.; Solís-Martínez, R.; De Anda, L.S.; Muñoz-Valle, J.F.; et al. 17β-estradiol-induced mitochondrial dysfunction and Warburg effect in cervical cancer cells allow cell survival under metabolic stress. Int. J. Oncol. 2020, 56, 33–46. [Google Scholar] [CrossRef]
- Adekeye, A.; Agarwal, D.; Nayak, A.; Tchou, J. PTGES3 is a putative prognostic marker in breast cancer. J. Surg. Res. 2022, 271, 154–162. [Google Scholar] [CrossRef]
- Wang, Y.; Thuillier, R.; Culty, M. Prenatal estrogen exposure differentially affects estrogen receptor-associated proteins in rat testis gonocytes. Biol. Reprod. 2004, 71, 1652–1664. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, R.; Garabedian, M.J. Role for Hsp90-associated cochaperone p23 in estrogen receptor signal transduction. Mol. Cell Biol. 1999, 19, 3748–3759. [Google Scholar] [CrossRef] [PubMed]
- Reebye, V.; Querol Cano, L.; Lavery, D.; Brooke, G.; Powell, S.; Chotai, D.; Walker, M.; Wait, R.; Hurst, H.; Bevan, C. Role of the HSP90-associated cochaperone p23 in enhancing activity of the androgen receptor and significance for prostate cancer. Mol. Endocrinol. 2012, 26, 1694–1706. [Google Scholar] [CrossRef] [PubMed]
- Nevin, C.; McNeil, L.; Ahmed, N.; Murgatroyd, C.; Brison, D.; Carroll, M. Investigating the glycating effects of glucose, glyoxal and methylglyoxal on human sperm. Sci. Rep. 2018, 8, 9002. [Google Scholar] [CrossRef]
- Sheller-Miller, S.; Radnaa, E.; Arita, Y.; Getahun, D.; Jones, R.J.; Peltier, M.R.; Menon, R. Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta 2020, 89, 42–49. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Zhang, X.; Liu, S.; Pan, X.; Ma, C.; Ma, S.; Yu, D.; Wu, W. Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). Int. J. Oncol. 2023, 62, 56. [Google Scholar] [CrossRef]
- Xu, X.; Lai, C.; Luo, J.; Shi, J.; Guo, K.; Hu, J.; Mulati, Y.; Xiao, Y.; Kong, D.; Liu, C.; et al. The predictive significance of chromobox family members in prostate cancer in humans. Cell. Oncol. 2024, 47, 1315–1331. [Google Scholar] [CrossRef]
- Wang, L.; Di, L.J. BRCA1 and estrogen/estrogen receptor in breast cancer: Where they interact? Int. J. Biol. Sci. 2014, 10, 566–575. [Google Scholar] [CrossRef]
- Wu, W.; Nishikawa, H.; Fukuda, T.; Vittal, V.; Asano, M.; Miyoshi, Y.; Klevit, R.E.; Ohta, T. Interaction of BARD1 and hp1 is required for BRCA1 retention at sites of DNA damage. Cancer Res. 2015, 75, 1311–1321. [Google Scholar] [CrossRef]
- Ohta, H.; Kimura, I.; Konishi, M.; Itoh, N. Neudesin as a unique secreted protein with multi-functional roles in neural functions, energy metabolism, and tumorigenesis. Front. Mol. Biosci. 2015, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Kondo, M.; Nakayama, K.; Okuno, T.; Itoh, N.; Konishi, M. testicular hypoplasia with normal fertility in neudesin-knockout mice. Biol. Pharm. Bull. 2022, 45, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Yamamoto, K.; Iida, M.; Agusa, T.; Ochiai, M.; Guo, J.; Karthikraj, R.; Kannan, K.; Kim, E.Y.; Iwata, H. Effects of prenatal bisphenol A exposure on the hepatic transcriptome and proteome in rat offspring. Sci. Total Environ. 2020, 720, 137568. [Google Scholar] [CrossRef]
- Conte, F.; Ashikov, A.; Mijdam, R.; van de Ven, E.G.P.; van Scherpenzeel, M.; Veizaj, R.; Mahalleh-Yousefi, S.P.; Post, M.A.; Huijben, K.; Panneman, D.M.; et al. In vitro skeletal muscle model of PGM1 deficiency reveals altered energy homeostasis. Int. J. Mol. Sci. 2023, 24, 8247. [Google Scholar] [CrossRef]
- Gururaj, A.; Barnes, C.J.; Vadlamudi, R.K.; Kumar, R. Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase. Oncogene 2004, 23, 8118–8127. [Google Scholar] [CrossRef] [PubMed]
- Zaman, K.; Nguyen, V.; Prokai-Tatrai, K.; Prokai, L. Proteomics-based identification of retinal protein networks impacted by elevated intraocular pressure in the hypertonic saline injection model of experimental glaucoma. Int. J. Mol. Sci. 2023, 24, 12592. [Google Scholar] [CrossRef]
- Sikdar, S.; Gill, R.; Datta, S. Improving protein identification from tandem mass spectrometry data by one-step methods and integrating data from other platforms. Brief. Bioinform. 2016, 17, 262–269. [Google Scholar] [CrossRef]
- Vizcaíno, J.A.; Deutsch, E.W.; Wang, R.; Csordas, A.; Reisinger, F.; Ríos, D.; Dianes, J.A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223–226. [Google Scholar] [CrossRef]
Canonical Pathways | Number of Associated Molecules | −log (p Value) | Z Score |
---|---|---|---|
Neutrophil degranulation | 37 | 17.5 | −1.732 |
Response to elevated platelet cytosolic Ca2+ | 10 | 7.83 | 1.265 |
Apoptotic execution phase | 7 | 7.36 | −2.0646 |
Gene and protein expression by Jak-STAT signaling pathway after IL-12 stimulation | 6 | 6.88 | 0.816 |
Granzyme A signaling | 6 | 5.13 | 2.449 |
Cellular response to heat stress | 6 | 4.39 | 0.449 |
Dissolution of fibrin clot | 3 | 4.14 | N/A |
Glutamate and glutamine metabolism | 3 | 4.03 | N/A |
Trans-Golgi network vesicle budding | 5 | 3.92 | −1.342 |
Metabolism of angiotensinogen to angiotensin | 3 | 3.69 | N/A |
Molecular and Cellular Functions | Number of Associated Molecules | p Value of Overlap |
---|---|---|
Cellular assembly and organization | 3 | 3.82 × 10−2–4.19 × 10−5 |
Cellular function and maintenance | 5 | 3.84 × 10−2–4.19 × 10−5 |
Cell death and survival | 9 | 3.21 × 10−2–5.61 × 10−5 |
Cellular movement | 9 | 4.13 × 10−3–1.57 × 10−3 |
Cellular development | 4 | 6.50 × 10−3–3.53 × 10−3 |
Biological Pathway | Number of Associated Molecules | p Value of Overlap |
---|---|---|
Connective tissue development and function | 5 | 3.84 × 10−2–6.50 × 10−3 |
Organ development | 2 | 2.58 × 10−2–6.50 × 10−3 |
Reproductive system development and function | 6 | 3.84 × 10−2–6.5 × 10−3 |
Tissue development | 3 | 2.58 × 10−2–6.5 × 10−3 |
Gene | Protein | Fold Change Upon E2 Exposure | p * | Function |
---|---|---|---|---|
NGAL/LCN2 | Neutrophil gelatinase-associated lipocalin | 18 | 0.01 | Acute inflammation marker [33]. Potential marker for acute kidney injury and metabolic disorders [34,35]. |
GLUL | Glutamine synthetase | 12 | 0.011 | Mediates the synthesis of glutamine [36]. Expression is tied to estrogen receptors in glial cells [37]. |
PIGR | Polymeric immunoglobulin receptor | 9.5 | 0.032 | Transmembrane transporter found on mucosal surfaces. Transports IgA and IgM. Maintains mucosal immune functions [38]. Increased expression in males with varicoceles, a condition which may lead to male infertility [39]. |
SPON1 | Spondin-1 | 8.3 | 0.001 | mRNA expression was found in various tissues. However, protein expression was not detected [40]. Function unknown in the male reproductive system [41]. |
SVS5 | Seminal vesicle secretory protein 5 | 7.5 | 0.016 | Processed by prostate-specific antigen, involved in promoting sperm motility. Elevated levels may promote male infertility [42]. |
AGT | Angiotensinogen | 6.5 | 0.016 | Involved in the regulation of the renin-angiotensin system [43]. Seminal AGT may be involved in regulating sperm motility [44]. |
S100A11 | Protein S100-A11 | −2 | 0.045 | Calcium-binding protein is involved in various regulatory functions [45]. Considered a marker for inflammation. Upregulated in colon and prostate cancers [46,47]. |
PTGES3 | Prostaglandin E synthase 3 | −2.5 | 0.028 | Promotes the function of steroid receptors in the immune system, and mRNA expression may be reduced after exposure to bisphenol A [48,49]. |
DCXR | L-Xylulose reductase | −2.5 | 0.004 | Short-chain reductase metabolizes xylulose, quinone, and diacetyl with other potentially unknown functions [50]. Sperm surface protein, essential for gamete fusion and fertilization, is reduced in patients with SCI-induced male infertility [51,52]. |
CBX1 | Chromobox protein homolog 1 | −3.3 | 0.014 | Androgen receptor cofactor and regulates the androgen receptor’s genomic activity. Upregulated in castration-resistant prostate cancer [30]. |
NENF | Neudesin | −5 | 0.008 | Function in the male reproductive system has yet to be fully elucidated. Expression at the mRNA level may be reduced after ER activation but is cell-specific [53]. |
PGM-1 | Phosphoglucomutase-1 | −5 | 0.006 | Involved in glycogen metabolism and N-glycosylation. Reduced expression in patients who have SCI-induced infertility [52,54]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapic, A.; Zaman, K.; Nguyen, V.; Prokai-Tatrai, K.; Prokai, L. Identification of Estrogen-Responsive Proteins in Mouse Seminal Vesicles Through Mass Spectrometry-Based Proteomics. Pharmaceuticals 2024, 17, 1508. https://doi.org/10.3390/ph17111508
Kapic A, Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Identification of Estrogen-Responsive Proteins in Mouse Seminal Vesicles Through Mass Spectrometry-Based Proteomics. Pharmaceuticals. 2024; 17(11):1508. https://doi.org/10.3390/ph17111508
Chicago/Turabian StyleKapic, Ammar, Khadiza Zaman, Vien Nguyen, Katalin Prokai-Tatrai, and Laszlo Prokai. 2024. "Identification of Estrogen-Responsive Proteins in Mouse Seminal Vesicles Through Mass Spectrometry-Based Proteomics" Pharmaceuticals 17, no. 11: 1508. https://doi.org/10.3390/ph17111508
APA StyleKapic, A., Zaman, K., Nguyen, V., Prokai-Tatrai, K., & Prokai, L. (2024). Identification of Estrogen-Responsive Proteins in Mouse Seminal Vesicles Through Mass Spectrometry-Based Proteomics. Pharmaceuticals, 17(11), 1508. https://doi.org/10.3390/ph17111508